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LINKING SEDIMENT TRANSPORT AND 
STRATIGRAPHY ON THE CONTINENTAL 
SHELF 

By Patricia L. Wiberg, David A. Cacchione, 
Richard W. Sternberg and L. Donelson Wright 

T H E  GOAL OF THE SHELF sediment dynamics  
component of STRATAFORM is to link sediment 
transport processes active on the continental shelf 
to the formation and preservation of event beds in 
shelf sediment deposits. An approach combining 
shelf sediment-transport models with high-resolu- 
tion measurements of water-column and bed prop- 
erties over periods from several months to several 
years allows us to make quantitative estimates of 
bed modification caused by sediment resuspension 
during episodic transport events. These modifica- 
tions include erosion and deposition of bed mater- 
ial, formation of graded storm beds, and changes 
in small-scale bed surface morphology. The char- 
acteristics of the resulting "event bed" (thickness, 
grading, physical structures) are a function of flow 
and bed properties, depending on both temporal 
and spatial variations in sediment transport. 

Sediment transport on the continental shelf de- 
pends on surface-wave conditions, bottom-bound- 
ary-layer  currents, fluid stratification, and bed 
characteristics, including grain size, density, 
porosity, and surface roughness. In general, sedi- 
ment transport rates and depths of bed reworking 
are greatest when large, long-period waves occur 
simultaneously with strong, persistent currents. 
Thus understanding the magnitude and frequency 
of  transport requires knowledge of  the wave and 
current conditions on the shelf over sufficiently 
long periods of  time to develop statistical charac- 
terizations of the wave and current fields and to 
document the resulting resuspension and bed mod- 
ification. This information also provides critical 
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input to, and tests of, shelf sediment-transport  
models that can be used to examine transport pat- 
terns over longer time scales and broader spatial 
scales. Toward this end, a field and modeling pro- 
gram has been initiated to examine transport pro- 
cesses on the shelf at the STRATAFORM site on 
the northern California, Eel shelf. 

Observational Approach 
Bottom-boundary-layer measurements of the re- 

sponse of  sediment on the bed and in suspension 
to oceanographic forcing provide direct informa- 
tion on sediment movement under the influence of 
waves and currents at strategic locations within the 
transport pathway. A prominent feature of the Eel 
shelf is a mid- and outer-shelf  silt deposit pro- 
duced in part by deposition associated with floods 
on the Eel River. The silt deposit grades into sand 
at the inner-shelf boundary of the deposit (between 
50 and 60 m water depth), resulting in a region of 
sediment mixing where bottom sediment textures, 
sedimentary structures, and morphology alter and 
develop in response to changing wave and current 
velocities, up- and downwelling conditions, pycn- 
ocline strength, and variations in sediment supply 
by the river. 

To characterize transport processes and bed re- 
sponse at this critical facies boundary, long-term 
measurements at one site and shorter-term inten- 
sive measurements at several sites have been un- 
dertaken using bottom-mounted instrument sys- 
tems. Long- term measurements  at 60-m water 
depth along the S sampling transect (site $60, 
40-53.3N,  124-15.3W) (Nittrouer and Kravitz, 
1996, this issue) began in September 1995, and 
will continue for a minimum of  3 y. Intensive 
measurements of  the bottom boundary layer and 
seabed were made during the winter storm season 
of 1995-1996 (December-March). These measure- 
ments were made along a cross-shelf transect com- 
prising a 50-m-deep inner-shelf site on a silty-sand 
bed, a 60-m-deep site in the sand/silt transition 
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zone, and a 70-m site within the silt deposit. Each 
bot tom system records wave veloci t ies ,  current  
and suspended-sed iment -concent ra t ion  profi les ,  
temperature, salinity, and bottom elevation. Simul- 
taneous measurements along this transect allow us 
to examine the dependence  of t ransport  on sub- 
strate type, variations in seabed response, correla- 
tion of net deposition and erosion among sites, and 
cross-shelf divergences in near-bed flow and trans- 
port. A plan of  rap id- response  seabed sampl ing 
following a large transport event, in addition to the 
ongoing monitoring of seabed characteristics over 
the shelf,  makes  it poss ib le  to relate measured  
transport to observed bed modification. 

Seabed properties along the cross-shelf transect 
range from sandy, rippled beds on the inner-shelf 
to silty, bioturbated beds on the mid-shelf. These 
changes in sediment texture and surface morphol- 
ogy across the transect, as well as changes at each 
site during transport events, affect bed roughness, 
and hence near-bed flow and shear stress, thresh- 
old of sediment motion, and preserved sedimen- 
tary structures.  To unders tand these changes in 
bottom roughness, the intensive field experiment 
includes seabed surface and subsurface imaging, 
quantitative characterization of bottom roughness 
scales, and detailed analysis of core samples. 

Observational Results 
Some results from the first deployment period 

at the monitoring site ($60) 21 September 1995 to 
10 November  1995, are shown in Figure 1. The 
top panel presents current speed 1.0 meter above 
the seabed (mab), which varies from 0 to 30 cm 
s '. The middle panel shows the bottom wave or- 
bital veloci t ies  ca lcula ted for 60-m water  depth 
from surface-wave spectra measured by National 
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Fig. 1: Measttred tinze series o[ current ,v~eed 1.0 
m above the seabed (mob) (top panel), bottom 
wave-orbital velocity (middle panel), and sus- 
pended-sediment concentr~ttion 0,3 mab measured 
by the extended-duration tripod at site $60 (60-m 
water depth). The good correlation between high 
bottom-wave velocities and high suspended-sedi- 
ment concentrations suggests resuspension by 
high bottom stresses. 

Data Buoy Center (NDBC) Buoy 46022 on the Eel 
margin: these values correlate very well with pres- 
sure variance calculated for each burst from the 
tripod data. The bottom panel has the hourly sus- 
pended-sed imen t  concentra t ion 0.3 mab,  which 
ranges from zero to >1 g 1 ' over the selected data 
record. 

The time series of  suspended-sediment concen- 
tration illustrates the energetic nature of  the Eel 
continental shelf and the significant sediment re- 
sponse. Over the first 45-day record, 13 identifi- 
able sediment suspension or transport events oc- 
curred,  each las t ing an average  of  - 2  days.  
Addi t ional ly ,  the data show a strong correla t ion 
between bottom wave veloci t ies  and suspended- 
sediment concentrations. The only exception is the 
brief high-concentration event on 1 October. Dur- 
ing this time measurements by an optical backscat- 
ter sensor (OBS) 1 mab indicate no sediment  in 
suspension, suggesting that something may have 
temporarily blocked the lower (0.3 mab) OBS sen- 
sor resulting in spurious high values. 

The observed correlation between surface-wave 
action and bottom-sediment resuspension events is 
cons is ten t  with observa t ions  from a number  of  
other shelf  settings (e.g., Drake and Cacchione,  
1985; Cacchione  and Drake,  1990: Lyne et al., 
1990; Sherwood et al., 1994) where large surface 
waves are required to produce values of  bot tom 
stress large enough to initiate transport. In these 
locations,  the coincident  bo t tom-boundary- layer  
currents govern the distribution of the sediment in 
the water column and the speed and direction of 
transport. During the period of this initial 45-day 
record,  discharges from the Eel River were uni- 
formly  low, with an average value of  5.8 m ~ s ' 
and a maximum value of 7.8 m 3 s '. 

As part of the intensive cross-shelf deployment 
of  bot tom tr ipods,  the U.S. G e o l o g i c a l  Survey  
( U S G S )  G E O P R O B E  t r ipod  (Cacch ione  and 
Drake, 1990) was deployed at 52-m water depth 
along the S sampl ing  line (site $50, 40-53 .0N,  
124-13.9W) on 7 December  1995 and recovered 
on 8 January  1996. The t r ipod was then rede-  
ployed at the same site as part of the cross-shelf  
t ransect  of  bot tom measurement s  made dur ing  
January-March  1996. An energetic storm passed 
through the reg ion  dur ing  10-13 D e c e m b e r  
1995. NDBC Buoy 46022 r eco rded  sus ta ined ,  
southerly to southeasterly winds in excess of 40 
knots and waves >10 m during this storm. The 
t r ipod data shown in Figure  2 demons t ra te  the 
large wave and current  ve loc i t i es  oll the inner  
she l f  a s soc i a t ed  with this storln.  The top two 
panels in Figure 2 show hourly averaged current 
vec tors  and s igni f icant  bo t tom wave speeds  at 
the uppermost sensor (-1.2 m above the bottom) 
over an 8-day period including the storm. Currents 
during the storm were consistently from the south- 
southeast and reached maximum speeds of -65 cm 
s ~ on 12 December .  Near -bo t tom wave speeds  
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Fig. 2: Measured time series of current veloci O' 
1.2 m above the seabed (mab) (top panel; along- 
shelf flow corresponds to a vertical vector), bot- 
tom wave-orbital velociU (2nd panel), beam at- 

tenuation measured 1.8 mab (3rd panel), and bed 
elevation (4th panel) measured by the GEO- 
PROBE at site $50 (50-m water depth) during a 
storm in mid-December 1995. Water discharge 
)Crom the Eel River is shown in the bottom panel. 
Maximum suspended-sediment concentration lags 
behind peak bottom wave velocity during this 
storm, suggesting that sediment advecting past the 
tripod is contributing to the measured turbidity. 
Sediment introduced to the shelf during the Eel 
River,lToods shown in the bottom panel could be 
the source of the advected sediment. 

were ~80 cm s ' during the peak of the storm on 
12 December, with instantaneous recorded speeds 
in excess of  110 cm s-'. Maximum wave speeds 
lag the peak average currents by -4  h. 

Beam attenuation determined from one of three 
light-emitting diode transmissometers mounted on 
the tripod achieved maximum saturation values 
(-30 attenuation units) several times during the 8- 
day period (Fig. 2). The highest values of beam 
attenuation, and therefore turbidity, during the 
storm occurred early on 13 December ~12 h after 
the peak wave speeds. This lag in highest concen- 
trations of  suspended sediment relative to peak 
wave conditions suggests that the materials caus- 
ing the highest values of turbidity were advected 
into the tripod location rather than resuspended by 
high wave-induced stresses. In fact, on 16 Decem- 
ber a prolonged period of high turbidity occurs 
during waning near-bottom wave velocities. This 
relationship suggests that although some local re- 
suspension of bottom sediment would be caused 
by large wave stresses (note the rise in beam at- 

tenuation at about 1600 on 12 Decenaber). advec- 
tion of  suspended materials from other locations 
to the tripod site dominates the measured turbidity 
during tiffs period. 

Further indirect evidence for an advected sedi- 
ment component to the beam attenuation record 
comes fi'om the discharge record for the Eel River. 
The hourly record of discharge from the USGS 
gauging station on the Eel River at Scotia, CA, 
during the December storm is shown in the bot- 
tom panel of Figure 2. Discharge peaked twice 
during this 8-day period, reaching a maximum of 
3.8 × I0 ~ m ~ s ~. Discharge was also high on the 
Mad River to the north of the deployment sites. 
USGS sediment discharge measurements for the 
Eel River at comparable winter river discharge 
levels indicate suspended-sediment concentrations 
in the river would be on the order of  1-10 g 1 ' 
during these floods (Wheatcroft  et al., 1997). 
Large pulses of riverine sediment introduced to 
the shelf during the December storm may account 
for the large sediment concentrations recorded by 
the GEOPROBE in the absence of  large waves, 
e.g., 15-16 December 1995. 

A notable feature of the December storm at the 
GEOPROBE site ($50) is the large and rather 
rapid apparent rise in bed elevation as determined 
from the measurements of the sonic altimeter (Fig. 
2). Although this change in apparent bed elevation 
coincides with a period of high river discharge, de- 
position of river-derived material is not likely to 
account for a change in bed elevation of this mag- 
nitude (15-20 cm). Detailed measurements follow- 
ing a much larger flood e\,ent on the Eel River in 
January 1995 reveal a flood deposit on the shelf 
with a maximum thickness of 8.5 cm (Wheatcroft 
et al.. 1996, this issue). The bed shear stresses dur- 
ing the nearly coincident peak wave and current 
conditions at the 50-m site are large enough to 
transport fine sand as bedload. Thus, one interpre- 
tation of the apparent rise in bed elevation is that a 
sand wave migrated into the measurement zone of 
the tripod. Alternatively, the altimeter could be 
sensitive to high near-bed sediment concentrations. 

Measurements of small-scale surface roughness 
elements and of  the characteristics of the upper- 
most 10-20 cm of the bed, including sediment 
texture and physical and biogenic structures, be- 
fore and after a transport event such as the one 
shown in Figure 2, are being collected to docu- 
ment processes such as bed reworking and bed- 
form migration (Wheatcroft  et al., 1996, this 
issue). These observations provide the link be- 
tween the water-column processes measured by 
the bottom tripods and the formation and charac- 
teristics of  event beds that may ultimately be in- 
corporated into the sedimentary record. 

Modeling Approach 
A direct relationship between sediment-trans- 

port processes active on modern continental 
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shelves and the resultant fine-scale stratigraphy 
can be made using process-based bottom-bound- 
ary-layer flow and sediment-transport models that 
account for changes in bed sediment-size distribu- 
tions and small-scale bed morphology over the 
course of transport events. A one-dimensional 
shelf transport model incorporating these bed-re- 
lated processes has been shown to compare well 
with water-column measurements of flow and re- 
suspension at other sites on the northern and 
southern California shelf (e.g., Wiberg et al., 
1994). However, the STRATAFORM bed-sam- 
pling studies provide the first direct measurements 
of bed characteristics before and after measured 
resuspension events to test aspects of the model 
important to strata formation, including event-bed 
thickness, grading, and sedimentary structures at 
sandy and silty sites. 

One of the advantages of coupling a modeling 
study with a field study of shelf sediment transport 
and event-bed formation is that the model can be 
used to examine patterns of  transport and bed 
modification over considerably larger temporal 
and spatial scales than generally are resolved in a 
field study, provided the necessary model inputs 
can be specified. As input, the model requires 
near-bottom wave speeds, current velocity at some 
level in the bottom boundary layer, and bed sedi- 
ment characteristics. Largely because of the lim- 
ited duration of most shelf studies, the resuspen- 
sion events captured in existing field data are 
typically representative of transport events with 
1-2 y recurrence times. To make the link to 
stratigraphy, it is necessary to characterize sedi- 
ment transport and bed reworking over as long a 
time scale as possible to include the widest possi- 
ble range of transport events. 

The extended duration observations on the shelf 
will provide >3 y of  measured waves, currents, 
and resuspension. To estimate transport over 
longer time scales, the shelf transport model is 
being used in conjunction with hourly measure- 
ments of surface-wave spectra on the Eel margin 
recorded by NDBC wave buoys since 1982. These 
data provide the information necessary to obtain a 
nearly 15-y record of bottom wave characteristics 
(orbital velocity and period) across the whole Eel 
shelf. Wave-driven transport events can be identi- 
fied in these time series using threshold wave-ve- 
locity criteria developed from bottom tripod data 
like those in Figure 1. This approach yields a set 
of transport events large enough to begin to make 
statistical characterizations of important factors, 
including peak orbital velocity versus return pe- 
riod and the frequency and duration of wave-dri- 
ven resuspension events, at different depths across 
the shelf and slope. Figure 3 shows the cross-shelf 
distribution of near-bottom wave speeds computed 
from NDBC Buoy 46022 during the December 
1995 storm. Values of near-bed orbital velocity in 
the range of 10-20 cm s -' are generally sufficient 
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Fig. 3: Bottom wave-orbital velocity during the 
December 1995 storm for depths on the Eel shelf 
ranging from the inner shelf (30 m) to the upper 
slope (400 m). Wave velocities were computed 
using surface-wave spectral data from NDBC 
Buoy 46022. Bottom wave velocities in the range 
of lO-20 cm s -~ (blue band) generally are sufficient 
to resuspend the finer bed fractions on the shelf 

to resuspend the finer fractions of the bed surface 
sediments. The time series in Figure 3 illustrates 
the variability in the maximum depth of resuspen- 
sion over the course of this storm• 

Future Work 
The prominence of the January 1995 flood de- 

posit in the surficial sediments of the Eel shelf and 
the strong indication in the GEOPROBE record 
(Fig. 2) for advection of river-derived sediment 
during a period of simultaneously high river dis- 
charge, waves, and currents in December 1995 un- 
derscores the importance of flood events to trans- 
port and bed characteristics on the Eel shelf• A 
field and modeling study to characterize the dy- 
namics of the fiver sediment plume and the deliv- 
ery of sediment to the bottom boundary layer and 
bed is now beginning. The field component of this 
study will include a second winter deployment of 
bottom tripods at sites closer to the river mouth 
and arrayed along the axis of the present silt de- 
posit on the shelf• In addition, the analysis of 
cross-shelf transport during the period of simulta- 
neous near-bed measurements at $50, $60, and 
$70 during the winter of 1996 is underway. 

The sediment deposited on the shelf as a result 
of the January 1995 Eel River flood is very fine- 
grained (Wheatcroft  et al., 1996, this issue). 
Near-bottom suspended-sediment concentrations 
reach several 10ths of a gram per liter during the 
typical resuspension events illustrated in Figure 1. 
In-situ suspended sediment samples collected 0.22 
mab by the GEOPROBE during the December 
1995 deployment, when beam-attenuation mea- 
surements at site $50 were high or off scale, 
range from - 1 - 3  g 1' (D.E. Drake, personal 
communication). At these high concentrations, 
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Fig. 4." Floc-camera image o f  f locculated particles 
in suspension and already deposited at site $60. 
The scale on the left o f  the image is in increments 

o f  l mm. 

f i ne -g r a ined  s ed imen t  should  be  f l occu l a t i ng  to 

fo rm larger  aggrega te  par t ic les  in the water  co l -  
umn,  thereby s ignif icant ly  increas ing  the sett l ing 
rate and decreas ing  the t ransport  d is tance  o f  the 
sediment .  This  possibi l i ty  is supported by v ideo-  
c a m e r a  images  (S te rnberg  et al., 1996) o f  f loc -  
like particles at the 60-m extended-durat ion tripod 
site (Fig. 4). F loc -camera  images  and in-situ par- 
t i c le -s ize  data f rom the ex tended-dura t ion  tr ipod 
on the Eel  R ive r  shel f  will  p rovide  data on parti- 
c le  charac te r i s t i c s  o v e r  a r ange  o f  r e suspens ion  
and f lood  events  with which to assess the impor-  
tance o f  this process.  In addition, the f locculat ion 
mode l  o f  Hill  and Nowel l  (1995) will  be coupled 
to the shelf  sediment- t ranspor t  mode l  to evaluate  
the ef fec t  o f  f loccula t ion  on the structure of  sus- 
p e n d e d - s e d i m e n t  prof i les  and the ag reemen t  be-  
tween  ca lcu la ted  and measu red  suspended-sed i -  
ment  concentrations.  
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