Oceanography The Official Magazine of
The Oceanography Society
Volume 24 Issue 04

View Issue TOC
Volume 24, No. 4
Pages 16 - 23

OpenAccess

A History of Taiwan/US Oceanographic Research in the South China Sea

By Steven R. Ramp  and Tswen Yung Tang 
Jump to
Citation References Copyright & Usage
First Paragraph

Oceanography is a relatively new field in Taiwan. As a maritime nation surrounded by water, the societal need to understand the seas has long been recognized. From the path of the Kuroshio to the path of the ferocious typhoons that pound the island with devastating regularity, understanding ocean processes and air-sea coupling reaps clear benefits for scientists and citizens alike. An accurate path prediction for a single typhoon may save hundreds of lives and millions of dollars in property damage. Driven by the need to understand the neighboring seas, Taiwan has embarked on an ambitious program to develop the human resources and physical infrastructure needed to conduct ocean research of the highest caliber.

Citation

Ramp, S.R., and T.Y. Tang. 2011. A history of Taiwan/US oceanographic research in the South China Sea. Oceanography 24(4):16–23, https://doi.org/10.5670/oceanog.2011.90.

References
    Alford, M.H., R.-C. Lien, H. Simmons, J. Klymak, S.R. Ramp, Y.-J. Yang, T.-Y. Tang, D. Farmer, and M.-H. Chang. 2009. Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography 40:1,338–1,355, https://doi.org/10.1175/2010JPO4388.1.
  1. Chang, M.-H., R.-C. Lien, T.Y. Tang, E.A. D’Asaro, and Y.J. Yang. 2006. Energy flux of nonlinear internal waves in northern South China Sea. Geophysical Research Letters 33, L03607, https://doi.org/10.1029/2005GL025196.
  2. Chang, Y.-T., T.Y. Tang, S.-Y. Chao, M.-H. Chang, D.S. Ko, Y. Jang Yang, W.-D. Liang, and M.J. McPhaden. 2010. Mooring observations and numerical modeling of thermal structures in the South China Sea. Journal of Geophysical Research 115, C10022, https://doi.org/10.1029/2010JC006293.
  3. Chiu, C.-S., S.R. Ramp, C.W. Miller, J.F. Lynch, T.F. Duda, and T.-Y. Tang. 2004. Acoustic intensity fluctuations induced by South China Sea internal tides and solitons. IEEE Journal of Oceanic Engineering 29:1,249–1,263, https://doi.org/10.1109/JOE.2004.834173.
  4. Duda, T.F., J.F. Lynch, J.D. Irish, R.C. Beardsley, S.R. Ramp, C.-S. Chiu, T.-Y. Tang, and Y.-J. Yang. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering 29:1,105–1,131, https://doi.org/10.1109/JOE.2004.836998.
  5. Farmer, D., Q. Li, and J.-H. Park. 2009. Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmosphere-Ocean 47:267–280, https://doi.org/10.3137/OC313.2009.
  6. Gawarkiewicz, G., J. Wang, M. Caruso, S.R. Ramp, K. Brink, and F. Bahr. 2004. Shelfbreak circulation and thermohaline structure in the northern South China Sea: Contrasting spring conditions in 2000 and 2001. IEEE Journal of Oceanic Engineering 29:1,131–1,143, https://doi.org/10.1109/JOE.2004.839123.
  7. Jan, S., R.-C. Lien, and C.-H. Ting. 2008. Numerical study of baroclinic tides in the Luzon Strait. Journal of Oceanography 64:789–802.
  8. Klymak, J.M., R. Pinkel, C.-T. Liu, A.K. Liu, and L. David. 2006. Prototypical solitons in the South China Sea. Geophysical Research Letters 33, L11607, https://doi.org/10.1029/2006GL025932.
  9. Lien, R.-C., T.Y. Tang, M.H. Chang, and E.A. D’Asaro. 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters 32, L05615, https://doi.org/10.1029/2004GL022012.
  10. Lin, I.I., W.T. Liu, C.C. Wu, J.C.H. Chiang, and C.H. Sui. 2003a. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophysical Research Letters 30, 1131, https://doi.org/10.1029/2002GL015674.
  11. Lin, I.I., W.T. Liu, C.-C. Wu, G.T.F. Wong, C. Hu, Z. Chen, W.-D. Liang, Y. Yang, and K.-K. Liu. 2003b. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters 30, 1718, https://doi.org/10.1029/2003GL017141.
  12. Mazzega, P., and M. Bergé. 1994. Ocean tides in the Asian semi-enclosed seas from TOPEX/POSEIDON. Journal of Geophysical Research 99:24,867–24,891, https://doi.org/10.1029/94JC01756.
  13. Moore, S.E., and R.-C. Lien. 2007. Pilot whales follow internal solitary waves in the South China Sea. Marine Mammal Science 23:193–196, https://doi.org/10.1111/j.1748-7692.2006.00086.x.
  14. Niwa, Y., and T. Hibiya. 2004. Three-dimensional numerical simulation of the M2 internal tides generated around the continental shelf edge in the East China Sea. Journal of Geophysical Research 109, C04027, https://doi.org/10.1029/2003JC001923.
  15. Price, J.F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography 11:153–175.
  16. Price, J.F., T.B. Sanford, and G.Z. Forristall. 1994. Forced stage response to a moving hurricane. Journal of Physical Oceanography 24:233–260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.
  17. Ramp, S.R., T.Y. Tang, T.F. Duda, J.F. Lynch, A.K. Liu, C.-S. Chiu, F.L. Bahr, H.-R. Kim, and Y.-J. Yang. 2004. Internal solitons in the northeastern South China Sea: Part I. Sources and deep water propagation. IEEE Journal of Oceanic Engineering 29:1,157–1,181, https://doi.org/10.1109/JOE.2004.840839.
  18. Ramp, S.R., Y.J. Yang, and F.L. Bahr. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics 17:481–498, https://doi.org/10.5194/npg-17-481-2010.
  19. Reeder, D.B., B.B. Ma, and Y.J. Yang. 2011. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves. Marine Geology 279:12–18, https://doi.org/10.1016/j.margeo.2010.10.009.
  20. Shaw, P.-T., D.-S. Ko, and S.-Y. Chao. 2009. Internal solitary waves induced by flow over a ridge: With applications to the northern South China Sea. Journal of Geophysical Research 114, C02019, https://doi.org/10.1029/2008JC005007.
  21. St. Laurent, L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters 35, L23615, https://doi.org/10.1029/2008GL035520.
  22. Tseng, Y.H., S. Jan, D. E. Dietrich, I.I. Lin, Y.T. Chang, and T.Y. Tang. 2010. Modeled oceanic response and sea surface cooling to Typhoon Kai-Tak. Terrestrial, Atmospheric and Oceanic Sciences 21:85–98, https://doi.org/10.3319/TAO.2009.06.08.02(IWNOP).
  23. Yang, Y.J., Y.C. Fang, M.-H. Chang, S.R. Ramp, C.-C. Kao, and T.Y. Tang. 2009. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. Journal of Geophysical Research 114, C10003, https://doi.org/10.1029/2009JC005318.
  24. Ye, A.L., and I.S. Robinson. 1983. Tidal dynamics in the South China Sea. Geophysical Journal of the Royal Astronomical Society 72:691–707, https://doi.org/10.1111/j.1365-246X.1983.tb02827.x.
  25. Zhang, Z., O.B. Fringer, and S.R. Ramp. 2010. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. Journal of Geophysical Research 116, C05022, https://doi.org/10.1029/2010JC006424.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.