Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 01

View Issue TOC
Volume 26, No. 1
Pages 80 - 97

OpenAccess

Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports

By Lynne D. Talley  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The overturning pathways for the surface-ventilated North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) and the diffusively formed Indian Deep Water (IDW) and Pacific Deep Water (PDW) are intertwined. The global overturning circulation (GOC) includes both large wind-driven upwelling in the Southern Ocean and important internal diapycnal transformation in the deep Indian and Pacific Oceans. All three northern-source Deep Waters (NADW, IDW, PDW) move southward and upwell in the Southern Ocean. AABW is produced from the denser, salty NADW and a portion of the lighter, low oxygen IDW/PDW that upwells above and north of NADW. The remaining upwelled IDW/PDW stays near the surface, moving into the subtropical thermoclines, and ultimately sources about one-third of the NADW. Another third of the NADW comes from AABW upwelling in the Atlantic. The remaining third comes from AABW upwelling to the thermocline in the Indian-Pacific. Atlantic cooling associated with NADW formation (0.3 PW north of 32°S; 1 PW = 1015 W) and Southern Ocean cooling associated with AABW formation (0.4 PW south of 32°S) are balanced mostly by 0.6 PW of deep diffusive heating in the Indian and Pacific Oceans; only 0.1 PW is gained at the surface in the Southern Ocean. Thus, while an adiabatic model of NADW global overturning driven by winds in the Southern Ocean, with buoyancy added only at the surface in the Southern Ocean, is a useful dynamical idealization, the associated heat changes require full participation of the diffusive Indian and Pacific Oceans, with a basin-averaged diffusivity on the order of the Munk value of 10–4 m2 s–1.

Citation

Talley, L.D. 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography 26(1):80–97, https://doi.org/10.5670/oceanog.2013.07.

References
    Armi, L. 1978. Some evidence for boundary mixing in the deep ocean. Journal of Geophysical Research 83:1,971–1,979, https://doi.org/10.1029/JC083iC04p01971.
  1. Broecker, W.S. 1987. The biggest chill. Natural History 97:74–82.
  2. Broecker, W.S. 1991. The great ocean conveyor. Oceanography 4(2):79–89, https://doi.org/10.5670/oceanog.1991.07.
  3. Cerovečki, I., L.D. Talley, and M.R. Mazloff. 2011. A comparison of Southern Ocean air-sea buoyancy flux from an ocean state estimate with five other products. Journal of Climate 24:6,283–6,306, https://doi.org/10.1175/2011JCLI3858.1.
  4. Cerovečki, I., L.D. Talley, M.R. Mazloff, and G. Maze. In press. Subantarctic Mode Water formation, destruction and export in the eddy-permitting Southern Ocean State Estimate. Journal of Physical Oceanography.
  5. Ffield, A., and A.L. Gordon. 1992. Vertical mixing in the Indonesian thermocline. Journal of Physical Oceanography 22:184–195, https://doi.org/10.1175/1520-0485(1992)022<0184:VMITIT>2.0.CO;2.
  6. Ganachaud, A., and C. Wunsch. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–456, https://doi.org/10.1038/35044048.
  7. Ganachaud, A., and C. Wunsch. 2003. Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. Journal of Climate 16:696–705, https://doi.org/10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2.
  8. Gill, A.E., and K. Bryan. 1971. Effects of geometry on the circulation of a three-dimensional Southern-Hemisphere ocean model. Deep Sea Research and Oceanographic Abstracts 90:3,332–3,342, https://doi.org/10.1016/0011-7471(71)90086-6.
  9. Gnanadesikan, A. 1999. A simple predictive model for the structure of the oceanic pycnocline. Science 283:2,077–2,079, https://doi.org/10.1126/science.283.5410.2077.
  10. Gordon, A.L. 1986a. Interocean exchange of thermocline water. Journal of Geophysical Research 91:5,037–5,046, https://doi.org/10.1029/JC091iC04p05037.
  11. Gordon, A.L. 1986b. Is there a global scale ocean circulation? Eos, Transactions American Geophysical Union 67(9):109–110, https://doi.org/10.1029/EO067i009p00109.
  12. Gordon, A. 1991. The role of thermohaline circulation in global climate change. Pp. 44–51 in Lamont-Doherty Geological Observatory 1990 & 1991 Report. Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York. Available at http://www.ldeo.columbia.edu/~agordon/publications/Gordon_Schematic_1991_LDEO_newsletter_.pdf (accessed February 18, 2013).
  13. Gordon, A.L., J. Sprintall, H.M. Van Aken, D. Susanto, S. Wijffels, R. Molcard, A. Ffield, W. Pranowo, and S. Wirasantosa. 2010. The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmosphere and Oceans 50:115–128, https://doi.org/10.1016/j.dynatmoce.2009.12.002.
  14. Jackett, D.R., and T.J. McDougall. 1997. A neutral density variable for the world’s oceans. Journal of Physical Oceanography 27:237–263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.
  15. Johnson, G.C. 2008. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. Journal of Geophysical Research 113, C05027, https://doi.org/10.1029/2007JC004477.
  16. Koch-Larrouy, A., G. Madec, D. Iudicone, A. Atmadipoera, and R. Molcard. 2008. Physical processes contributing to the water mass transformation of the Indonesian Throughflow. Ocean Dynamics 58:275–288, https://doi.org/10.1007/s10236-008-0154-5.
  17. Koltermann, K.P., V.V. Gouretski, and K. Jancke. 2011. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE): Volume 3. Atlantic Ocean. M. Sparrow, P. Chapman, and J. Gould, eds, International WOCE Project Office, Southampton, UK. Available online at http://www-pord.ucsd.edu/whp_atlas/atlantic_index.html (accessed January 24, 2013).
  18. Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf. 2007. On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics 45, RG2001, https://doi.org/10.1029/2004RG000166.
  19. Large, W.G., and S.G. Yeager. 2009. The global climatology of an interannually varying air-sea flux data set. Climate Dynamics 33:341–364, https://doi.org/10.1007/s00382-008-0441-3.
  20. Lumpkin, R., and K. Speer. 2007. Global ocean meridional overturning. Journal of Physical Oceanography 37:2,550–2,562, https://doi.org/10.1175/JPO3130.1.
  21. Macdonald, A.M., S. Mecking, J.M. Toole, P.E. Robbins, G.C. Johnson, S.E. Wijffels, L. Talley, and M. Cook. 2009. The WOCE-era 3-D Pacific Ocean circulation and heat budget. Progress in Oceanography 82:281–325, https://doi.org/10.1016/j.pocean.2009.08.002.
  22. Maltrud, M.E., and J.L. McClean. 2005. An eddy resolving global 1/10° ocean simulation. Ocean Modelling 8:31–54, https://doi.org/10.1016/j.ocemod.2003.12.001.
  23. Marshall, J., and T. Radko. 2003. Residual-mean solutions for the Antarctic circumpolar current and its associated overturning circulation. Journal of Physical Oceanography 33:2,341–2,354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.
  24. Marshall, J., and K. Speer. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience 5:171–180, https://doi.org/10.1038/ngeo1391.
  25. Mazloff, M.R., P. Heimbach, and C. Wunsch. 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceanography 40:880–899, https://doi.org/10.1175/2009JPO4236.1.
  26. McDonagh, E.L., H.L. Bryden, B.A. King, and R.J. Sanders. 2008. The circulation of the Indian Ocean at 32°S. Progress in Oceanography 79:20–36, https://doi.org/10.1016/j.pocean.2008.07.001.
  27. Merz, A., and G. Wüst. 1922. Die Atlantische Vertikalzirkulation. Zeitschrift der Gesellschaft für Erdkunde zu Berlin 1–35.
  28. Munk, W. 1966. Abyssal recipes. Deep Sea Research and Oceanographic Abstracts 13:707–730, https://doi.org/10.1016/0011-7471(66)90602-4.
  29. Munk, W., and C. Wunsch. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I 45:1,977–2,010, https://doi.org/10.1016/S0967-0637(98)00070-3.
  30. Orsi, A.H., and T. Whitworth III. 2004. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE): Volume 1. Southern Ocean. M. Sparrow, P. Chapman, and J. Gould, eds, International WOCE Project Office, Southampton, UK. Available online at: http://woceatlas.tamu.edu (accessed January 24, 2013).
  31. Polzin, K.L., J. Toole, J.R. Ledwell, and R. Schmitt. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96, https://doi.org/10.1126/science.276.5309.93.
  32. Rahmstorf, S. 2002. Ocean circulation and climate during the past 120,000 years. Nature 419:207–214, https://doi.org/10.1038/nature01090.
  33. Reid, J.L. 1994. On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers and transports. Progress in Oceanography 33:1–92, https://doi.org/10.1016/0079-6611(94)90014-0.
  34. Reid, J.L. 1997. On the total geostrophic circulation of the Pacific Ocean: Flow patterns, tracers and transports. Progress in Oceanography 39:263–352, https://doi.org/10.1016/S0079-6611(97)00012-8.
  35. Reid, J.L. 2003. On the total geostrophic circulation of the Indian Ocean: Flow patterns, tracers and transports. Progress in Oceanography 56:137–186, https://doi.org/10.1016/S0079-6611(02)00141-6.
  36. Richardson, P.L. 2008. On the history of meridional overturning circulation schematic diagrams. Progress in Oceanography 76:466–486, https://doi.org/10.1016/j.pocean.2008.01.005.
  37. Rintoul, S.R. 1991. South Atlantic interbasin exchange. Journal of Geophysical Research 96:2,675–2,692, https://doi.org/10.1029/90JC02422.
  38. Robbins, P.E., and J.M. Toole. 1997. The dissolved silica budget as a constraint on the meridional overturning circulation in the Indian Ocean. Deep Sea Research Part I 44:879–906, https://doi.org/10.1016/S0967-0637(96)00126-4.
  39. Sarmiento, J.L., N. Gruber, M.A. Brzezinski, and J.P. Dunne. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60, https://doi.org/10.1038/nature10605.
  40. Schmitz, W.J. 1995. On the interbasin-scale thermohaline circulation. Reviews of Geophysics 33:151–173, https://doi.org/10.1029/95RG00879.
  41. Schmitz, W.J. 1996. On the World Ocean Circulation: Volume I. Some global features/North Atlantic circulation. Woods Hole Oceanographic Institution Technical Report. WHOI-96-03, Woods Hole, MA, 141 pp.
  42. Sloyan, B.M., and S.R. Rintoul. 2001. The Southern Ocean limb of the global deep overturning circulation. Journal of Physical Oceanography 31:143–173, https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.
  43. Speer, K., S.R. Rintoul, and B. Sloyan. 2000. The diabatic Deacon cell. Journal of Physical Oceanography 30:3,212–3,222, https://doi.org/10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.
  44. Speich, S., B. Blanke, P. de Vries, S. Drijfhout, K. Döös, A. Ganachaud, and R. Marsh. 2002. Tasman leakage: A new route in the global ocean conveyor belt. Geophysical Research Letters 29(10), https://doi.org/10.1029/2001GL014586.
  45. Talley, L.D. 2003. Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography 33:530–560, https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2.
  46. Talley, L.D. 2007. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE): Volume 2. Pacific Ocean. M. Sparrow, P. Chapman, and J. Gould, eds, International WOCE Project Office, Southampton, UK. Available online at: http://www-pord.ucsd.edu/whp_atlas/pacific_index.html (accessed January 24, 2013).
  47. Talley, L.D. 2008. Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Progress in Oceanography 78:257–303, https://doi.org/10.1016/j.pocean.2008.05.001.
  48. Talley, L.D. 2011. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE): Volume 4. Indian Ocean. M. Sparrow, P. Chapman, and J. Gould, eds, International WOCE Project Office, Southampton, UK. Available online at: http://www-pord.ucsd.edu/whp_atlas/indian_index.html (accessed January 24, 2013).
  49. Talley, L.D., G.E. Pickard, W.J. Emery, and J.H. Swift. 2011. Descriptive Physical Oceanography: An Introduction, 6th ed. Elsevier, Burlingham, MA, 560 pp.
  50. Talley, L.D., J.L. Reid, and P.E. Robbins. 2003. Data-based meridional overturning streamfunctions for the global ocean. Journal of Climate 16:3,213–3,226, https://doi.org/10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2.
  51. Talley, L.D., and J. Sprintall. 2005. Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. Journal of Geophysical Research 110, C10009, https://doi.org/10.1029/2004JC002826.
  52. Toggweiler, J.R., and B. Samuels. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research Part I 42:477–500, https://doi.org/10.1016/0967-0637(95)00012-U.
  53. Toole, J.M., and B.A. Warren. 1993. A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Research Part I 40:1,973–2,019, https://doi.org/10.1016/0967-0637(93)90042-2.
  54. Warren, B.A. 1990. Suppression of deep oxygen concentrations by Drake Passage. Deep Sea Research Part A 37:1,899–1,907, https://doi.org/10.1016/0198-0149(90)90085-A.
  55. Wolfe, C.L., and P. Cessi. 2011. The adiabatic pole-to-pole overturning circulation. Journal of Physical Oceanography 41:1,795–1,810, https://doi.org/10.1175/2011JPO4570.1.
  56. Wunsch, C., and R. Ferrari. 2004. Vertical mixing, energy and the general circulation of the oceans. Annual Review of Fluid Mechanics 36:281–314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.