Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 01

View Issue TOC
Volume 27, No. 1
Pages 16 - 25

OpenAccess

Deep Ocean Carbonate Chemistry and Glacial-Interglacial Atmospheric CO2 Changes

By Jimin Yu , Robert F. Anderson, and Eelco J. Rohling  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Changes in deep ocean carbonate chemistry have profound implications for glacial-interglacial atmospheric CO2 changes. Here, we review deep ocean carbonate ion concentration ([CO32–]) changes based on the benthic foraminiferal boron-to-calcium ratio (B/Ca) and their links to global carbon reorganization since the last ice age. Existing deep ocean [CO32–] reconstructions are consistent with changes in the biological pump, in ocean stratification, and in the associated oceanic alkalinity inventory as key mechanisms for modulating atmospheric CO2 on glacial-interglacial time scales. We find that the global mean deep ocean [CO32–] was roughly similar between the Last Glacial Maximum (LGM; 18,000–22,000 years ago) and the Late Holocene (0–5,000 years ago). In view of elevated glacial surface [CO32–], this indicates enhanced storage of respiratory carbon in a more alkaline deep ocean during the LGM. During early deglaciation, rising [CO32–] at three locations in the deep ocean suggests a release of deep-sea CO2 to the atmosphere, probably via the Southern Ocean. Both increased late deglacial carbonate burial in deep-sea sediments due to elevated [CO32–] and Holocene expansion of coral reefs on newly flooded continental shelves depleted global ocean alkalinity, which reduced CO2 solubility in seawater and contributed to atmospheric CO2 rises at these times.

Citation

Yu, J., R.F. Anderson, and E.J. Rohling. 2014. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes. Oceanography 27(1):16–25, https://doi.org/10.5670/oceanog.2014.04.

References
    Anderson, D.M., and D. Archer. 2002. Glacial-interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature 416:70–73, https://doi.org/10.1038/416070a.
  1. Anderson, R.F., S. Ali, L. Bradtmiller, S.H.H. Nielsen, M.Q. Fleisher, B.E. Anderson, and L.H. Burckle. 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1,443–1,448, https://doi.org/10.1126/science.1167441.
  2. Archer, D., and E. Maier-Reimer. 1994. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263, https://doi.org/10.1038/367260a0.
  3. Barker, S., and H. Elderfield. 2002. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297:833–836, https://doi.org/10.1126/science.1072815.
  4. Berger, W.H. 1977. Deep-sea carbonate and deglaciation preservation spike in pteropods and foraminifera. Nature 269:301–304, https://doi.org/10.1038/269301a0.
  5. Bird, M.I., J. Lloyd, and G.D. Farquhar. 1994. Terrestrial carbon storage at the LGM. Nature 371:566, https://doi.org/10.1038/371566a0.
  6. Boyle, E.A. 1988. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331:55–56, https://doi.org/10.1038/331055a0.
  7. Boyle, E.A., and L. Keigwin. 1987. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330:35–40, https://doi.org/10.1038/330035a0.
  8. Bradtmiller, L., R.F. Anderson, J. Sachs, and M.Q. Fleisher. 2010. A deeper respired carbon pool in the glacial equatorial Pacific Ocean. Earth and Planetary Science Letters 299:417–425, https://doi.org/10.1016/j.epsl.2010.09.022.
  9. Broecker, W. 1982. Glacial to interglacial changes in ocean chemistry. Progress in Oceanography 2:151–197, https://doi.org/10.1016/0079-6611(82)90007-6.
  10. Broecker, W., and S. Barker. 2007. A 190‰ drop in atmosphere’s
    during the “Mystery Interval” (17.5 to 14.5 kyr). Earth and Planetary Science Letters 256:90–99, https://doi.org/10.1016/j.epsl.2007.01.015.
  11. Broecker, W., S.L. Peacock, R. Weiss, E. Fahrbach, M. Schroeder, U. Mikolajewicz, C. Heinze, R.M. Key, T.H. Peng, and S.I. Rubin. 1998. How much deep water is formed in the Southern Ocean? Journal of Geophysical Research 103:15,833–15,843, https://doi.org/10.1029/98JC00248.
  12. Broecker, W., and T.H. Peng. 1982. Tracers in the Sea. Eldigio Press, 690 pp.
  13. Broecker, W., and T. Takahashi. 1978. The relationship between lysocline depth and in situ carbonate ion concentration. Deep Sea Research 25:65–95.
  14. Broecker, W.S., and G.M. Henderson. 1998. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13:352–364, https://doi.org/10.1029/98pa00920.
  15. Brovkin, V., A. Ganopolski, D. Archer, and S. Rahmstorf. 2007. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22, PA4202, https://doi.org/10.1029/2006pa001380.
  16. Brown, R.E., L.D. Anderson, E. Thomas, and J.C. Zachos. 2011. A core-top calibration of B/Ca in the benthic foraminifers Nuttallides umbonifera and Oridorsalis umbonatus: A proxy for Cenozoic bottom water carbonate saturation. Earth and Planetary Science Letters 310:360–368, https://doi.org/10.1016/j.epsl.2011.08.023.
  17. Burke, A., and L.F. Robinson. 2012. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 355:557–561, https://doi.org/10.1126/science.1208163.
  18. Catubig, N.R., D. Archer, R. Francois, P. DeMenocal, W.R. Howard, and E.-F. Yu. 1998. Global deep-sea burial rate of calcium carbonate during the last glacial maximum. Paleoceanography 13:298–310, https://doi.org/10.1029/98PA00609.
  19. Ciais, P., A. Tagliabue, M. Cuntz, L. Bopp, M. Scholze, G. Hoffmann, A. Lourantou, S.P. Harrison, I.C. Prentice, D.I. Kelley, and others. 2012. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience 5:74–79, https://doi.org/10.1038/Ngeo1324.
  20. Crowley, T.J. 1983. Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years. Marine Geology 51:1–14, https://doi.org/10.1016/0025-3227(83)90085-3.
  21. Curry, W.B., and D. Oppo. 2005. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017, https://doi.org/10.1029/2004PA001021.
  22. Farrell, J.W., and W.L. Prell. 1989. Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4:447–466, https://doi.org/10.1029/PA004i004p00447.
  23. Farrell, J.W., and W.L. Prell. 1991. Pacific CaCO3 preservation and δ18O since 4 Ma: Paleoceanic and paleoclimatic implications. Paleoceanography 6:485–498, https://doi.org/10.1029/91PA00877.
  24. Galbraith, E.D., S.L. Jaccard, T.F. Pedersen, D.M. Sigman, G.H. Haug, M. Cook, J.R. Southon, and R. Francois. 2007. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449:890–893, https://doi.org/10.1038/nature06227.
  25. Grant, K.M., E.J. Rohling, M. Bar-Matthews, A. Ayalon, M. Medina-Elizalde, C. Bronk Ramsey, C. Satow, and A.P. Roberts. 2012. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491:744–747, https://doi.org/10.1038/nature11593.
  26. Hemming, N.G., and G.N. Hanson. 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta 56:537–543, https://doi.org/10.1016/0016-7037(92)90151-8.
  27. Henehan, M.J., J. Rae, G.L. Foster, J. Erez, K.C. Prentice, M. Kucera, H.C. Bostock, M.A. Martinez-Boti, J.A. Milton, P.A. Wilson, and others. 2013. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth and Planetary Science Letters 364:111–122, https://doi.org/10.1016/j.epsl.2012.12.029.
  28. Hodell, D.A., C.D. Charles, and F.J. Sierro. 2001. Late Pleistocene evolution of the ocean’s carbonate system. Earth and Planetary Science Letters 192:109–124, https://doi.org/10.1016/S0012-821X(01)00430-7.
  29. Hönisch, B., T. Bickert, and N.G. Hemming. 2008. Modern and Pleistocene boron isotope composition of the benthic foraminifer Cibicidoides wuellerstorfi. Earth and Planetary Science Letters 272:309–318, https://doi.org/10.1016/j.epsl.2008.04.047.
  30. Jaccard, S.L., and E.D. Galbraith. 2012. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geoscience 5:151–156, https://doi.org/10.1038/Ngeo1352.
  31. Jouzel, J., V. Masson-Delmotte, O. Cattani, G. Dreyfus, S. Falourd, G. Hoffmann, B. Minster, J. Nouet, J.M. Barnola, J. Chappellaz, and others. 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–797, https://doi.org/10.1126/science.1141038.
  32. Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy, and T.H. Peng. 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18, GB4031, https://doi.org/10.1029/2004GB002247.
  33. Kumar, N., R.F. Anderson, R.A. Mortlock, P.N. Froelich, P. Kubik, B. Dittrichhannen, and M. Suter. 1995. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378:675–680, https://doi.org/10.1038/378675a0.
  34. Le, J., and N.J. Shackleton. 1992. Carbonate dissolution fluctuations in the Western equatorial Pacific during the late Quaternary. Paleoceanography 7:21–42, https://doi.org/10.1029/91PA02854.
  35. Lemarchand, D., J. Gaillardet, E. Lewin, and C.J. Allegre. 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408:951–954, https://doi.org/10.1038/35050058.
  36. Lisiecki, L.E., and M.E. Raymo. 2005. A Pliocene-Pleistocene stack of 57 globally distributed bent
    records. Paleoceanography 20, PA1003, https://doi.org/10.1029/2004PA001071.
  37. Lund, D.C., J.F. Adkins, and R. Ferrari. 2011. Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing. Paleoceanography 26, PA1213, https://doi.org/10.1029/2010pa001938.
  38. Lüthi, D., M.L. Floch, B. Bereiter, T. Blunier, J.M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382, https://doi.org/10.1038/nature06949.
  39. Lutze, G.F., and H. Thiel. 1989. Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis. Journal of Foraminiferal Research 19:153–158.
  40. Marchitto, T.M., W.B. Curry, and D.W. Oppo. 2000. Zinc concentrations in benthic foraminifera reflect seawater chemistry. Paleoceanography 15:299–306, https://doi.org/10.1029/1999PA000420.
  41. Martinez-Garcia, A., A. Rosell-Mele, S.L. Jaccard, W. Geibert, D.M. Sigman, and G.H. Haug. 2011. Southern Ocean dust-climate coupling over the past four million years. Nature 476:312–315, https://doi.org/10.1038/nature10310.
  42. Menviel, L., and F. Joos. 2012. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations. Paleoceanography 27, PA1207, https://doi.org/10.1029/2011pa002224.
  43. Opdyke, B.N., and J.C.G. Walker. 1992. Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology 20:733–736, https://doi.org/10.1130/0091-7613(1992)020<0733:ROTCRH>2.3.CO;2.
  44. Rae, J.W.B., G.L. Foster, D.N. Schmidt, and T. Elliott. 2011. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system. Earth and Planetary Science Letters 302:403–413, https://doi.org/10.1016/j.epsl.2010.12.034.
  45. Raitzsch, M., E.C. Hathorne, H. Kuhnert, J. Groeneveld, and T. Bickert. 2011. Modern and late Pleistocene B/Ca ratios of the benthic foraminifer Planulina wuellerstorfi determined with laser ablation ICP-MS. Geology 39:1,039–1,042, https://doi.org/10.1130/G32009.1.
  46. Rickaby, R.E.M., H. Elderfield, N. Roberts, C.-D. Hillenbrand, and A. Mackensen. 2010. Evidence for elevated alkalinity in the glacial Southern Ocean. Paleoceanography 25, PA1209, https://doi.org/10.1029/2009PA001762.
  47. Ridgwell, A.J., A.J. Watson, M.A. Maslin, and J.O. Kaplan. 2003. Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum. Paleoceanography 18, 1083, https://doi.org/10.1029/2003PA000893.
  48. Sanyal, A., N.G. Hemming, G.N. Hanson, and W.S. Broecker. 1995. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373:234–236, https://doi.org/10.1038/373234a0.
  49. Schlitzer, R., 2006. Ocean Data View, http://odv.awi-bremerhaven.de.
  50. Schmitz, W.J. 1996. On the World Ocean Circulation, vol. II. The Pacific and Indian Ocean: A Global Update. Technical Report WHOI-96-08, Woods Hole Oceanographic Institution, Woods Hole, MA.
  51. Sigman, D.M., and E.A. Boyle. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869, https://doi.org/10.1038/35038000.
  52. Sigman, D.M., M.P. Hain, and G.H. Haug. 2010. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466:47–55, https://doi.org/10.1038/Nature09149.
  53. Stephens, B.B., and R.F. Keeling. 2000. The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404:171–174, https://doi.org/10.1038/35004556.
  54. Toggweiler, J.R., J.L. Russell, and S.R. Carson. 2006. Midlatitude westerlies, atmospheric CO2 and climate change during the ice ages. Paleoceanography 21, PA2005, https://doi.org/10.1029/2005PA001154.
  55. Yu, J., R.F.Anderson, Z.D. Jin, J. Rae, B.N. Opdyke, and S. Eggins. 2013a. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial–interglacial cycle. Quaternary Science Reviews 76:39–52, https://doi.org/10.1016/j.quascirev.2013.06.020.
  56. Yu, J., W. Broecker, H. Elderfield, Z.D. Jin, J. McManus, and F. Zhang. 2010a. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 330:1,084–1,087, https://doi.org/10.1126/science.1193221.
  57. Yu, J.M., and H. Elderfield. 2007. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth and Planetary Science Letters 258:73–86, https://doi.org/10.1016/j.epsl.2007.03.025.
  58. Yu, J.M., H. Elderfield, and A. Piotrowski. 2008. Seawater carbonate ion-δ13C systematics and application to glacial-interglacial North Atlantic ocean circulation. Earth and Planetary Science Letters 271:209–220, https://doi.org/10.1016/j.epsl.2008.04.010.
  59. Yu, J., G.L. Foster, H. Elderfield, W.S. Broecker, and E. Clark. 2010b. An evaluation of benthic foraminiferal B/Ca and δ11B for deep ocean carbonate ion and pH reconstructions. Earth and Planetary Science Letters 293:114–120, https://doi.org/10.1016/j.epsl.2010.02.029.
  60. Yu, J., D.J.R. Thornalley, J. Rae, and I.N. McCave. 2013b. Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. Paleoceanography 28:237–252, https://doi.org/10.1002/palo.20024.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.