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PERSPECTIVE

ZOOPLANKTON AND OFFSHORE WIND
DRIFTERS IN A SEA OF UNCERTAINTY

By Grace K. Saba

Scientists are often tasked with addressing challenging, seem-
ingly impossible questions. An example is the recent Consensus 
Study Report (NASEM, 2024a)—summarized by Hoffman 
et al. (2025, in this issue)—asking: “How will potential offshore 
wind-induced changes in ocean physical dynamics affect the 
North Atlantic right whale in the Nantucket Shoals region?” 
Most concerns about potential direct impacts of offshore wind 
farms (OSW) on the North Atlantic right whale (NARW) focus 
on noise interference and higher vessel activity increasing the 
risk of vessel strikes. The impact of OSW on ocean physics or 
hydrodynamics and subsequently NARWs is more difficult to 
gauge because the effects are indirect and likely highly vari-
able. We do not yet know enough to accurately predict when 
and where zooplankton will aggregate at concentrations that 
support NARW foraging and success. Additionally, the under-
lying confounding challenge is how to decipher turbine-induced 
hydrodynamic changes relative to the background of extremely 
high spatiotemporal variability in oceanographic conditions and 
zooplankton dynamics in the Nantucket Shoals region. When 
posed as a modified question—“How will potential OSW-
induced changes in ocean physical dynamics affect zooplankton 
in the Nantucket Shoals region?”—a variety of scenarios come 
to mind along with three questions that need to be addressed in 
order to move closer to understanding whether and how OSW 
may impact zooplankton.

WHAT CONTROLS ZOOPLANKTON SUPPLY AND 
THE FORMATION OF AGGREGATIONS AT LEVELS 
SUFFICIENT FOR NARW FEEDING?
The number of NARWs in the Nantucket Shoals region has 
increased over the past decade, and although their peak for-
aging occurs during the winter and spring seasons, their pres-
ence has been observed year-round (Quintana-Rizzo et  al., 
2021). Successful NARW foraging requires an adequate sup-
ply and concentration of zooplankton (103–104 individuals m–3; 
Baumgartner and Mate, 2003) as well as mechanisms that pro-
duce high-density aggregations at 100–1,000 m spatial scales 
(Sorochan et  al., 2021), which coincidentally match those of 
potential single turbine impacts. Coastal currents from the 
Gulf of Maine and the Great South Channel control the supply 

of NARWs’ primary prey, late stages of Calanus finmarchicus, 
to Nantucket Shoals, while alternative copepod prey species 
(Centropages spp., Pseudocalanus spp. Paracalanus spp., Oithona 
similis) occur year-round with relatively different times of peak 
abundance (Sorochan et al., 2021). We do not yet fully under-
stand the specific mechanism(s) that facilitate the production of 
high-density zooplankton layers and aggregations in and around 
Nantucket Shoals, as simultaneous NARW sightings and cope-
pod aggregations have not been observed at either tidal mixing 
fronts or in a locally persistent wintertime upwelling gyre (Leiter 
et  al., 2017; Sorochan et  al., 2021). The interactions between 
source and advective supply, behavior (e.g., vertical migration), 
ontogenetic cycles, food availability and distribution, and ocean 
physical conditions that regulate these variables likely influence 
zooplankton aggregation in the Nantucket Shoals region. These 
dynamics are likely species-specific. Therefore, observational 
studies in this region need to focus on determining which prey 
species NARWs are targeting and on collecting high-​resolution 
spatiotemporal observations of concurrent physical oceano-
graphic properties, copepod species distributions and aggrega-
tion dynamics, and NARW presence.

HOW MIGHT OSW AFFECT ZOOPLANKTON 
ABUNDANCE AND AGGREGATION POTENTIAL?
A severe lack of observational data means that we do not know 
the potential turbine-induced downstream and surrounding 
increased turbulence and wake effects at scales of 0.1–1.0 km. 
This could lead to, or alternate between, different scenarios of 
OSW acting on zooplankton that are dependent on seasonal 
ocean physical structure, circulation patterns, biological pro-
cesses, and highly variable wind, current, mixing, and tidal 
dynamics. An added layer of complexity is that different zoo-
plankton species may respond differently to hydrodynamic 
changes due to variable behaviors, preferred food resources, 
and seasonal cycles. 

Five possible scenarios are outlined here. One scenario is 
that there is no overall effect; Figure 1 depicts the remaining 
four. Scenario A would act to disperse surface zooplankton 
aggregations and potentially those in diapause at depth (Incze 
et  al., 2001). Whether this scenario could negatively change 
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zooplankton availability and aggregations at a level 
that would impact NARW foraging is an open ques-
tion. This scenario may be of most relevance to 
NARW ecology because it encompasses the time-
frame when NARW are most abundant and actively 
foraging in Nantucket Shoals waters. In Scenario B, 
OSW effects are strong enough to slightly disrupt 
stratification, permitting nutrient injection upward 
into the surface layer, but not strong enough to 
break down stratification and disperse aggregat-
ing zooplankton. These higher nutrient conditions 
could enhance primary production and therefore 
zooplankton (Carpenter et  al., 2016; Floeter et  al., 
2017). Scenario C would destabilize stratification 
(Carpenter et  al., 2016; Miles et  al., 2017), which 
could potentially disperse zooplankton aggrega-
tions similarly to Scenario A. However, current 
velocities would need to be high enough, and strat-
ification weak enough, for OSW-induced turbu-
lence to break down stratification (Carpenter et al., 
2016) and negatively impact zooplankton aggrega-
tions. Scenario D involves a more biological mecha-
nism whereby high colonization and abundances of 
filter feeding invertebrates (e.g., mussels) on turbine 
structures facilitate a top-down decrease in zoo-
plankton abundance (Perry and Heyman, 2020). 
Although this scenario is independent of season, 
different physical conditions and levels of turbu-
lence will create variable encounter rates and inter-
action times between sessile predators and zoo-
plankton prey (Prairie et al., 2012).

At the wind farm scale (10–100 km), cumula-
tive impacts of multiple turbines may act to reduce 
surface current speeds and stratification and cre-
ate horizontal shear-induced upwelling and down-
welling dipoles that could differentially aggregate 
or disaggregate zooplankton (Carpenter et al., 2016; 
Sorochan et  al., 2021; Christiansen et  al., 2023). 
Evaluating wind farm-scale impacts on oceano-
graphic and zooplankton dynamics will be more 
difficult to isolate from regional high natural envi-
ronmental variability. 

ARE THESE POTENTIAL OSW IMPACTS 
ON ZOOPLANKTON GREATER 
THAN NATURAL PROCESSES 
THAT DRIVE A RANGE OF SCALES 
OF SPATIOTEMPORAL VARIABILITY?
Oceanographic conditions on Nantucket Shoals 
and on the broader US Northeast shelf are sub-
ject to high daily to decadal variability, driven 
by local wind conditions, tidal forcing, storm 
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FIGURE 1. Four potential scenarios of offshore wind turbulence and wake effects on 
zooplankton in Nantucket Shoals waters.
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activity, and fluctuations in large-scale circulation (summa-
rized in NASEM, 2024a). Furthermore, increased frequency 
of mid-water salt intrusions into shelf waters has been associ-
ated with recent warming, an inshore movement of the shelf-
break front, and changes in water column structure (Harden 
et  al., 2020; Gawarkiewicz et  al., 2022). Zooplankton abun-
dance and distribution follow similar trends of variability, lead-
ing to spatiotemporal fluctuations in NARW foraging habitat, 
including warming-associated declines in C. finmarchicus and 
Pseudocalanus spp. (Record et al., 2019). 

Given the significant uncertainty outlined here, the initial 
question really should be how do we determine if OSW will 
affect zooplankton and NARW in the Nantucket Shoals region? 
Luckily, as Hoffman et al. (2025, in this issue) indicate, the com-
munity now has some guidance through the recently released 
workshop proceedings, Nantucket Shoals Wind Farm Field 
Monitoring Program (NASEM, 2024b). Isolating OSW impacts 
from natural variability will require monitoring and model-
ing studies designed to target specific impacts at relevant scales 
with sufficient resolution. Localized field efforts should sam-
ple along a gradient inside and outside OSW fields or include 
“control” areas outside of OSW areas, before, during, and 
after construction. Monitoring should also include simultane-
ous physical and biological observations at both the turbine 
and wind farm area scale as well as repetition during variable 
oceanographic conditions. 
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