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MODEL-BASED OBSERVING SYSTEM EVALUATION IN A WESTERN 
BOUNDARY CURRENT: OBSERVATION IMPACT FROM THE COHERENT 
JET TO THE EDDY FIELD
By Colette Kerry, Moninya Roughan, Shane Keating, and David Gwyther 

ABSTRACT
Ocean forecast models rely on observations to provide 
regular updates in order to correctly represent dynamic 
ocean circulation. This synthesis of observations and mod-
els is referred to as data assimilation. Since initial condi-
tions dominate the quality of short-term ocean forecasts, 
accurate ocean state estimates, achieved through data 
assimilation, are key to improving prediction. Western 
boundary current (WBC) regions are particularly challeng-
ing to model and predict because they are highly variable. 
Understanding how specific observation types, platforms, 
locations, and observing frequencies impact model esti-
mates is key to effective observing system design.

The East Australian Current (EAC), the South Pacific’s 
WBC, is a relatively well-observed current system that 
allows us to study the impact of observations on prediction 
across different dynamical regimes, from where the current 
flows as a mostly coherent jet to the downstream eddy 
field. Here we present a review of the impact of observa-
tions on model estimates of the EAC using three different 
methods. Consistent results across the three approaches 
provide a comprehensive understanding of observation 
impact in this dynamic WBC. Observations made in regions 
of greater natural variability contribute most to constrain-
ing the model estimates, and subsurface observations 
have a high impact relative to the number of observations. 
Significantly, sampling the downstream eddy-rich region 
constrains the upstream circulation, whereas observing the 
upstream coherent jet provides less improvement to down-
stream eddy field estimates. Studies such as these provide 

powerful insights into both observing system design and 
modeling approaches that are vital for optimizing observa-
tion and prediction efforts.

INTRODUCTION
Accurate estimates of past, present, and future ocean 
states are crucial to effective management of our ocean 
environment and marine industries. Short-term ocean 
predictions (days to weeks) are vital to myriad environ-
mental, societal, and economic applications, including 
facilitating the adaptive management of marine ecosys-
tems, forecasting extreme weather events, predicting the 
onset and persistence of marine heatwaves, providing 
accurate ocean forecasts for shipping and military opera-
tions, predicting the fate of pollutants, and guiding search 
and rescue operations.

Ocean state estimates require the combination of 
numerical models and ocean observations, referred to as 
data assimilation (DA). Observations provide sparse data 
points while the model provides dynamical context. The 
goal of DA is to combine the model with observations to 
reduce uncertainty in the model estimate. For forecasting 
purposes, model estimates are updated through assim-
ilation when observations become available and provide 
improved initial conditions for the next forecast (Figure 1). 
Due to the dynamic nature of the ocean circulation, ocean 
models must be regularly updated through DA to, for exam-
ple, correctly represent the timing and locations of oceanic 
eddies (e.g., Thoppil et al., 2021; Chamberlain et al., 2021).

A critical component of the DA problem is the way by 
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which the information contained in the observations is 
projected onto the (unobserved) model state estimate. 
Advanced DA techniques use time-variable model dynam-
ics to actively interpolate information from observations 
up- and downstream and forward and backward in time. 
Observations are assimilated over a time interval, given 
the temporal evolution of the circulation (e.g., Moore et al., 
2020). Identifying observations that best constrain an 
ocean model can drive improved observing system design 
for more accurate and more cost-effective prediction. 
Observation impact studies aim to quantify how specific 
observation types, locations, and observing frequencies 
impact model estimates (e.g., Oke et al., 2015).

In this article, we assess observation impact in a dynamic 
western boundary current (WBC). WBCs are swift, pole-
ward-flowing currents that exist on the western sides of 
subtropical ocean gyres. They transport warm water from 
the tropics toward the poles, redistributing heat and mod-
ulating global climate. Mesoscale eddies form due to insta-
bilities in the strong boundary current flow, making WBC 
extension regions hotspots of high eddy variability (Imawaki 
et al., 2013; Li et al., 2022a). WBCs typically exhibit the high-
est errors in ocean forecasts (e.g., Brassington et al., 2023) 
due to their strong flows, the complexities of eddy shedding 
and evolution (e.g., Kang and Curchitser, 2013; Pilo et al., 
2015; Yang et  al., 2018), and their complex vertical struc-
tures (e.g., Sun et al., 2017; Pilo et al., 2018; Brokaw et al., 

2020; Rykova and Oke, 2022). Understanding the interplay 
of observing system design and modeling approaches is 
crucial to improving prediction in highly dynamic, eddy-rich 
oceanographic environments.

The East Australian Current (EAC) is the WBC of the 
South Pacific subtropical gyre, and its eddies dominate 
the circulation along the southeastern coast of Australia 
(Figure 2a; Oke et al., 2019). The southward-flowing current 
is most coherent off 28°S (Sloyan et al., 2016) and intensi-
fies around 29°–31°S (Kerry and Roughan, 2020). The cur-
rent typically separates from the coast between 31°S and 
32.5°S, turning eastward and shedding large warm-core 
eddies in the Tasman Sea (Cetina Heredia et al., 2014). The 
EAC is a relatively well-observed WBC system, with obser-
vations collected as part of Australia’s Integrated Marine 
Observing System (IMOS; Figure 2b–d) spanning from the 
coherent jet to the eddy field (e.g., Roughan et al., 2015). 
The EAC therefore provides an ideal testbed for assessing 
observation impact across differing dynamical regimes. 

Observing networks, numerical models, and DA schemes 
make up the key components of ocean prediction systems. 
Data-assimilating models are useful for evaluating and 
designing observing networks. Here we synthesize the 
results from three different model-based approaches in 
order to assess observation impact across a common sys-
tem (the EAC). We use three methods for studying observa-
tion impact: an adjoint-based approach to directly quantify 

FIGURE 1. Conceptual schematic showing sequential time-dependent data assimilation and a summary of the three methods presented in this study 
for assessing observation impact. 
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observation impact, Observing System Experiments (with-
holding observations), and Observing System Simulation 
Experiments (Figure 1). This review summarizes the key 
results obtained through each method, and synthesizes 
the consistent results to provide a broad understanding of 
observation impact along the extent of the WBC system.

ASSESSING OBSERVATION IMPACT
THE SOUTH EAST AUSTRALIAN COASTAL 
FORECAST SYSTEM
The South East Australian Coastal Forecast System 
(SEA-COFS) consists of several Regional Ocean Modeling 
System (ROMS; Shchepetkin and McWilliams, 2005) con-
figurations at a range of resolutions for the southeast 
Australian oceanic region. The EAC-ROMS regional model 
(domain shown in Figure 2a) has a 2.5–5 km horizontal res-
olution, with higher resolution over the continental shelf 
and slope, and 30 terrain-following vertical layers (Kerry 
et al., 2016; Kerry and Roughan, 2020).

We constrain the model with observational data from 
a variety of traditional and novel observation platforms 
using four-dimensional variational DA (4D-Var). This tech-
nique uses variational calculus to solve for increments in 
model initial conditions, boundary conditions, and forcing 
such that the differences between the new model solution 

of the time-evolving flow and all available observations is 
minimized—in a least-squares sense—over an assimilation 
window (Figure 1; Moore et al., 2004, 2011). Here we use 
five-day assimilation windows. The goal is for the model to 
represent all of the observations in time and space using 
the physics of the model, and accounting for the uncertain-
ties in the observations and background model state, to 
produce a description of the ocean state that is a dynami-
cally consistent solution of the nonlinear model equations. 
For this mesoscale eddy-dominated system, adjustments 
to the initial conditions dominate over boundary or surface 
forcing adjustments and forecast errors are dominated by 
errors in the initial state (Kerry et al., 2020).

Observation impact is studied based on a data-​
assimilating configuration of the EAC-ROMS model for 
2012–2013 (Kerry et  al., 2016), when numerous data 
streams were available through IMOS (Figure 2b,c). These 
included velocity and hydrographic observations from a 
deep-​water mooring array (the EAC array; Sloyan et  al., 
2016) and continental shelf moorings (Malan et al., 2021; 
Roughan et al., 2022), radial surface velocities from a high-​
frequency (HF) radar array (Archer et al., 2017), and hydro-
graphic observations from ocean gliders (Schaeffer et al., 
2016). These observations complemented the more tradi-
tional data streams of satellite-derived sea surface height 

FIGURE 2. The EAC is a fairly well observed western boundary current system. (a) Schematic showing the East Australia Current (EAC; adapted from 
Oke et al., 2019) with the regional ocean model domain. (b) Locations of Argo and eXpendable BathyThermograph (XBT) observations. (c) Integrated 
Marine Observing System (IMOS) observations. (d) Photos of observing the EAC. Photo credits: M. Roughan and IMOS
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(SSH) and sea surface temperature (SST), temperature and 
salinity from Argo profiling floats, and temperature from 
eXpendable BathyThermograph (XBT) lines.

METHOD 1: AN ADJOINT-BASED APPROACH
The 4D-Var DA scheme uses sequential iterations of the 
linearized model equations and their adjoint (Errico, 1997) 
to minimize the model-observation difference. By defining 
a scalar measure of the ocean circulation, we can use this 
mathematical framework to directly compute the impact 
of each individual observation on the change in the circu-
lation measure (e.g.,  Langland and Baker, 2004; Powell, 
2017). We use this methodology to understand how obser-
vations impact estimates of alongshore volume transport 
through shore-normal sections that span the extent of the 
EAC, and of spatially averaged eddy kinetic energy (EKE) 
over the eddy-rich Tasman Sea (Kerry et al., 2018).

The contribution of each observing platform to changes 
in modeled volume transport and EKE varies considerably 
over the two-year period, as it depends on the flow regime 
and the observation coverage for each assimilation win-
dow. To gain an overall picture of how observations from 
across the EAC region impact a particular circulation met-
ric, we group the observation impacts by acquisition lati-
tude (Figure 3a,b). This analysis reveals that both up- and 
downstream observations impact transport estimates 
along the extent of the EAC system. While the EAC is mostly 
coherent off 28°S, volume transport varies due to mean-
dering of the EAC core and intermittent separation events 
(Oke et al., 2019; Kerry and Roughan, 2020). Glider and XBT 
observations off 34°S and HF radar observations at 30°S 
impact EAC transport to the north (28°S, upstream impacts, 
Figure 3a). The volume transport off 34°S is more variable 
than upstream due to the eddy-dominated circulation 

FIGURE 3. Summary of up- and downstream observation impacts. (a) Observation impacts using the adjoint-based method on transport through the 
shore normal section crossing the coast at 28°S (upstream) grouped into latitude bins of 0.25° and normalized by the number of observations. (b) Same 
as (a) but for transport through section crossing the coast at 34°S (downstream). Adapted from Kerry et al. (2018) (c) Observing System Experiments 
(OSEs) show the EAC mooring array constraining upstream current structure (Siripatana et al., 2020). (d) Surface radial velocities (from HF radar array 
at 30°S) impact vorticity up- and downstream (Siripatana et al., 2020). (e) Observing System Simulation Experiments (OSSEs) show that subsurface 
temperature (250 m) is improved with XBT observations (Gwyther et al., 2022). Text in the black boxes summarizes parallels between the information 
in panels a–b and that in panels c–e. AVISO = Archiving, Validation, and Interpretation of Satellite Oceanographic data. EAC = East Australia Current. 
HF = High frequency. SEQ = South East Queensland. SSH = Sea surface height. SST = Sea surface temperature. NAVO = Naval Oceanographic Office. 
NSW = New South Wales. XBT = eXpendable BathyThermograph. See text for definitions of FULL and TRAD.
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regime (Kerry and Roughan, 2020). This downstream trans-
port is constrained primarily by observations over the eddy 
field but is also impacted by the EAC array, the northern 
XBT lines, and the HF radar observations (downstream 
impacts, Figure 3b).

Normalizing the impacts by the number of observations 
(e.g., Figure 3a,b) reveals that observations over the eddy 
field make the greatest contribution to volume transport 
estimates along the coast. SSH, SST, and Argo observa-
tions made in the region of high eddy variability (33°–37°S) 
have more impact than the same observations made else-
where as they provide information to constrain the variable 
region. Even for volume transport estimates where the jet 
is mostly coherent, satellite and Argo observations of the 
(downstream) eddy field have greater impact than the 
same observation types upstream (Figure 3a). The eddy 
field observation impact exceeds the impact of observa-
tions local to 28°S.

Subsurface observations that sample hydrography within 
EAC eddies, such as those from Argo, gliders, and XBTs, 
are also particularly impactful (Figure 3a,b). Observations 

made in the upper 500 m of the water column contribute 
more to changes in the circulation estimates than deeper 
observations (Figure 4a,b). When glider observations sam-
ple eddies offshore of the continental shelf (Figure 2c), they 
have large impacts on EAC transport and EKE (contribut-
ing to 28%–36% of transport increments, and 38% for EKE; 
Kerry et al., 2018).

METHOD 2: OBSERVING SYSTEM EXPERIMENTS
Observing System Experiments (OSEs) compare the results 
of a DA system that withholds certain observations with a 
system that includes them (e.g., Chang et al., 2023). Using 
the EAC-ROMS configuration for 2012–2013, we compared 
the impact of assimilating only the more traditional obser-
vations (satellite-derived SSH and SST, and vertical profiles 
from Argo and XBTs: the TRAD experiment), versus also 
including data from more novel observation platforms (HF 
radar, deep and shallow moorings, and gliders: the full 
suite of all available observations, the FULL experiment; 
Siripatana et al., 2020).

While the overall surface and subsurface properties 

FIGURE 4. Summary of subsurface observation impacts. (a) Observation impacts using the adjoint-based method on transport through the shore 
normal section crossing the coast at 28°S (upstream) grouped into depth bins and normalized by the number of observations. (b) Same as (a) but 
for transport through section crossing the coast at 34°S (downstream). Adapted from Kerry et al. (2018) (c) OSSEs show the depth region of greatest 
variability (>500 m) benefits most from subsurface observations (Gwyther et al., 2022). (d) OSEs show improvement in shelf velocities with mooring 
data assimilated (Siripatana et al., 2020). (e) Example of glider data (glider path shown in red) constraining the subsurface temperature and velocity 
structure of a cold core eddy off Sydney (Siripatana et al., 2020). Text in the black boxes summarizes parallels between the information in panels a–b 
and that in panels c–e. SEQ = Southeast Queensland. CH and COFFS = Coffs Harbor. SYD = Sydney.
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were well represented with assimilation of surface obser-
vations and sparse subsurface profiles (TRAD), including 
mooring, radar, and glider observations (FULL) further 
improved ocean state estimates. Specifically, shelf mooring 
observations improved temperature and velocity estimates 
inshore of the EAC (e.g., Figure 4d), and HF radar observa-
tions covering the continental shelf and slope at 30°S were 
key to representing vorticity (Siripatana et al., 2020). The 
inclusion of HF radar data resulted in increased cyclonic 
vorticity inshore of the EAC both up- and downstream of 
the HF radar location and increased vorticity variance 
(Figure 3d). This increase in cyclonic vorticity is confirmed as 
an improvement under the HF radar footprint (by compari-
son to the assimilated surface radial velocity observations). 
Without independent observations, we cannot confirm that 
this increased vorticity is an improvement in the up- and 
downstream regions, but it is reasonable to assume that 
the velocity shear structure inshore of the EAC extends up- 
and downstream of 30°S and that FULL provides improved 
representation of this.

Despite the shelf and slope circulation being improved 
in the FULL analyses, at the end of five-day forecasts, the 
predictive skill over the shelf was equivalent to that of the 
TRAD forecasts (Kerry et al., 2024b). For these same exper-
iments, Kerry et al. (2020) show that downscaling to a finer 
resolution (1 km) coastal/shelf model was more effective at 
maintaining the vorticity gradient in the five-day forecasts, 
although correctly predicting the timing and location of 
fine-scale features, specifically cyclonic eddies that form 
inshore of the EAC, remains a challenge.

The width of the EAC core and the mean EAC transport 
with latitude was well constrained across both experiments 
(TRAD and FULL). Assimilation of observations from the EAC 
mooring array constrained the core depth over the 27°–30°S 
region (FULL), while the core extended too deep in their 
absence (TRAD). However, poleward of 30°S, the average 
depth of the EAC core extended too deep in the FULL com-
pared to the TRAD experiment (Figure 3c; Siripatana et al., 
2020). Glider observations of hydrographic structure were 
effective in constraining eddy depth when they sampled 
offshore eddies. When they were available (an approxi-
mately three-month period in 2013), eddies constrained by 
glider data (FULL) showed realistic eddy depths compared 
to the TRAD case where the eddy depths extended well 
below the typical level of no motion (e.g., Figure 4e).

METHOD 3: OBSERVING SYSTEM 
SIMULATION EXPERIMENTS 
Assessment of ocean prediction systems is limited as a 
large portion of the ocean state is unobserved, partic-
ularly below the surface. Observing System Simulation 

Experiments (OSSEs) are designed to replicate a realistic 
prediction system; by defining a given model solution as 
the Truth (or Nature run), the system can then be evaluated 
everywhere against a known ocean state (e.g.,  Gasparin 
et  al., 2019; Kerry and Powell, 2022). Synthetic observa-
tions are extracted from the Truth and assimilated into a 
Baseline model (or Twin), which represents the background 
numerical model (refer to Kerry et  al., 2024a; Figure 1). 
Errors are intentionally introduced into the Baseline model 
(e.g., in initial conditions and boundary and surface forcing) 
to mimic the uncertainties in a realistic prediction system. 
Often a Nature run is sought with a higher resolution and 
some degree of independence (e.g., different model phys-
ics) from the Baseline model (e.g., Halliwell et al., 2017).

In the EAC-ROMS configuration, a series of OSSEs were 
performed to assess the impact of alternate locations 
and frequencies of subsurface temperature observations 
(Gwyther et  al., 2022, 2023a, 2023b). These experiments 
compare the impact of assimilating (synthetic) surface-​​
only observations that mimic satellite derived SSH and 
SST (SURF) with experiments that also include (synthetic) 
repeat XBT lines (subsurface temperature profiles) through 
the upstream EAC region (XBT-N), the downstream region 
(XBT-S), and both the up- and downstream regions 
(XBT-N+S; Figure 3e).

The OSSEs show that subsurface temperature observa-
tions are key to improved representation of the EAC sys-
tem below the surface. Observing the downstream, eddy-​
dominated region has a strong impact on improving EAC 
subsurface structure both up- and downstream of the 
observing location (Gwyther et al., 2022, 2023a). Observing 
the mostly coherent upstream region (XBT-N) gave the best 
fit across that section but was less effective in improving 
subsurface estimates in the downstream region, while 
observing across the downstream section (XBT-S) gave 
comparatively lower errors across the domain (Figure 3e). 
Including both observation platforms (XBT-N+S) gave the 
lowest errors across the domain, but the gain in skill was 
small relative to XBT-S alone (Figure 3e). A sampling fre-
quency close to the assimilation window length (weekly 
XBT lines in this case) resulted in considerable improvement 
in subsurface representation across the eddy field com-
pared to fortnightly and greater periods between samples 
(Gwyther et al., 2023b).

SYNERGIES ACROSS THE THREE METHODS
Here, we apply three different methods (Figure 1), each with 
unique advantages and limitations, to assess observation 
impact in the EAC. The adjoint-based method (Method 1) 
allows us to quantify the contribution of each individual 
observation to the change in a given target metric between 
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the forecast and the analysis. This then allows us to pin-
point exactly which data (from a large set of assimilated 
constraints) are most valuable in the assimilation system. 
The impacts relate to changes in the specifically defined cir-
culation metrics, but the degree of improvement is unknown 
as the true ocean state is not known away from observed 
locations. The relative impacts of the different observation 
platforms are specific to the chosen circulation measure. 
OSEs (Method 2) compare model skill for experiments that 
withhold or include different platforms, but interpreta-
tion is limited as, again, the true state is unknown. OSSEs 
(Method 3) address this shortcoming by simulating a com-
plete representation of the “true” ocean state. Drawbacks 
associated with OSSE design include correctly represent-
ing background model error so that the system represents 
a realistic system. By employing all three methods across 
a common system we can comprehensively assess obser-
vation impact across the EAC region. The synergy between 
the results provides confidence in the overarching findings.

UP- AND DOWNSTREAM IMPACTS
Time-dependent DA methods, like 4D-Var, account for the 
time-evolving flow so localized observation platforms can 
have far-reaching impacts. Respecting the model dynam-
ics, information captured by the observations propagates 
in time and space and influences the unobserved ocean 
state. For example, changes to surface velocities at a cer-
tain time and location (an example of an observed variable) 
must be balanced by changes to surface and isopycnal tilt, 
with adjustments both up- and downstream and forward 
and backward in time.

Surface velocity observations from an HF radar array 
at 30°S impact EAC volume transport both up- and down-
stream as well as downstream EKE (Figure 3a,b). OSEs 
revealed the influence of these observations on vortic-
ity along the extent of the EAC and the vorticity variance 
(Figure 3d). More generally, observations taken over the 
latitudinal extent of the EAC system were shown to influ-
ence transport estimates both up- and downstream 
(Figure 3a,b). Measuring the upstream coherent jet impacts 
downstream transport estimates, and observing the eddies 
downstream constrains upstream estimates. The propaga-
tion of information from the downstream to the upstream 
is found to be more effective in improving model skill away 
from the observed location (see the section below).

OBSERVING THE (DOWNSTREAM) EDDY FIELD
The adjoint-based method revealed that observations of 
the eddy field have higher impacts on transport estimates 
along the EAC than the same observations taken in the less 

variable regions. Surface observations of the eddy field 
impacted upstream transport more than surface obser-
vations over the coherent jet (Figure 3a). OSEs showed 
that while mooring observations across the jet resulted in 
improved skill in the upstream (27°–30°S) region, EAC trans-
port and subsurface structure in the downstream region 
were not improved (Figure 3c). The value of observing the 
downstream region was confirmed by the OSSEs, which 
show the advantage of subsurface observations through 
the eddy field compared to observations through the 
coherent jet (Figure 3e). While the strength of the upstream 
jet can be a predictor of separation latitude in general (Li 
et al., 2022b), it provides little skill in predicting the down-
stream evolution of the current instabilities and resultant 
eddies. In contrast, observing the location where instabili-
ties are growing into eddies gives information on both the 
conditions that fed the instability (upstream) and how the 
eddy will further evolve (downstream).

OBSERVING BELOW THE SURFACE
The value of subsurface observations is revealed across 
all three observation impact methodologies. EAC trans-
port and eddies (geostrophic flow) should be constrained 
by both surface observations (that inform surface tilt) and 
subsurface observations (that inform isopycnal tilt). Given 
the dynamical context provided by the model, the surface 
tilt associated with mesoscale eddies should be projected 
below the surface to alter the isopycnal tilt. However, in 
practice, the impact of surface observations in constraining 
the subsurface is limited (e.g.,  Zavala-Garay et  al., 2012). 
While the adjoint-based method quantifies the relative 
impact of the surface observations on circulation changes, 
the OSEs and OSSEs reveal that the depth structure of the 
EAC is degraded upon assimilation of surface observations 
alone (Siripatana et al., 2020; Gwyther et al., 2022, 2023a, 
2023b; Figure 4c(i)). The adjoint-based method shows 
that in situ observations in the upper 500 m contribute 
most to changes in EAC transport and EKE (compared to 
deeper observations, Figure 4a,b) as they provide informa-
tion on the structure of the mixed layer and the pycnocline. 
Glider observations within eddies informed transport esti-
mates some 900 km upstream and 300 km downstream. 
The OSSEs showed that repeated subsurface temperature 
observations across the eddy-dominated region improved 
subsurface temperature estimates over the entire EAC 
region (Figure 3e). The depth region of greatest variability 
(>500 m) showed the highest errors upon assimilation of 
surface only observations and benefited most from subsur-
face observations (Figure 4c).
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FEEDBACK BETWEEN MODELS 
AND OBSERVATIONS
Observing networks for ocean prediction must be designed 
with specific goals, and a continuous feedback loop 
should exist between numerical models and observations 
(Figure 5). Ocean models, observing systems, and DA 
schemes must evolve and adapt together for optimal ben-
efit. Observation impact studies are a crucial part of this 
feedback loop as they can quantify the value of specific 
observations, identify regions where data gaps are most 
detrimental to model estimates, and drive improvements in 
modeling and DA systems.

Observation impact experiments have shown the spe-
cific value of various novel observing platforms, motivat-
ing their sustained implementation. For example, surface 
velocity observations from localized HF radar platforms 
have shown widespread improvement in surface current 
representation in eddy-rich regions (Siripatana et al., 2020; 
Kerry et al., 2020; Couvelard et al., 2021). Dense subsurface 
hydrographic observations (from gliders or profiles) in 
eddies drove improvements in EAC eddy field and upstream 
representation (Kerry et al., 2018; Siripatana et al., 2020; 
Gwyther et  al., 2022, 2023a, 2023b). The challenges of 
piloting gliders in regions of strong and variable currents 
limit the sustained availability of such observations, and 

novel opportunistic methods of obtaining subsurface data, 
such as fishing vessel observation networks (Jakoboski 
et al., 2024), are emerging.

The value of observing different dynamical regions was 
shown in the EAC, where observing the downstream insta-
bilities was more useful than observing the upstream jet. 
This provides valuable information for observing system 
design in oceanic regions where eddies form from current 
instabilities, such as WBC regions (e.g., Kang and Curchitser, 
2015; Yang et al., 2018) and the North Pacific’s subtropical 
countercurrent (Qiu, 1999). The value of in situ observations 
of the variable upper ocean was highlighted (Kerry et al., 
2018), consistent with findings in other regions (e.g., Powell, 
2017; Geng et  al., 2020; Kerry et  al., 2022). Furthermore, 
we show that different circulation regimes may require 
different sampling strategies (Gwyther et al., 2022), moti-
vating adaptive sampling (e.g., Mourre and Alvarez, 2012; 
Gao et al., 2022).

The value of observations is limited by the spatial and 
temporal resolution of the model (e.g.,  Oke and Sakov, 
2008), the processes resolved (e.g.,  Kerry and Powell, 
2022), the DA scheme (e.g.,  Kerry et  al., 2024b), obser-
vational errors, and redundancy with other elements of 
the observing system (e.g.,  Loose and Heimbach, 2021). 
Observation impact experiments can not only drive 

FIGURE 5. Conceptual schematic of the feedback loop between models and observations for continuously evolving ocean prediction systems.
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smarter observing system design but also model and DA 
system improvements. For example, studying the assimila-
tion increments and assessing predictive skill over the con-
tinental shelf adjacent to the EAC showed that shelf pro-
cesses were not adequately resolved in a regional model 
(Kerry et al., 2020, 2024b). This result revealed that higher 
resolution models are required to resolve and forecast 
shelf flows. In a region of strong internal tides and meso-
scale eddies, observation impact experiments showed the 
value of resolving both tides and eddies in the background 
numerical model for improved prediction of both processes 
(Kerry and Powell, 2022).

The DA system should be configured to draw optimum 
benefit from the observations. DA is particularly challeng-
ing in regions of complex circulation, such as eddy-rich 
regions and shelf seas, which are typically under-sampled 
and where the circulation contains a broad range of tem-
poral and spatial scales. Advanced time-dependent assim-
ilation schemes, such as 4D-Var and the Ensemble Kalman 
Filter, are crucial for capturing highly intermittent flows with 
irregularly sampled observations (e.g., Raynaud et al., 2011; 
Moore et al., 2020; Kerry et al., 2024b). Observation impact 
studies have shown the importance of the DA system 
configuration in handling dense, localized observations 
(e.g., Pasmans et al., 2019; Kerry et al., 2024a). Optimizing 
DA schemes requires ongoing development, and future 
advances should include the development of hybrid meth-
ods, nested and coupled DA, and the ability to ingest new 
and emerging observing platforms (Moore et  al., 2019; 
Pasmans et al., 2020).

CONCLUSIONS
Numerical models, observing networks, and data assimi-
lation techniques are the key interconnected components 
of an ocean prediction system. There is a need for robust 
and consistent model-based design and evaluation of 
observing networks that are scale and region appropri-
ate. Such frameworks can inform fit-for-purpose observing 
strategies, identify gaps in observation systems, and drive 
improvements in model and data assimilation methodol-
ogies. Data-assimilating ocean models need to be eval-
uated against independent observations and below the 
surface. Assessment of models against assimilated surface 
and sparse profile data gives little insight into model per-
formance away from the observed locations.

Here, we present a complementary set of methods that 
can provide powerful insights into model-based design and 
evaluation of observing networks. Each method exhibits 
unique advantages and limitations. By employing all three 
methods across a common system, we provide a holistic 
assessment of observation impacts. The results are specific 

to the numerical model’s configuration and resolution, the 
circulation regime, the distinct observing networks, and the 
data assimilation system; however, key messages provide 
parallels to other regions and other systems. Our methods 
focus on improved ocean state estimates, since initial con-
ditions dominate the quality of short-term ocean forecasts. 
It is noted that atmospheric forcing errors might be import-
ant for longer forecast horizons.

While these and similar methods have been used to 
guide observing system design in other regions globally, 
this study is the first of its kind to use three distinct meth-
ods to converge toward recommendations. Key outstand-
ing challenges include representing complex subsurface 
oceanic structures with sparse observations, dealing with 
localized dense observations, and assimilating data in 
regions where the circulation varies over a broad range of 
temporal and spatial scales. Our results point to the impor-
tance of feedback between numerical modeling, ocean 
observing systems, and data assimilation methodology in 
driving improved estimates of the ocean environment.

REFERENCES
Archer, M., M. Roughan, S. Keating, and A. Schaeffer. 2017. On the 

variability of the East Australian Current: Jet structure, meandering, 
and influence on shelf circulation. Journal of Geophysical Research: 
Oceans 122(11):8,464–8,481, https://doi.org/10.1002/2017JC013097.

Brassington, G.B., P. Sakov, P. Divakaran, A. Aijaz, J. Sweeney-Van 
Kinderen, X. Huang, and S. Allen. 2023. OceanMAPS v4.0i: A global 
eddy resolving EnKF ocean forecasting system. In OCEANS 2023 – 
Limerick. Conference held June 5–8, 2023, Limerick, Ireland, IEEE, 
https://doi.org/10.1109/OCEANSLimerick52467.2023.10244383.

Brokaw, R.J., B. Subrahmanyam, C.B. Trott, and A. Chaigneau. 2020. 
Eddy surface characteristics and vertical structure in the Gulf of 
Mexico from satellite observations and model simulations. Journal of 
Geophysical Research: Oceans 125:e2019JC015 538, https://doi.org/​
10.1029/2019JC015538.

Cetina Heredia, P., M. Roughan, E. Van Sebille, and M. Coleman. 2014. 
Long-term trends in the East Australian Current separation lati-
tude and eddy driven transport. Journal of Geophysical Research: 
Oceans 119(7):4,351–4,366, https://doi.org/10.1002/2014JC010071.

Chamberlain, M., P. Oke, G. Brassington, P. Sandery, P. Divakaran, and 
R. Fiedler. 2021. Multiscale data assimilation in the Bluelink ocean 
reanalysis (BRAN). Ocean Modelling 166:101849, https://doi.org/​
10.1016/j.ocemod.2021.101849.

Chang, I., Y.H. Kim, H. Jin, Y.-G. Park, G. Pak, and Y.-S. Chang. 2023. 
Impact of satellite and regional in-situ profile data assimilation on 
a high-resolution ocean prediction system in the Northwest Pacific. 
Frontiers in Marine Science 10:1085542, https://doi.org/10.3389/
fmars.2023.1085542.

Couvelard, X., C. Messager, P. Penven, S. Smet, and P. Lattes. 2021. Benefits 
of radar-derived surface current assimilation for South of Africa 
ocean circulation. Geoscience Letters 8(5), https://doi.org/10.1186/
s40562-021-00174-y.

Errico, R.M. 1997. What is an adjoint model? Bulletin of the American 
Meteorological Society 78:2,577–2,592, https://doi.org/​10.1175/​
1520-​0477(1997)078<2577:WIAAM>2.0.CO;2.

Gao, Z., G. Chen, Y. Song, J. Zheng, and C. Ma. 2022. Adaptive network 
design for multiple gliders observation of mesoscale eddy. Frontiers in 
Marine Science 9:823397, https://doi.org/10.3389/fmars.2022.823397.

Gasparin, F., S. Guinehut, C. Mao, I. Mirouze, E. Rémy, R.R. King, M. Hamon, 
R. Reid, A. Storto, P.-Y. Le Traon, and others. 2019. Requirements for 

https://doi.org/10.1002/2017JC013097
https://doi.org/10.1109/OCEANSLimerick52467.2023.10244383
https://doi.org/10.1029/2019JC015538
https://doi.org/10.1029/2019JC015538
https://doi.org/10.1002/2014JC010071
https://doi.org/10.1016/j.ocemod.2021.101849
https://doi.org/10.1016/j.ocemod.2021.101849
https://doi.org/10.3389/fmars.2023.1085542
https://doi.org/10.3389/fmars.2023.1085542
https://doi.org/10.1186/s40562-021-00174-y
https://doi.org/10.1186/s40562-021-00174-y
https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
https://doi.org/10.3389/fmars.2022.823397


10 11

an integrated in situ Atlantic Ocean observing system from coordi-
nated observing system simulation experiments. Frontiers in Marine 
Science 6:83, https://doi.org/10.3389/fmars.2019.00083.

Geng, W., F. Cheng, Q. Xie, X. Zou, W. He, Z. Wang, Y. Shu, G. Chen, D. Liu, 
D. Ye, and others. 2020. Observation system simulation experiments 
using an ensemble-based method in the northeastern South China Sea. 
Journal of Oceanology and Limnology 38:1,729–1,745, https://doi.org/​
10.1007/s00343-019-9119-4.

Gwyther, D.E., C. Kerry, M. Roughan, and S.R. Keating. 2022. Observing 
system simulation experiments reveal that subsurface tempera-
ture observations improve estimates of circulation and heat 
content in a dynamic western boundary current. Geoscientific 
Model Development 15:6,541–6,565, https://doi.org/10.5194/
gmd-​15-​6541-2022.

Gwyther, D.E., S.R. Keating, C. Kerry, and M. Roughan. 2023a. How 
does 4DVar data assimilation affect the vertical representation 
of mesoscale eddies? A case study with observing system simu-
lation experiments (OSSEs) using ROMS v3.9. Geoscientific Model 
Development 162023:157–178, https://doi.org/10.5194/gmd-16-157-2023.

Gwyther, D.E., M. Roughan, C. Kerry, and S.R. Keating. 2023b. Impact 
of assimilating repeated subsurface temperature transects on 
state estimates of a western boundary current. Frontiers in Marine 
Science 9:1084784, https://doi.org/10.3389/fmars.2022.1084784.

Halliwell, G.R. Jr., M.F. Mehari, M. Le Hénaff, V.H. Kourafalou, 
I.S. Androulidakis, H.S. Kang, and R. Atlas. 2017. North Atlantic Ocean 
OSSE system: Evaluation of operational ocean observing system 
components and supplemental seasonal observations for potentially 
improving tropical cyclone prediction in coupled systems. Journal of 
Operational Oceanography 10:154–175, https://doi.org/10.1080/17558
76X.2017.1322770.

Imawaki, S., A. Bower, L. Beal, and B. Qiu. 2013. Western boundary 
currents. Pp. 305–338 in Ocean Circulation and Climate: A 21st Century 
Perspective. G. Siedler, S.M. Griffies, J. Gould, and J.A. Church, eds, 
Elsevier, https://doi.org/10.1016/B978-0-12-391851-2.00013-1.

Jakoboski, J., M. Roughan, J. Radford, J.M.A.C. de Souza, M. Felsing, 
R. Smith, N. Puketapu-Waite, M.M. Orozco, K.H. Maxwell, and 
C. Van Vranken. 2024. Partnering with the commercial fishing 
sector and Aotearoa New Zealand’s ocean community to develop 
a nationwide subsurface temperature monitoring program. 
Progress in Oceanography 225:103278, https://doi.org/10.1016/​
j.pocean.2024.103278.

Kang, D., and E.N. Curchitser. 2013. Gulf Stream eddy characteristics 
in a high-resolution ocean model. Journal of Geophysical Research: 
Oceans 118:4,474–4,487, https://doi.org/10.1002/jgrc.20318.

Kang, D., and E.N. Curchitser. 2015. Energetics of eddy–mean 
flow interactions in the Gulf Stream region. Journal of Physical 
Oceanography 45:1,103–1,120, https://doi.org/10.1175/jpo-d-14-0200.1.

Kerry, C.G., B.S. Powell, M. Roughan, and P.R. Oke. 2016. Development 
and evaluation of a high-resolution reanalysis of the East Australian 
Current region using the Regional Ocean Modelling System 
(ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional 
Variational (IS4D-Var) data assimilation. Geoscientific Model 
Development 9:3,779–3,801, https://doi.org/10.5194/gmd-9-3779-2016.

Kerry, C.G., M. Roughan, and B.S. Powell. 2018. Observation impact in a 
regional reanalysis of the East Australian Current system. Journal of 
Geophysical Research: Oceans 123(10):7,511–7,528, https://doi.org/​
10.1029/2017JC013685.

Kerry, C., and M. Roughan. 2020. Downstream evolution of the East 
Australian Current system: Mean flow, seasonal, and intra-annual vari-
ability. Journal of Geophysical Research: Oceans 125:e2019JC015227, 
https://doi.org/10.1029/2019JC015227.

Kerry, C., M. Roughan, and B. Powell. 2020. Predicting the submesoscale 
circulation inshore of the East Australian Current. Journal of Marine 
Systems 204:103286, https://doi.org/10.1016/j.jmarsys.2019.103286.

Kerry, C.G., and B.S. Powell. 2022. Including tides improves subtidal 
prediction in a region of strong surface and internal tides and 
energetic mesoscale circulation. Journal of Geophysical Research: 
Oceans 127:e2021JC018314, https://doi.org/10.1029/2021JC018314.

Kerry, C., M. Roughan, and J.M. Azevedo Correia de Souza. 2022. 
Drivers of upper ocean heat content extremes around New Zealand 
revealed by Adjoint Sensitivity Analysis. Frontiers in Climate 4:980990, 
https://doi.org/​10.3389/​fclim.2022.980990.

Kerry, C., M. Roughan, and J.M. Azevedo Correia de Souza. 2024a. 
Assessing the impact of subsurface temperature observations from 
fishing vessels on temperature and heat content estimates in shelf 
seas: A New Zealand case study using Observing System Simulation 
Experiments. Frontiers in Marine Science 11:1358193, https://doi.org/​
10.3389/fmars.2024.1358193.

Kerry, C.G., M. Roughan, S. Keating, D. Gwyther, G. Brassington, 
A. Siripatana, and J.M.A.C. Souza, 2024b. Comparison of 4-dimensional 
variational and ensemble optimal interpolation data assimilation 
systems using a Regional Ocean Modeling System (v3.4) configuration 
of the eddy-dominated East Australian Current system. Geoscientific 
Model Development 17:2,359–2,386, https://doi.org/10.5194/
egusphere-​2023-2355.

Langland, R.H., and N.L. Baker. 2004. Estimation of observation impact 
using the NRL atmospheric variational data assimilation adjoint sys-
tem. Tellus A: Dynamic Meteorology and Oceanography 56(3):189–201, 
https://doi.org/10.3402/tellusa.v56i3.14413.

Li, J., M. Roughan, and C. Kerry. 2022a. Drivers of ocean warming in the 
western boundary currents of the Southern Hemisphere. Nature Climate 
Change 12:901–909, https://doi.org/10.1038/s41558-022-01473-8.

Li, J., M. Roughan, and C. Kerry. 2022b. Variability and drivers of ocean 
temperature extremes in a warming western boundary current. Journal 
of Climate 35:1,097–1,111, https://doi.org/10.1175/JCLI-D-21-0622.1.

Loose, N., and P. Heimbach. 2021. Leveraging uncertainty quantifica-
tion to design ocean climate observing systems. Journal of Advances 
in Modeling Earth Systems 13:e2020MS002386, https://doi.org/​
10.1029/2020MS002386.

Malan, N., M. Roughan, and C. Kerry. 2021. The rate of coastal tempera-
ture rise adjacent to a warming western boundary current is nonuni-
form with latitude. Geophysical Research Letters 48:e2020GL090751, 
https://doi.org/10.1029/2020GL090751.

Moore, A.M., H.G. Arango, E. Di Lorenzo, B.D. Cornuelle, A.J. Miller, and 
D.J. Neilson. 2004. A comprehensive ocean prediction and anal-
ysis system based on the tangent linear and adjoint of a regional 
ocean model. Ocean Modelling 7:227–258, https://doi.org/10.1016/​
j.ocemod.2003.11.001.

Moore, A.M., H.G. Arango, G. Broquet, B.S. Powell, A.T. Weaver, and 
J. Zavala-Garay. 2011. The Regional Ocean Modelling System (ROMS) 
4-dimensional variational data assimilation systems: Part 1. System 
overview and formulation. Progress in Oceanography 91:34–49, 
https://doi.org/​10.1016/j.pocean.2011.05.004.

Moore, A., M. Martin, S. Akella, H. Arango, M. Balmaseda, L. Bertino, 
S. Ciavatta, B. Cornuelle, J. Cummings, S. Frolov, and others. 2019. 
Synthesis of ocean observations using data assimilation for opera-
tional, real-time and reanalysis systems: A more complete picture of the 
state of the ocean. Frontiers in Marine Science 6:90, https://doi.org/​
10.3389/fmars.2019.00090.

Moore, A., J. Zavala-Garay, H.G. Arango, C.A. Edwards, J. Anderson, and 
T. Hoar. 2020. Regional and basin scale applications of ensemble 
adjustment Kalman filter and 4D-Var ocean data assimilation systems. 
Progress in Oceanography 189:102450, https://doi.org/10.1016/​
j.pocean.2020.102450.

Mourre, B., and A. Alvarez. 2012. Benefit assessment of glider adaptive 
sampling in the Ligurian Sea. Deep Sea Research Part I 68:68–78, 
https://doi.org/10.1016/j.dsr.2012.05.010.

Oke, P.R., and P. Sakov. 2008. Representation error of oceanic obser-
vations for data assimilation. Journal of Atmospheric and Oceanic 
Technology 25:1,004–1,017, https://doi.org/10.1175/2007JTECHO558.1.

Oke, P.R., G. Larnicol, E.M. Jones, V. Kourafalou, A. Sperrevik, F. Carse, 
C.A. Tanajura, B. Mourre, M. Tonani, G. Brassington, and others. 
2015. Assessing the impact of observations on ocean forecasts and 
reanalyses: Part 2. Regional applications. Journal of Operational 
Oceanography 8:s63–s79, https://doi.org/10.1080/1755876X.​
2015.1022080.

https://doi.org/10.3389/fmars.2019.00083
https://doi.org/10.1007/s00343-019-9119-4
https://doi.org/10.1007/s00343-019-9119-4
https://doi.org/10.5194/gmd-15-6541-2022
https://doi.org/10.5194/gmd-15-6541-2022
https://doi.org/10.5194/gmd-16-157-2023
https://doi.org/10.3389/fmars.2022.1084784
https://doi.org/10.1080/1755876X.2017.1322770
https://doi.org/10.1080/1755876X.2017.1322770
https://doi.org/10.1016/B978-0-12-391851-2.00013-1
https://doi.org/10.1016/j.pocean.2024.103278
https://doi.org/10.1016/j.pocean.2024.103278
https://doi.org/10.1002/jgrc.20318
https://doi.org/10.1175/jpo-d-14-0200.1
https://doi.org/10.5194/gmd-9-3779-2016
https://doi.org/10.1029/2017JC013685
https://doi.org/10.1029/2017JC013685
https://doi.org/10.1029/2019JC015227
https://doi.org/10.1016/j.jmarsys.2019.103286
https://doi.org/10.1029/2021JC018314
https://doi.org/10.3389/fclim.2022.980990
https://doi.org/10.3389/fmars.2024.1358193
https://doi.org/10.3389/fmars.2024.1358193
https://doi.org/10.5194/egusphere-2023-2355
https://doi.org/10.5194/egusphere-2023-2355
https://doi.org/10.3402/tellusa.v56i3.14413
https://doi.org/10.1038/s41558-022-01473-8
https://doi.org/10.1175/JCLI-D-21-0622.1
https://doi.org/10.1029/2020MS002386
https://doi.org/10.1029/2020MS002386
https://doi.org/10.1029/2020GL090751
https://doi.org/10.1016/j.ocemod.2003.11.001
https://doi.org/10.1016/j.ocemod.2003.11.001
https://doi.org/10.1016/j.pocean.2011.05.004
https://doi.org/10.3389/fmars.2019.00090
https://doi.org/10.3389/fmars.2019.00090
https://doi.org/10.1016/j.pocean.2020.102450
https://doi.org/10.1016/j.pocean.2020.102450
https://doi.org/10.1016/j.dsr.2012.05.010
https://doi.org/10.1175/2007JTECHO558.1
https://doi.org/10.1080/1755876X.2015.1022080
https://doi.org/10.1080/1755876X.2015.1022080


12

Oke, P.R., M. Roughan, P. Cetina-Heredia, G.S. Pilo, K.R. Ridgway, T. Rykova, 
M.R. Archer, R.C. Coleman, C.G. Kerry, C. Rocha, and others. 2019. 
Revisiting the circulation of the East Australian Current: Its path, 
separation, and eddy field. Progress in Oceanography 176:102139, 
https://doi.org/​10.1016/j.pocean.2019.102139.

Pasmans, I., A.L. Kurapov, J.A. Barth, A. Ignatov, P.M. Kosro, and 
R.K. Shearman. 2019. Why gliders appreciate good company: Glider 
assimilation in the Oregon-Washington coastal ocean 4DVAR system 
with and without surface observations. Journal of Geophysical 
Research: Oceans 124:750–772, https://doi.org/10.1029/2018JC014230.

Pasmans, I., A.L. Kurapov, J.A. Barth, P.M. Kosro, and R.K. Shearman. 2020. 
Ensemble 4DVAR (En4DVar) data assimilation in a coastal ocean cir-
culation model: Part II. Implementation offshore Oregon–Washington, 
USA. Ocean Modelling 154:101681, https://doi.org/10.1016/j.ocemod.​
2020.101681.

Pilo, G.S., M.M. Mata, and J.L.L. Azevedo. 2015. Eddy surface proper-
ties and propagation at Southern Hemisphere western boundary 
current systems. Ocean Science 11:629–641, https://doi.org/10.5194/
os-11-629-2015.

Pilo, G.S., P.R. Oke, R. Coleman, T. Rykova, and K. Ridgway. 2018. 
Patterns of vertical velocity induced by eddy distortion in an ocean 
model. Journal of Geophysical Research: Oceans 123:2,274–2,292, 
https://doi.org/​10.1002/​2017JC013298.

Powell, B.S. 2017. Quantifying how observations inform a numer-
ical reanalysis of Hawaii. Journal of Geophysical Research: 
Oceans 122(11):8,427–8,444, https://doi.org/10.1002/2017JC012854.

Qiu, B. 1999. Seasonal eddy field modulation of the North Pacific 
Subtropical Countercurrent: TOPEX/Poseidon observations and theory. 
Journal of Physical Oceanography 29(10):2,471–2,486, https://doi.org/​
10.1175/​1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

Raynaud, L., L. Berre, and G. Desroziers. 2011. An extended specification 
of flow-dependent background error variances in the Météo-France 
global 4D-Var system. Quarterly Journal of the Royal Meteorological 
Society 137:607–619, https://doi.org/10.1002/qj.795.

Roughan, M., A. Schaeffer, and I.M. Suthers. 2015. Sustained ocean 
observing along the coast of southeastern Australia: NSW-IMOS 
2007–2014. Pp. 76–98 in Coastal Ocean Observing Systems. Y. Liu, 
H. Kerkering, and R.H. Weisberg, eds, Elsevier.

Roughan, M., M. Hemming, A. Schaeffer, T. Austin, H. Beggs, M. Chen, 
M. Feng, G. Galibert, C. Holden, D. Hughes, and others. 2022. Multi-
decadal ocean temperature time-series and climatologies from 
Australia’s long-term National Reference Stations. Scientific Data 9:157, 
https://doi.org/10.1038/s41597hy-022-01224-6.

Rykova, T., and P.R. Oke. 2022. Stacking of EAC eddies observed from 
Argo. Journal of Geophysical Research: Oceans 127:e2022JC018 679, 
https://doi.org/10.1029/2022JC018679.

Schaeffer, A., M. Roughan, T. Austin, J.D. Everett, D. Griffin, B. Hollings, 
E. King, A. Mantovanelli, S. Milburn, B. Pasquer, and others. 2016. 
Mean hydrography on the continental shelf from 26 repeat glider 
deployments along southeastern Australia. Scientific Data 3:160070, 
https://doi.org/10.1038/sdata.2016.70.

Shchepetkin, A.F., and J.C. McWilliams. 2005. The regional oceanic 
modeling system (ROMS): A split-explicit, free-surface, topography-​
following-​coordinate oceanic model. Ocean Modelling 9:347–404, 
https://doi.org/​10.1016/j.ocemod.2004.08.002.

Siripatana, A., C. Kerry, M. Roughan, J.M.A. Souza, and S. Keating. 2020. 
Assessing the impact of nontraditional ocean observations for predic-
tion of the East Australian Current. Journal of Geophysical Research: 
Oceans 125:e2020JC016580, https://doi.org/10.1029/2020JC016580.

Sloyan, B.M., K.R. Ridgway, and R. Cowley. 2016. The East Australian 
Current and property transport at 27°S from 2012 to 2013. Journal 
of Physical Oceanography 46(3):993–1,008, https://doi.org/10.1175/
JPO-D-15-0052.1.

Sun, W., C. Dong, R. Wang, Y. Liu, and K. Yu. 2017. Vertical structure anom-
alies of oceanic eddies in the Kuroshio Extension region. Journal of 
Geophysical Research: Oceans 122:1,476–1,496, https://doi.org/​10.1002/​
2016JC012226.

Thoppil, P.G., S. Frolov, C.D. Rowley, C.A. Reynolds, G.A. Jacobs, 
E.J. Metzger, P.J. Hogan, N. Barton, A.J. Wallcraft, O.M. Smedstad, 
and others. 2021. Ensemble forecasting greatly expands the predic-
tion horizon for ocean mesoscale variability. Communications Earth & 
Environment 2:89, https://doi.org/10.1038/s43247-021-00151-5.

Yang, H., B. Qiu, P. Chang, L. Wu, S. Wang, Z. Chen, and Y. Yang. 2018. 
Decadal variability of eddy characteristics and energetics in the 
Kuroshio Extension: Unstable versus stable states. Journal of 
Geophysical Research: Oceans 123:6,653–6,669, https://doi.org/​
10.1029/2018JC014081.

Zavala-Garay, J., J.L. Wilkin, and H.G. Arango. 2012. Predictability of meso-
scale variability in the East Australian Current given strong-constraint 
data assimilation. Journal of Physical Oceanography 42:1,402–1,420, 
https://doi.org/10.1175/JPO-D-11-0168.1.

COMPETING INTERESTS 
No competing interests are present.

ACKNOWLEDGMENTS 
This research was supported by Australian Research Council grants 
DP140102337, LP160100162, and LP170100498 to MR. Synthesis of the 
results was supported by LP220100515 to SK. MR and CK acknowl-
edge funding from the Australian Research Council for the South East 
Australian Coastal Ocean Forecast System (SEA-COFS), including grants 
DP230100505, LP220100515, LP170100498, LP160100162, LP150100064, 
DP140102337, and LP1201005922023. The authors would also like to 
thank the two anonymous reviewers, whose suggestions improved 
this manuscript.

AUTHORS
Colette Kerry (c.kerry@unsw.edu.au) and Moninya Roughan, Coastal 
and Regional Oceanography Lab, School of Biological, Earth and 
Environmental Sciences, University of New South Wales (UNSW), Sydney, 
Australia. Shane Keating, School of Mathematics and Statistics, UNSW, 
Sydney, Australia. David Gwyther, School of the Environment, University 
of Queensland, Brisbane, Australia.

ARTICLE DOI. https://doi.org/10.5670/oceanog.2025e110

https://doi.org/10.1016/j.pocean.2019.102139
https://doi.org/10.1029/2018JC014230
https://doi.org/10.1016/j.ocemod.2020.101681
https://doi.org/10.1016/j.ocemod.2020.101681
https://doi.org/10.5194/os-11-629-2015
https://doi.org/10.5194/os-11-629-2015
https://doi.org/10.1002/2017JC013298
https://doi.org/10.1002/2017JC012854
https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2
https://doi.org/10.1002/qj.795
https://doi.org/10.1038/s41597-022-01224-6
https://doi.org/10.1029/2022JC018679
https://doi.org/10.1038/sdata.2016.70
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.1029/2020JC016580
https://doi.org/10.1175/JPO-D-15-0052.1
https://doi.org/10.1175/JPO-D-15-0052.1
https://doi.org/10.1002/2016JC012226
https://doi.org/10.1002/2016JC012226
https://doi.org/10.1038/s43247-021-00151-5
https://doi.org/10.1029/2018JC014081
https://doi.org/10.1029/2018JC014081
https://doi.org/10.1175/JPO-D-11-0168.1
mailto:c.kerry%40unsw.edu.au?subject=
https://doi.org/10.5670/oceanog.2025e110

