Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 04

View Issue TOC
Volume 29, No. 4
Pages 154 - 159

OpenAccess

Contributions of Greenland and Antarctica to Global and Regional Sea Level Change

By Eric W. Leuliette  and R. Steven Nerem 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

While it is well known that the accelerating melting of the ice sheets of Greenland and Antarctica will increasingly raise global mean sea levels, it is less widely understood how the addition of meltwater from these ice sheets will affect regional patterns of sea level rise. The transfer of water mass from the ice sheets to the ocean will alter Earth’s gravity field and rotation, resulting in local changes in sea levels. On time scales from months to decades, the addition of freshwater at high latitudes will alter the mean ocean circulation through a variety of mechanisms that will also alter regional rates of sea level change. The current ocean observing system, including radar and laser altimeters, satellite gravity missions, and the Argo network of profiling floats, has demonstrated the ability to close the sea level budget since 2005, confirming the contributions of ice sheets to contemporary sea level rise. The planned observing system will be capable of monitoring the regional variability of sea level change, which should help improve future projections.

Citation

Leuliette, E.W., and R.S. Nerem. 2016. Contributions of Greenland and Antarctica to global and regional sea level change. Oceanography 29(4):154–159, https://doi.org/10.5670/oceanog.2016.107.

References
    Adhikari, S., E.R. Ivins, and E. Larour. 2015. ISSM-SESAW v1.0: Mesh-based computation of gravitationally consistent sea level and geodetic signatures caused by cryosphere and climate driven mass change. Geoscientific Model Development 9(3):1,087–1,109, https://doi.org/​10.5194/gmdd-8-9769-2015.
  1. Agarwal, N., A. Köhl, C.R. Mechoso, and D. Stammer. 2014. On the early response of the climate system to a meltwater input from Greenland. Journal of Climate 27(21):8,276–8,296, https://doi.org/10.1175/JCLI-D-13-00762.1.
  2. Boening, C., J.K. Willis, F.W. Landerer, R.S. Nerem, and J. Fasullo. 2012. The 2011 La Niña: So strong, the oceans fell. Geophysical Research Letters 39, L19602, https://doi.org/10.1029/2012GL053055.
  3. Cazenave, A., H.-B. Dieng, B. Meyssignac, K. von Schuckmann, B. Decharme, and E. Berthier. 2014. The rate of sea-level rise. Nature Climate Change 4:358–361, https://doi.org/10.1038/nclimate2159.
  4. Chambers, D., J. Wahr, and R. Nerem. 2004. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters 31(13), L13310, https://doi.org/​10.1029/2004GL020461.
  5. Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifeld, G.A. Milne, R.S. Nerem, P.D. Nunn, and others. 2013. Sea level change. Chapter 13 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, UK, and New York, NY, USA.
  6. Fasullo, J.T., C. Boening, F.W. Landerer, and R.S. Nerem. 2013. Australia’s unique influence on global sea level in 2010–2011. Geophysical Research Letters 40:4,368–4,373, https://doi.org/​10.1002/grl.50834.
  7. Gower, J.F.R. 2010. Comment on “Response of the global ocean to Greenland and Antarctic ice melting” by D. Stammer. Journal of Geophysical Research 115, C10009, https://doi.org/10.1029/2010JC006097.
  8. Gregory, J.M., N.J. White, J.A. Church, M.F.P. Bierkens, J.E. Box, M.R. van den Broeke, J.G. Cogley, X. Fettweis, E. Hanna, P. Huybrechts, and others. 2013. Twentieth-century global-mean sea level rise: Is the whole greater than the sum of the parts? Journal of Climate 26(13):4,476–4,499, https://doi.org/10.1175/JCLI-D-12-00319.1
  9. Hamlington, B.D., S.H. Cheon, P.R. Thompson, M.A. Merrifield, R.S. Nerem, R.R. Leben, and K.-Y. Kim. 2016. An ongoing shift in Pacific Ocean sea level. Journal of Geophysical Research 121:5,084–5,097, https://doi.org/​10.1002/2016JC011815.
  10. Hu, A., G.A. Meehl, B.L. Otto-Bliesner, C. Waelbroeck, W. Han, M.-F. Loutre, K. Lambeck, J.X. Mitrovica, and N. Rosenbloom. 2010. Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nature Geoscience 3(2):118–121, https://doi.org/10.1038/ngeo729.
  11. Johnson, G.C., and D.P. Chambers. 2013. Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications. Journal of Geophysical Research 118(9):4,228–4,240, https://doi.org/​10.1002/jgrc.20307.
  12. Kopp, R.E., J.X. Mitrovica, S.M. Griffies, J. Yin, C.C. Hay, and R.J. Stouffer. 2010. The impact of Greenland melt on local sea levels: A partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Climatic Change 103(3):619–625, https://doi.org/10.1007/s10584-010-9935-1.
  13. Leuliette, E.W. 2015. The balancing of the sea-level budget. Current Climate Change Reports 1(3):185–191, https://doi.org/10.1007/s40641-015-0012-8.
  14. Leuliette, E.W., and R. Scharroo. 2010. Integrating Jason-2 into a multiple-altimeter climate data record. Marine Geology 33(sup 1):504–517, https://doi.org/10.1080/01490419.2010.487795.
  15. Leuliette, E., and J. Willis. 2011. Balancing the sea level budget. Oceanography 24(2):122–129, https://doi.org/10.5670/oceanog.2011.32.
  16. Llovel, W., J.K. Willis, F.W. Landerer, and I. Fukumori. 2014. Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nature Climate Change 4:1,031–1,035, https://doi.org/10.1038/nclimate2387.
  17. Lorbacher, K., S.J. Marsland, J.A. Church, S.M. Griffies, and D. Stammer. 2012. Rapid barotropic sea level rise from ice sheet melting. Journal of Geophysical Research 117, C06003, https://doi.org/10.1029/2011JC007733.
  18. Mitrovica, J., M. Tamisiea, J. Davis, and G. Milne. 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1,026–1,029, https://doi.org/​10.1038/35059054.
  19. Nerem, R.S., D.P. Chambers, C. Choe, and G.T. Mitchum. 2010. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy 33(sup1):435–446, https://doi.org/10.1080/01490419.2010.491031.
  20. Okumura, Y.M., C. Deser, A. Hu, A. Timmermann, and S.-P. Xie. 2009. North Pacific climate response to freshwater forcing in the subarctic North Atlantic: Oceanic and atmospheric pathways. Journal of Climate 22(6):1,424–1,445, https://doi.org/10.1175/2008JCLI2511.1.
  21. Pardaens, A.K., J.A. Lowe, S. Brown, R.J. Nicholls, and D. De Gusmão. 2011. Sea-level rise and impacts projections under a future scenario with large greenhouse gas emission reductions. Geophysical Research Letters 38, L12604, https://doi.org/10.1029/2011GL047678.
  22. Rignot, E., I. Velicogna, M.R. Van Den Broeke, A. Monaghan, and J. Lenaerts. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38, L05503, https://doi.org/​10.1029/2011GL046583.
  23. Roemmich, D., and J. Gilson. 2009. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography 82:81–100, https://doi.org/10.1016/j.pocean.2009.03.004.
  24. Shepherd, A., E.R. Ivins, Geruo A, V.R. Barletta, M.J. Bentley, S. Bettadpur, K.H. Briggs, D.H. Bromwich, R. Forsberg, N. Galin, and others. 2012. A reconciled estimate of ice-sheet mass balance. Science 338:1,183–1,189, https://doi.org/10.1126/science.1228102.
  25. Srokosz, M., M. Baringer, H. Bryden, S. Cunningham, T. Delworth, S. Lozier, J. Marotzke, and R. Sutton. 2012. Past, present, and future changes in the Atlantic meridional overturning circulation. Bulletin of the American Meteorological Society 93(11):1,663–1,676, https://doi.org/10.1175/BAMS-D-11-00151.1.
  26. Stammer, D. 2008. Response of the global ocean to Greenland and Antarctic ice melting, Journal of Geophysical Research 113, C06022, https://doi.org/10.1029/2006JC004079.
  27. Tapley, B., S. Bettadpur, J. Ries, P. Thompson, and M. Watkins. 2004. GRACE measurements of mass variability in the Earth system. Science 305:503–505, https://doi.org/10.1126/science.1099192.
  28. Watkins, M.M., D.N. Wiese, D.-N. Yuan, C. Boening, and F.W. Landerer. 2015. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research 120:2,648–2,671, https://doi.org/10.1002/2014JB011547.
  29. Watson, C.S., N.J. White, J.A. Church, M.A. King, R.J. Burgette, and B. Legresy. 2015. Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change 5(6):565–568, https://doi.org/10.1038/nclimate2635.
  30. Yin, J., M.E. Schlesinger, and R.J. Stouffer. 2009. Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geoscience 2(4)1–5, https://doi.org/10.1038/ngeo462.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.