Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 04

View Issue TOC
Volume 29, No. 4
Pages 72 - 83

OpenAccess

Oceans Melting Greenland: Early Results from NASA’s Ocean-Ice Mission in Greenland

By Ian Fenty , Josh K. Willis , Ala Khazendar , Steven Dinardo, René Forsberg, Ichiro Fukumori, David Holland , Martin Jakobsson, Delwyn Moller, James Morison, Andreas Münchow, Eric Rignot, Michael Schodlok, Andrew F. Thompson, Kirsteen Tinto, Matthew Rutherford, and Nicole Trenholm 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Melting of the Greenland Ice Sheet represents a major uncertainty in projecting future rates of global sea level rise. Much of this uncertainty is related to a lack of knowledge about subsurface ocean hydrographic properties, particularly heat content, how these properties are modified across the continental shelf, and about the extent to which the ocean interacts with glaciers. Early results from NASA’s five-year Oceans Melting Greenland (OMG) mission, based on extensive hydrographic and bathymetric surveys, suggest that many glaciers terminate in deep water and are hence vulnerable to increased melting due to ocean-ice interaction. OMG will track ocean conditions and ice loss at glaciers around Greenland through the year 2020, providing critical information about ocean-driven Greenland ice mass loss in a warming climate.

Citation

Fenty, I., J.K. Willis, A. Khazendar, S. Dinardo, R. Forsberg, I. Fukumori, D. Holland, M. Jakobsson, D. Moller, J. Morison, A. Münchow, E. Rignot, M. Schodlok, A.F. Thompson, K. Tinto, M. Rutherford, and N. Trenholm. 2016. Oceans Melting Greenland: Early results from NASA’s ocean-ice mission in Greenland. Oceanography 29(4):72–83, https://doi.org/10.5670/oceanog.2016.100.

References
    Box, J.E., and D.T. Decker. 2011. Greenland marine-​terminating glacier area changes: 2000–2010. Annals of Glaciology 52(59):91–98, https://doi.org/​10.3189/172756411799096312.
  1. Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, and others. 2013. Sea level change. Pp. 1,137–1,216 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.
  2. Enderlin, E.M., I.M. Howat, S. Jeong, M.-J. Noh, J.H. van Angelen, and M.R. van den Broeke. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters 41(3):866–872, https://doi.org/​10.1002/2013GL059010.
  3. Forget, G., J.-M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch. 2015. ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development 8(10):3,071–3,104, https://doi.org/​10.5194/gmd-8-3071-2015.
  4. Gladish, C.V., D.M. Holland, and C.M. Lee. 2015a. Oceanic boundary conditions for Jakobshavn Glacier: Part II. Provenance and sources of variability of Disko Bay and Ilulissat Icefjord waters, 1990–2011. Journal of Physical Oceanography 45(1):33–63, https://doi.org/10.1175/JPO-D-14-0045.1.
  5. Gladish, C.V., D.M. Holland, A. Rosing-Asvid, J.W. Behrens, and J. Boje. 2015b. Oceanic boundary conditions for Jakobshavn Glacier: Part I. Variability and renewal of Ilulissat Icefjord waters, 2001–14. Journal of Physical Oceanography 45(1)3–32, https://doi.org/10.1175/JPO-D-14-0044.1.
  6. Hensley, S., D. Moller, S. Oveisgharan, T. Michel, and X. Wu. 2016. Ka-Band Mapping and Measurements of Interferometric Penetration of the Greenland Ice Sheets by the GLISTIN Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(6):2,436–2,450, https://doi.org/10.1109/JSTARS.2016.2560626.
  7. Holland, D.M., R.H. Thomas, B. de Young, M.H. Ribergaard, and B. Lyberth. 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience 1(10):659–664, https://doi.org/10.1038/ngeo316.
  8. Howat, I.M., I. Joughin, and T.A. Scambos. 2007. Rapid changes in ice discharge from Greenland outlet glaciers. Science 315(5818):1,559–1,561, https://doi.org/10.1126/science.1138478.
  9. Hurkmans, R.T.W.L., J.L. Bamber, L.S. Sørensen, I.R. Joughin, C.H. Davis, and W.B. Krabill. 2012. Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbrae, Greenland. Journal of Geophysical Research Earth Surface 117, F03001, https://doi.org/10.1029/2011JF002072.
  10. Jakobsson, M., L. Mayer, B. Coakley, J.A. Dowdeswell, S. Forbes, B. Fridman, H. Hodnesdal, R. Noormets, R. Pedersen, M. Rebesco, and others. 2012. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters 39, L12609, https://doi.org/​10.1029/2012GL052219.
  11. Jenkins, A. 2011. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. Journal of Physical Oceanography 41(12):2,279–2,294, https://doi.org/10.1175/JPO-D-11-03.1.
  12. Joughin, I., R.B. Alley, and D.M. Holland. 2012. Ice-sheet response to oceanic forcing. Science 338(6111):1,172–1,176, https://doi.org/​10.1126/science.1226481.
  13. Joughin, I., B.E. Smith, D.E. Shean, and D. Floricioiu. 2014. Brief communication: Further summer speedup of Jakobshavn Isbræ. The Cryosphere 8(1):209–214, https://doi.org/10.5194/tc-8-209-2014.
  14. Kawasaki, T., and H. Hasumi. 2014. Effect of freshwater from the West Greenland Current on the winter deep convection in the Labrador Sea. Ocean Modelling 75:51–64, https://doi.org/10.1016/​j.ocemod.2014.01.003.
  15. Lemke, P., J. Ren, R.B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R.H. Thomas, and T. Zhang. 2007. Observations: Changes in snow, ice and frozen ground. Pp. 337–383 in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, UK, and New York, NY, USA.
  16. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research 102(C3):5,753–5,766, https://doi.org/​10.1029/96JC02775.
  17. McMillan, M., A. Leeson, A. Shepherd, K. Briggs, T.W.K. Armitage, A. Hogg, P.K. Munneke, M. van den Broeke, B. Noël, W.J. van de Berg, and others. 2016. A high-resolution record of Greenland mass balance. Geophysical Research Letters 43(13):7,002–7,010, https://doi.org/10.1002/2016GL069666.
  18. Meier, M.F., and A. Post. 1987. Fast tidewater glaciers. Journal of Geophysical Research 92(B9):9,051–9,058, https://doi.org/​10.1029/JB092iB09p09051.
  19. Moller, D., S. Hensley, G.A. Sadowy, C.D. Fisher, T. Michel, M. Zawadzki, and E. Rignot. 2011. The Glacier and Land Ice Surface Topography Interferometer: An airborne proof-of-concept demonstration of high-precision Ka-band single-​pass elevation mapping. IEEE Transactions on Geoscience and Remote Sensing 49(2):827–842, https://doi.org/10.1109/TGRS.2010.2057254.
  20. Moon, T., I. Joughin, B. Smith, and I. Howat. 2012. 21st-century evolution of Greenland outlet glacier velocities. Science 336(6081):576–578, http://doi.org/10.1126/science.1219985.
  21. Motyka, R.J., L. Hunter, K.A. Echelmeyer, and C. Connor. 2003. Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Annals of Glaciology 36(1):57–65, https://doi.org/​10.3189/172756403781816374.
  22. Mouginot, J., E. Rignot, B. Scheuchl, I. Fenty, A. Khazendar, M. Morlighem, A. Buzzi, and J. Paden. 2015. Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science 350(6266):1,357–1,361, https://doi.org/10.1126/science.aac7111.
  23. Münchow, A., L. Padman, and H.A. Fricker. 2014. Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. Journal of Glaciology 60(221):489–499, https://doi.org/10.3189/2014JoG13J135.
  24. Nerem, R.S., D.P. Chambers, C. Choe, and G.T. Mitchum. 2010. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy 33(Sup1):435–446, https://doi.org/10.1080/01490419.2010.491031.
  25. Nick, F.M., A. Vieli, I.M. Howat, and I. Joughin. 2009. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geoscience 2:110–114, https://doi.org/10.1038/ngeo394.
  26. OMG (Oceans Melting Greenland). 2016a. Conductivity, Temperature, and Depth (CTD) data from the OMG Mission. Ver. 0.1. OMG SDS, California, USA, data set accessed August 30, 2016, at https://doi.org/10.5067/OMGEV-AXCTD.
  27. OMG. 2016b. Glacier elevation data from the GLISTIN-A campaigns. Ver. 0.1. OMG SDS, California, USA, data set accessed August 30, 2016, at https://doi.org/10.5067/OMGEV-ICEGA.
  28. OMG. 2016c. Bathymetry (sea floor depth) data from the ship-based bathymetry survey. Ver. 0.1. OMG SDS, California, USA, data set accessed August 30, 2016, at https://doi.org/10.5067/OMGEV-BTYSS.
  29. OMG. 2016d. Airborne gravity data from the airborne bathymetry survey. Ver. 0.1. OMG SDS, California, USA, data set accessed August 30, 2016, at https://doi.org/10.5067/OMGEV-BTYAG.
  30. Pickart, R.S., D.J. Torres, and R.A. Clarke. 2002. Hydrography of the Labrador Sea during active convection. Journal of Physical Oceanography 32(2):428–457, https://doi.org/​10.1175/1520-0485(2002)032​<0428:HOTLSD>​2.0.CO;2.
  31. Rignot, E., I. Fenty, D. Menemenlis, and Y. Xu. 2012a. Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Annals of Glaciology 53(60):257–266, https://doi.org/10.3189/2012AoG60A136.
  32. Rignot, E., I. Fenty, Y. Xu, C. Cai, I. Velicogna, C.Ó. Cofaigh, J.A. Dowdeswell, W. Weinrebe, G. Catnaia, and D. Duncan. 2016a. Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland. Geophysical Research Letters 43:2,667–2,674, https://doi.org/10.1002/2016GL067832.
  33. Rignot, E., and J. Mouginot. 2012b. Ice flow in Greenland for the International Polar Year 2008–2009. Geophysical Research Letters 39, L11501, https://doi.org/10.1029/2012GL051634.
  34. Rignot, E., Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, and others. 2016b. Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades. Geophysical Research Letters 43(12):6,374–6,382, https://doi.org/10.1002/2016GL068784.
  35. Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach. 2013. Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. Journal of Geophysical Research 118(5):2,492–2,506, https://doi.org/​10.1002/jgrc.20142.
  36. Shepherd, A., E.R. Ivins, A. Geruo, V.R. Barletta, M.J. Bentley, S. Bettadpur, K.H. Briggs, D.H. Bromwich, R. Forsberg, N. Galin, and others. 2012. A reconciled estimate of ice-sheet mass balance. Science 338(6111):1,183–1,189, https://doi.org/​10.1126/science.1228102.
  37. Straneo, F., and P. Heimbach. 2013. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504(7478):36–43, https://doi.org/​10.1038/nature12854.
  38. Straneo, F., P. Heimbach, O. Sergienko, G. Hamilton, G. Catania, S. Griffies, R. Hallberg, A. Jenkins, I. Joughin, R. Motyka, and others. 2013. Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bulletin of the American Meteorological Society 94(8):1,131–1,144, https://doi.org/10.1175/BAMS-D-12-00100.1.
  39. Straneo, F., D.A. Sutherland, D. Holland, C. Gladish, G.S. Hamilton, H.L. Johnson, E. Rignot, Y. Xu, and M. Koppes. 2012. Characteristics of ocean waters reaching Greenland’s glaciers. Annals of Glaciology 53(60):202–210, https://doi.org/10.3189/2012AoG60A059.
  40. The Lab Sea Group. 1998. The Labrador Sea Deep Convection Experiment. Bulletin of the American Meteorological Society 79(10):2,033–2,058, https://doi.org/10.1175/1520-0477(1998)079​<2033:TLSDCE>2.0.CO;2.
  41. Truffer, M., and R.J. Motyka. 2016. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings. Reviews of Geophysics 54:220–239, https://doi.org/10.1002/2015RG000494.
  42. van den Broeke, M., J.L. Bamber, J. Ettema, E.J. Rignot, E. Schrama, W. van de Berg, E. van Meijgaard, I. Velicogna, and B. Wouters. 2009. Partitioning recent Greenland mass loss. Science 326:984–986, https://doi.org/10.1126/science.1178176.
  43. Vaňková, I., and D.M. Holland. 2016. Calving signature in ocean waves at Helheim Glacier and Sermilik Fjord, East Greenland. Journal of Physical Oceanography 46(10):2,925–2,941, https://doi.org/10.1175/JPO-D-15-0236.1.
  44. Vieli, A., and F.M. Nick. 2011. Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications. Surveys in Geophysics 32(4–5):437–458, https://doi.org/10.1007/s10712-011-9132-4.
  45. Watkins, M.M., D.N. Wiese, D.N. Yuan, C. Boening, and F.W. Landerer. 2015. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research 120(4):2,648–2,671, https://doi.org/10.1002/2014JB011547.
  46. Xu, Y., E. Rignot, I. Fenty, D. Menemenlis, and M.M. Flexas. 2013. Subaqueous melting of Store Glacier, West Greenland from three-​dimensional, high-resolution numerical modeling and ocean observations. Geophysical Research Letters 40(17):4,648–4,653, https://doi.org/10.1002/grl.50825.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.