Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 01

View Issue TOC
Volume 27, No. 1
Pages 160 - 167

OpenAccess

A Plea for Temperature in Descriptions of the Oceanic Oxygen Status

By Peter G. Brewer  and Andreas F. Hofmann 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

For over 50 years, the ocean science community has traditionally reported hypoxic limits for marine animals simply as a concentration value independent of temperature and pressure, implying the same limit for the warmest shallow gulf or the coldest deep fjord. Similarly, deep-sea oxygen consumption rates are typically reported as exponential functions of depth. In implicitly combining temperature, pressure, and multiple other properties into a single variable, it becomes difficult to describe the future of an ocean under changing climate conditions. We report here on a series of recent papers that seek to provide improved descriptions, by mapping the ocean pO2 field and then matching it to the various concentration limits proposed. We describe the availability of O2 to marine animals as being governed by a diffusive boundary rate process similar to well-known descriptions of air-sea gas exchange. We also describe the challenge for a deep-sea animal exporting CO2 through the same boundary layer with known chemical reactivity imposed. The end result is a clear sense that ocean warming in most regions will add stress to the aerobic functioning of marine life, that the oxygen minimum zones appear to be more challenging than ever, and that the deepest abyssal ocean will retain quite favorable aerobic conditions.

Citation

Brewer, P.G., and A.F. Hofmann. 2014. A plea for temperature in descriptions of the oceanic oxygen status. Oceanography 27(1):160–167, https://doi.org/10.5670/oceanog.2014.19.

References
    Arrhenius, S. 1889. Uber die Reaktionsgeschwin-digkeit bei der Inversion von Rohrzucker durch Sauren. Zeitschrift für Physikalische Chemie 4:226–248.
  1. Brewer, P.G. 2013. A short history of ocean acidification science in the 20th century: A chemist’s view. Biogeosciences 10:7,411–7,422, https://doi.org/10.5194/bg-10-7411-2013.
  2. Brewer, P.G., G. Friederich, E.T. Peltzer, and F.M. Orr Jr. 1999. Direct experiments on the ocean disposal of fossil fuel CO2. Science 284:943–945, https://doi.org/10.1126/science.284.5416.943.
  3. Brewer, P.G., and E.T. Peltzer. 2009. Limits to marine life. Science 324:347–348, https://doi.org/10.1126/science.1170756.
  4. Brown, J.H., A. Gillooly, A.P. Allen, V.M. Savage, and G.B. West. 2004. Toward a metabolic theory of ecology. Ecology 85:1,771–1,789, https://doi.org/10.1890/03-9000.
  5. Caldeira, K., M. Akai, P. Brewer, B. Chen, P. Haugan, T. Iwama, P. Johnston, H. Kheshgi, Q. Li, T. Ohsumi, and others. 2005. Ocean storage. Chapter 6 in Carbon Dioxide Capture and Storage: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. B. Metz and O. Davidson, eds, Cambridge University Press, Cambridge, UK. Available online at: http://www.ipcc-wg3.de/special-reports/.files-images/SRCCS-Chapter6.pdf (accessed December 2, 2013).
  6. Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chabra, R. DeFries, J. Galloway, M. Heimann, and others. 2013. Carbon and other biogeochemical cycles. Chapter 6 in Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis. Available online at: http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter06.pdf (accessed December 11, 2013).
  7. Craig, H. 1969. Abyssal carbon and radiocarbon in the Pacific. Journal of Geophysical Research 74:5,491–5,506, https://doi.org/10.1029/JC074i023p05491.
  8. Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–929, https://doi.org/10.1126/science.1156401.
  9. Emerson, S. 1975. Chemically enhanced CO2 gas exchange in a eutrophic lake: A general model. Limnology & Oceanography 20:743–761, https://doi.org/10.4319/lo.1975.20.5.0743.
  10. Enns, T., P.F. Scholander, and E.D. Bradstreet. 1965. Effect of hydrostatic pressure on gases dissolved in water. Journal of Physical Chemistry 69:389–391, https://doi.org/10.1021/j100886a005.
  11. Garcia, H.E., R.A. Locarnini, T.P. Boyer, J.I. Antonov, O.K. Baranova, M.M. Zweng, and D.R. Johnson. 2010. World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. S. Levitus, ed., NOAA Atlas NESDIS 70, US Government Printing Office, Washington, DC, 344 pp. Available online at: ftp://ftp.nodc.noaa.gov/pub/WOA09/DOC/woa09_vol3_text.pdf (accessed December 2, 2013).
  12. Gilbert, D., N.N. Rabalais, R.J. Diaz, and J. Zhang. 2010. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7:2,283–2,296, https://doi.org/10.5194/bg-7-2283-2010.
  13. Gray, J.S., R. Shiu-sun, and Y.Y. Or. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238:249–279, https://doi.org/10.3354/meps238249.
  14. Helm, K.P., N.L. Bindoff, and J.A. Church. 2011. Observed decreases in oxygen content of the global ocean. Geophysical Research Letters 38, L23602, https://doi.org/10.1029/2011GL049513.
  15. Hofmann, A.F., E.T. Peltzer, and P.G. Brewer. 2013a. Kinetic bottlenecks to chemical exchange rates for deep-sea animals – Part I: Oxygen. Biogeosciences 10:13,817–13,856, https://doi.org/10.5194/bgd-9-13817-2012.
  16. Hofmann, A.F., E.T. Peltzer, and P.G. Brewer. 2013b. Kinetic bottlenecks to chemical exchange rates for deep-sea animals – Part II: Carbon dioxide. Biogeosciences 10:2,409–2,425, https://doi.org/10.5194/bg-10-2409-2013.
  17. Hofmann, A.F., E.T. Peltzer, P.M. Walz, and P.G. Brewer. 2011. Hypoxia by degrees: Establishing definitions for a changing ocean. Deep Sea Research Part I 58:1,212–1,226, https://doi.org/10.1016/j.dsr.2011.09.004.
  18. IPCC (Intergovernmental Panel on Climate Change). 2011. IPCC Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems. Workshop report, January 17–19, 2011, Okinawa, Japan. C.B. Field, V. Barros, T.F. Stocker, Q. Dahe, K.J. Mach, G.-K. Plattner, M.D. Mastrandrea, M. Tignor, and K.L. Ebi, eds, 164 pp. Available online at: http://www.ipcc-wg2.gov/meetings/workshops/OceanAcidification_WorkshopReport.pdf (accessed December 2, 2013).
  19. Iversen, M.H., and H. Ploug. 2013. Temperature effects on carbon-specific respiration rates and sinking velocity of diatom aggregates: Potential implications for deep ocean export processes. Biogeosciences 10:4,073–4,085, https://doi.org/10.5194/bg-10-4073-2013.
  20. Jenkins, W.J. 1982. Oxygen utilization rates in the North Atlantic subtropical gyre and primary production in oligotrophic systems. Nature 300:246–248, https://doi.org/10.1038/300246a0.
  21. Keeling, R.F., A. Körtzinger, and N. Gruber. 2010. Ocean deoxygenation in a warming world. Annual Review of Marine Science 2:199–229, https://doi.org/10.1146/annurev.marine.010908.163855.
  22. Kessler, J.D., D.L. Valentine, M.C. Redmond, M. Du, E.W. Chan, S.D. Mendes, E.W. Quiroz, C.J. Villanueva, S.S. Shusta, L.M. Werra, and others. 2011. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–315, https://doi.org/10.1126/science.1199697.
  23. Knauer, G.A., and J.H. Martin. 1981. Primary production and carbon-nitrogen fluxes in the upper 1500 m of the Northeast Pacific. Limnology & Oceanography 26:181–182, https://doi.org/10.4319/lo.1981.26.1.0181.
  24. Laws, E.A., P.G. Falkowski, W.O. Smith, H. Ducklow, and J.J. McCarthy. 2000. Temperature effects on export production in the open ocean. Global Biogeochemical Cycles 14:1,231–1,246, https://doi.org/10.1029/1999GB001229.
  25. Levin, L.A., W. Ekau, A.J. Gooday, F. Jorissen, J.J. Middelburg, S.W.A. Naqvi, C. Neira, N.N. Rabalais, and J. Zhang. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:2,063–2,098, https://doi.org/10.5194/bg-6-2063-2009.
  26. Lloyd, J., and J.A. Taylor. 1994. On the temperature dependence of soil respiration. Functional Ecology 8:315–323, https://doi.org/10.2307/2389824.
  27. Marchetti, C. 1977. On geoengineering and the CO2 problem. Climatic Change 1:59–68, https://doi.org/10.1007/BF00162777.
  28. Martin, J.H., G.A. Knauer, D.M. Karl, and W.W. Broeknow. 1987. VERTEX: Carbon cycling in the Northeast Pacific. Deep Sea Research Part A 34:267–285, https://doi.org/10.1016/0198-0149(87)90086-0.
  29. Munk, W.H. 1966. Abyssal recipes. Deep Sea Research 13:707–730, https://doi.org/10.1016/0011-7471(66)90602-4.
  30. Nakanowatari, T., K.I. Ohshima, and M. Wakatsuchi. 2007. Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955–2004. Geophysical Research Letters 34, L04602, https://doi.org/10.1029/2006GL028243.
  31. Rabalais, N.N., R.J. Diaz, L.A. Levin, R.E. Turner, D. Gilbert, and J. Zhang. 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619, https://doi.org/10.5194/bg-7-585-2010.
  32. Redfield, A.C., and R. Goodkind. 1929. The significance of the Bohr effect in the respiration and asphyxiation of the squid, Loligo Pealei. Journal of Experimental Biology 6:340–349, http://jeb.biologists.org/content/6/4/340.short.
  33. Riley, G.A. 1951. Oxygen, phosphate, and nitrate in the Atlantic Ocean. Bingham Oceanographic Laboratory Bulletin, vol. 13. Peabody Museum of Natural History, Yale University, 126 pp.
  34. Seibel, B.A., and P.J. Walsh. 2003. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. Journal of Experimental Biology 206:641–650, https://doi.org/10.1242/jeb.00141.
  35. Stramma, L., G.C. Johnson, J. Sprintall, and V. Mohrholz. 2008. Expanding oxygen minimum zones in the tropical oceans. Science 320:655–658, https://doi.org/10.1126/science.1153847.
  36. Thamdrup, B., and S. Fleischer. 1998. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments. Aquatic Microbial Ecology 15:191–199, https://doi.org/10.3354/ame015191.
  37. Thamdrup, B., T. Dalsgaard, and N.P. Revsbech. 2012. Widespread functional anoxia in the oxygen minimum zone of the eastern south Pacific. Deep Sea Research Part I 65:36–45, https://doi.org/10.1016/j.dsr.2012.03.001.
  38. Takahashi, T., W.S. Broecker, and A.E. Bainbridge. 1981. The alkalinity and total carbon dioxide concentration in the world oceans. Pp. 271–286 in Carbon Cycle Modeling. B. Bolin, ed., SCOPE Volume 16, J. Wiley & Sons, New York.
  39. Ulloa, O., D. Canfield, E.F. DeLong, R.M. Letelier, and F.J. Stewart. 2012. Microbial oceanography of anoxic oxygen minimum zones. Proceedings of the National Academy of Sciences of the United States of America 109:15,996–16,003, https://doi.org/10.1073/pnas.1205009109.
  40. van’t Hoff, J.H. 1884. Etudes de dynamique chemique. Frederick Muller & Co., Amsterdam.
  41. Vaquer-Sunyer, R., and C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America 105(40):15,452–15,457, https://doi.org/10.1073/pnas.0803833105.
  42. Wyrtki, K. 1962. The oxygen minima in relation to ocean circulation. Deep Sea Research 9:11–23, https://doi.org/10.1016/0011-7471(62)90243-7.
  43. Zeebe, R.E., and D. Wolf-Gladrow. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, vol. 65, Elsevier, 1st ed.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.