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FEATURE ARTICLE

NUTRIENT FOOTPRINT 
FROM THE ORIGIN OF THE KUROSHIO CURRENT 
TO THE EAST CHINA SEA CONTINENTAL SHELF

 By Ting-Hsuan Huang and Chen-Tung Arthur Chen

ABSTRACT. The dynamics governing nutrient concentrations in the ocean are primarily 
influenced by geophysical and biogeochemical processes that regulate the introduction of these 
elements into seawater and their transport, dispersion, and removal. In one of the world’s most 
productive marine regions, the East China Sea (ECS), numerous reports have documented the 
relationship between biological productivity on the shelf and the nutrients primarily supplied 
from the subsurface waters of the Kuroshio, a powerful western boundary current. However, 
the mechanism behind this nutricline variation is not well understood. In this study, we trace 
macronutrients from the Kuroshio’s source to the ECS shelf. As the Kuroshio flows northward 
along the eastern coast of the Philippines to the southern Luzon Strait (LS), part of it intrudes 
into the South China Sea (SCS) through the strait. Due to vigorous vertical mixing and upwell-
ing, the thermocline and nutricline are elevated in the SCS compared with those near the origin 
of the Kuroshio. Subsequently, at the northern LS, the SCS outflow merges with the Kuroshio’s 
western side. This process preconditions the upwelling of nutrient- rich subsurface Kuroshio 
waters onto the ECS shelf.

Estimated nitrate concentration contours along five sections from the north-
eastern coast of the Philippines (18°N) to northeastern Taiwan (25.2°N), based 
on shipboard CTD temperature data collected in September 2000.
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INTRODUCTION
Macronutrients, essential for fundamental life processes, have been 
traditionally categorized in marine sciences as primarily encom-
passing carbon, nitrogen, phosphorus, and silicon. However, 
micronutrients, such as iron, also play significant roles in marine 
ecosystems (Emerson and Hedges, 2008; Hutchins and Boyd, 
2016). The regulation of nutrient concentrations in the ocean 
depends on the interplay of the geophysical and biogeochemical 
processes governing the introduction of these elements into sea-
water and their subsequent dispersion, advection, and removal 
(K.-K. Liu et al., 2000; J. Zhang et al., 2007; Chen, 2009; Umezawa 
et al., 2014; W. Wang et al., 2016).

When viewing the ocean as a system, the primary exter-
nal sources of most nutrients can be attributed to rock weather-
ing, organic matter decomposition, and land-based waste dis-
charge. However, on an annual global scale, the recycling and 
internal transport of nutrients within the ocean provide the vast 
majority of the nutrients required to sustain primary production, 
greatly exceeding the contributions from terrestrial sources such 
as rivers and atmospheric deposition (Schlesinger and Bernhardt, 
2020). This can be exemplified by considering the East China 
Sea (ECS), one of the most productive marine regions globally 
(K.-K. Liu et al., 2010; J. Zhang et al., 2019). It has been reported 
that the supply of phosphorus from the subsurface waters of the 
Kuroshio, a powerful western boundary current, outweighs the 
contributions from all rivers, including the mighty Changjiang 
River (Yangtze River; C.T.A. Chen, 1996; Zhao and Guo, 2011). 
Similarly, in another western boundary current system, upwelling 
driven by the Loop Current serves as the primary source of nutri-
ents for the South Atlantic Bight and the West Florida Shelf in the 
Gulf of Mexico (Ishizaka, 1990; Lee et al., 1991; Y. Liu et al., 2016; 
Weisberg and Liu, 2025). 

Phytoplankton play a central role in the biological removal of 
inorganic macronutrients, namely nitrogen, phosphorus, and sili-
con, from seawater. While coastal and benthic algae also contrib-
ute to nutrient removal, their impact is relatively minor (Cloern, 
2001). This biological removal primarily occurs within the 
euphotic layer, which tends to be thin on continental shelves due to 
high turbidity caused by terrestrial particle inputs (He et al., 2013, 
2014). The marine food web, which includes zooplankton, bacte-
ria, and higher consumers, recycles nitrogen, phosphorus, and sili-
con by breaking down organic matter and releasing these nutrients 
as dissolved inorganic forms, thereby sustaining primary produc-
tion and completing the oceanic nutrient cycle. In addition to 
macronutrients, the growth and metabolic functioning of phyto-
plankton also depend on a suite of trace elements known as micro-
nutrients. Micronutrients such as iron, nickel, copper, and zinc are 
essential cofactors in phytoplankton metabolic processes, includ-
ing photosynthesis and nitrogen fixation, despite their trace con-
centrations in seawater (Morel and Price, 2003). In the Kuroshio 
region, these trace metals originate predominantly from anthro-
pogenic aerosol deposition, sediment resuspension on the ECS 

shelf, and terrestrial inputs via riverine discharge, with additional 
contributions from intermediate waters and lateral transport 
from marginal seas (W.H. Liao and Ho, 2018; Takano et al., 2022; 
Hsieh and Ho, 2024).

The ECS has been a focal point of numerous studies investi-
gating biological productivity, particularly in relation to nutri-
ent availability. Five external sources of nutrients have been iden-
tified for the ECS: Kuroshio Current, Taiwan Strait, river inputs, 
submarine groundwater discharge, and atmospheric deposi-
tion (C.T.A. Chen and Wang, 1999; Gong et al., 2003; S.L. Wang 
et al., 2018; J. Zhang et al., 2019). The Changjiang River, especially 
during the summer, significantly contributes to nutrient inputs in 
its estuary (Sun et  al., 2023). Nevertheless, it is widely accepted 
that the primary source of nutrients for the ECS is the subsurface 
waters of the Kuroshio (C.T.A. Chen, 2008; Liu et al., 2010; X. Guo 
et  al., 2012; Umezawa et  al., 2014). Various processes, including 
upwelling, Kuroshio frontal eddies, and filaments extending onto 
the shelf, result in supply of nutrients to continental shelf waters 
(Li et al., 2016; Meng et al., 2020; Su and Pan, 1987; Yuan et al., 
2015; Zheng and Zhai, 2021; Zhou et al., 2015; Jiang et al., 2023).

The Kuroshio is characterized by its oligotrophic nature in the 
euphotic zone but nutrient-rich characteristics in subsurface lay-
ers. Furthermore, due to the weakening of the Kuroshio Current 
with depth, the nutrient flux exhibits a subsurface maximum, 
referred to as the “nutrient stream” (Pelegri and Csanady, 1991; 
C.T.A. Chen et al., 1995; X. Guo et al., 2012). Kuroshio Intermediate 
Water (KIW), originating from North Pacific Intermediate Water 
(NPIW), is the primary contributor to the Kuroshio nutrient 
stream and has been identified as the major source of nutrients 
for the ECS continental shelf (C.T.A. Chen and Huang, 1996; 
Nagai et al., 2019; S.M. Liu et al., 2020; C.T.A. Chen et al., 2021; 
Long et al., 2022). 

To shed light on this intricate nutrient flow, we track macro-
nutrients along their journey from the source of the Kuroshio east 
of the Philippines and onto the ECS continental shelf, after receiv-
ing contributions from the South China Sea (SCS). This research 
aims to enhance our understanding of the origin and transforma-
tion of nutrient-rich water masses that sustain the vibrant primary 
productivity of the ECS.

STUDY AREA AND METHODS 
In this study, we analyzed data sourced from various loca-
tions proximal to the Kuroshio Current, within and adjacent to 
the ECS (Figure 1). Our data originated from multiple research 
cruises, arrayed from south to north as follows: east of Philippines 
(INDOPAC leg II, May 1976), southeast of Taiwan (ORI-462, 
September 1996), southeastern ECS (ORI-179, September 
1988), eastern ECS (TPS-24, June 1985), and northeastern ECS 
(KEEP-MASS, July 1992).

These cruises were selected to offer a comprehensive perspec-
tive on the Kuroshio Current’s dynamics across different locales 
and temporal stages, particularly before and after the current veers 
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eastward to exit the ECS. Most of the data from these cruises are 
publicly accessible, having been previously published or available 
through datasets. Each cruise recorded measurements of nutrients 
and dissolved oxygen (DO)—parameters influenced by biological 
activity as well as by temperature and salinity fluctuations.

Apparent oxygen utilization (AOU) is calculated by subtract-
ing the measured DO from its saturation value at the in situ tem-
perature and salinity (AOU = [O2]theoretically saturated – [O2]measured; 
C.T.A. Chen, 1981). AOU serves as a crucial indicator of the net 
production or consumption of DO. Unlike DO, AOU is unaf-
fected by temperature and salinity variations, making it a more 
robust indicator of biological respiration and oxygen consump-
tion in seawater.

Further, the PN line data from 2000 to 2020 were selected for 
this study, with long-term observations conducted semi- annually 
to quarterly during this period by the Japan Meteorological 
Agency. Additional longitudinal data were obtained from a 

repeated-measurement study southeast of Taiwan along 21.75°N, 
with sampling conducted in November 1990, June 1991, May 1994, 
May 1995, October 1995, September 1996, July 2004, May 2006, 
June 2011, and August 2015.

Collection of these shipboard data, although covering a large 
area, occurred in different years. For data synthesis across simi-
lar sampling periods, hydrographic data from the same study 
areas were collated during September and October 2000. 
Shipboard CTD data extending from the northeastern coast of the 
Philippines to northeastern Taiwan were sourced from the Ocean 
Data Bank. Concurrently, model temperature and salinity data 
for September 2000 were obtained from the HYbrid Coordinate 
Ocean Model (HYCOM). To estimate nutrient concentrations, 
empirical formulas derived from repeated measurements along 
21.45°N during 10 cruises were applied, utilizing temperature 
data in conjunction with the specific water mass characteristics of 
SCS-like (South China Sea-like) and WPS-like (West Philippine 
Sea-like) waters (Figure S1 in the online supplementary materi-
als). This categorization is based on whether the maximum salin-
ity (S-max) is lower or greater than 34.75, which approximates the 
median of the S-max values for typical WPS (S ≈ 34.94) and typi-
cal SCS (S ≈ 34.53) around σθ = 24.5–25 (Figure S2A).

RESULTS
HYDROGRAPHIC FEATURES EAST OF LUZON ISLAND
Figure 2 focuses on the origin of the Kuroshio Current, where the 
North Pacific Equatorial Current (NPEC) encounters the NPIW 
near the Philippines. The cross-sectional (14°N, INDOPAC) 
parameters encompass temperature (T), salinity (S), AOU, nitrate 
(NO3), phosphate (PO4), and silicate (Si(OH)4). While temperature 
shows a decreasing trend with depth, AOU, nitrate, phosphate, and 
silicate all exhibit an increasing trend with depth (Figure 2). The 
primary thermocline is observed at depths ranging from 200 m to 
500 m, coinciding with the nutricline. Salinity, on the other hand, 
behaves differently, increasing initially with depth until reaching a 
maximum at around 200 m, referred to as Kuroshio Tropical Water 
(KTW). Below this point, salinity decreases with depth until it 
reaches a minimum, namely the KIW at approximately 400 m, and 
then increases again (Tsuchiya, 1968; Qu et al., 2000).

For the profile made east of Luzon Island (Figure 2), an essen-
tial observation is that parameter contours remain relatively flat 
below 400 m east of 126°E within the NPIW domain. However, 
above 400  m and west of 126°E, the contours tilt upward by as 
much as 100 m. For example, the 1 µM contour for NO3 is around 
160 m deep east of 126°E (Figure 2), where it is too deep for phyto-
plankton to utilize sunlight for photosynthesis. Near the Philippine 
coast, this contour reaches depths of about 100  m, closer to the 
euphotic zone, where some light penetration can support biologi-
cal production. This phenomenon is primarily driven by the force 
of the pressure gradient and the Coriolis effect (Qu et  al., 1998; 
Schaeffer et  al., 2013; F. Liao et  al., 2022). It is noteworthy that 
AOU is negative above 100 m, reflecting net primary productivity 

FIGURE 1. (A) The map shows the main pathways of the Kuroshio Current 
and its branches, indicated by colored arrows. Different symbols represent 
various sampling stations and research lines: KEEP-MASS, TPS-24, ORI-179, 
ORI-462, and INDOPAC (triangles); CTD data collected in September 2000 
(crosses). Shaded areas indicate HYCOM model data from September 2000. 
Red, orange, and purple indicate regions mostly influenced by the West 
Philippine Sea (WPS), while blue denotes areas mainly influenced by the 
South China Sea (SCS). (B,C) Repeated sampling tracks at the PN Line and 
21.75°N, respectively. The different area numbers correspond to Table S1.

https://www.odb.ntu.edu.tw/
https://www.odb.ntu.edu.tw/
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in the euphotic zone. The AOU reaches 25–50 µmol kg–1 at the 
depth where the nitrate concentration is approximately 1 µM. This 
suggests that significant organic matter decomposition, a pro-
cess that consumes oxygen, occurs at a depth of around 160 m 
east of 126°E (Figure 2).

Temperature, salinity, and AOU contours all show an upward 
trend near the Philippine coast (west of 126°E, Figure 2), accom-
panied by a shoaling of nutriclines, including nitrate, phosphate, 
and silicate, toward the coast. This increase in nutrients is not asso-
ciated with SCS waters, as little SCS water is present in the study 
area east of the Philippines (Lien et al., 2015).

UPWELLING AND NUTRIENT DYNAMICS 
SOUTHEAST OF TAIWAN
The situation changes significantly off southeast Taiwan. In the 
NPIW domain (east of 126°E in Figure 2), contours remain rel-
atively flat below 400 m. However, to the southeast of Taiwan 
(Figure 3, 21.75°N), waters shallower than 600 m start to tilt up 
toward the west. The southern tip of a ridge that lies between the 
Philippines and Taiwan is located at approximately 121°E, with the 
SCS to its west and the WPS to its east. The temperature, AOU, and 
nutrient contours all indicate a westward upwelling feature that 
occurs most prominently west of 121°E (Figure 3). This upwell-
ing is so intense that the 1 µM nitrate contour, which was previ-
ously at a depth of 100 m west of 126°E (Figure 2), emerges at a 
depth of 50 m at 121°E (Figure 3). This phenomenon, including 

the influence of the SCS water, is beyond the scope of this study but 
undoubtedly results in higher nutrient concentrations compared 
to the Kuroshio (K.-C. Yang et al., 2015).

It is important to note that Kuroshio waters are significantly 
modified by water exchange involving SCS water in the LS 
(C.T.A. Chen and Huang, 1996; Matsuno et al., 2009; Yuan et al., 
2014; Nakamura, 2020). Figures 2 and 3 illustrate that in the 
Kuroshio and the WPS regions, the S-max reaches values near 35. 
However, along 21.45°N latitude, waters with a salinity of 34.8 do 
not appear to penetrate the SCS west of 121°E. Extensive upwell-
ing and vertical mixing in the SCS weaken the salinity maximum, 
and decrease temperature, but elevate nutrient concentrations in 
the subsurface layer (Figure S3; Chao et al., 1996; Lu et al., 2020). 
These characteristics gradually attenuate along the Kuroshio’s 
northward path. 

In September 2000, CTD salinity cross sections from stations 
northeast of Luzon Island to the northern LS indicate that the 
S-max is around 34.8 east of 120.7°E (Figure S4A–C). This obser-
vation is consistent with the climatological salinity distribution in 
the LS. In the sigma-theta range of 24.6 to 24.9 (corresponding to 
a water depth of approximately 150–250 m), waters with S = 34.8 
are found east of 120.5°E in the northern LS (Y. Chen et al., 2016). 
In other words, the S-max is reduced due to mixing with lower 
S-max SCS seawater west of 120.7°E (Figure S4D). The S-max in 
the Kuroshio east of Taiwan decreases from >34.8 offshore to ~34.6 
as it nears the coast (Figure S4E–G; Mensah et al., 2014). 

FIGURE 2. Zonal cross sections of temperature, salinity, potential density anomaly (σθ), apparent oxygen utilization (AOU), nitrate, phosphate, and silicate east 
of the Philippines based on INDOPAC, Leg II, data. Color shading and black contours represent the values of individual parameters.
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KUROSHIO INFLUENCE NORTH OF TAIWAN
By the time the Kuroshio, now influenced by the SCS, reaches the 
region north of Taiwan, the S-max has a salinity of around 34.8 
in the ORI-179 cross section east of 122.8°E (Figure 4, 25°N). 
This cross section is perpendicular to the shelf break, which runs 
from southwest to northeast. As a result, the Kuroshio is forced to 
turn northeastward due to the topography (C.T.A. Chen, 2011). 
Temperature, salinity, AOU, and nutrient contours indicate the 
presence of high-nutrient waters (NO3 > 5 µM, PO4 > 0.2 µM, and 
Si(OH)4 > 5 µM) along the shelf edge at depths as shallow as 60 m. 
These subsurface nutrient-rich waters continue moving toward 
the ECS shelf, making them available for photosynthesis. Current-
meter measurements and models confirm this onshore movement 
of surface waters (Chuang and Liang, 1994; Matsuno et al., 2009; 
D. Yang et al., 2011; Wu et al., 2017).

NUTRIENT ENRICHMENT IN THE MIDDLE 
LATITUDE EAST CHINA SEA
Further north, in the TPS-24 cross section (Figure 5, 29°N), the 
S-max core exhibits a salinity exceeding 34.8 between depths 
of 100 m and 200 m in regions with water depths greater than 
1,000 m, indicating a significant contribution from the orig-
inal Kuroshio. However, the salinity quickly drops to 34.6 west 
of 126°E at depths of 100–200 m, where a salinity front appears 
to exist (C.T.A. Chen, 2005). West of this front, the influence of 
the SCS water is evident, with high-nutrient subsurface waters 

moving further westward toward the shelf break. For instance, 
the NO3 = 15 µM contour is approximately 100 m shallower 
(Figure 5) compared to the area northeast of Taiwan (Figure 4). 
The PO4 = 1 µM and Si(OH)4 = 20 µM contours also move up by 
about 100 m.

NUTRIENT DYNAMICS IN THE NORTHERN 
EAST CHINA SEA SHELF BREAK
Moving further north, the KEEP-MASS data reach a water depth 
of approximately 80 m to the west (Figure 6, 32°N). While a lack of 
data near the shelf break makes it challenging to demonstrate the 
upwelling feature, the salinity, consistently lower than 34.6, sug-
gests that the upwelled waters are significantly influenced by the 
SCS outflow or the ECS shelf waters. Notably, this region exhib-
its much higher nutrient concentrations, even in the surface layer, 
compared to the surface waters at the Kuroshio’s origin (Figure 2). 
While the Changjiang River outflow may play a role, it is likely 
minimal in supporting productivity given its low phosphate con-
centration. Factors such as winter cooling, typhoons, and strong 
winds could mix high-nutrient subsurface waters into the surface 
euphotic layer on the shallow shelf. It is worth mentioning that this 
area is some distance from the Kuroshio recirculation that contrib-
utes to nutrient supply in the entire Kuroshio region south of Japan 
(X. Guo et  al., 2019). Therefore, the higher nutrient concentra-
tions in this cross section likely originate from the SCS-influenced 
Kuroshio coming from the southwest.

FIGURE 3. Zonal cross sections of temperature, salinity, σθ, AOU, nitrate, phosphate, and silicate southeast of Taiwan based on the ORI-462 data. Color shad-
ing and black contours represent the values of individual parameters.
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FIGURE 5. Zonal cross sections of temperature, salinity, σθ, AOU, nitrate, phosphate, and silicate east of the ECS based on the TPS-24 data. Color shading 
and black contours represent the values of individual parameters.

FIGURE 4. Zonal cross sections of temperature, salinity, σθ, AOU, nitrate, phosphate, and silicate northeast of Taiwan based on the ORI-179 data. Color shad-
ing and black contours represent the values of individual parameters.
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DISCUSSION
WATER MASS DYNAMICS IN LUZON STRAIT
The water mass exchange in the LS is well known for its sandwich- 
like pattern. In the upper layer (water depth shallower than 
500 m), there is a complex two-way exchange, but the net flux is 
westward. In the middle layer (water depth between 500 m and 
1,500 m), the net flux is eastward, while in the deep layer (water 
depth deeper than 1,500 m), the net flux is westward. Though 
the major source of SCS seawater is WPS seawater, the upwell-
ing and intense vertical mixing cause the salinity and temperature 
maxima to decrease while the salinity and temperature minima 
increase in the SCS (C.-T.A. Chen et al., 2001, 2006; Gan et al., 
2006; Y. Liu et al., 2000; Tian et al., 2006). 

Figure S1 presents temperature/salinity plots that indicate dif-
ferent water masses, which are simplified into two types—SCS-like 
and WPS-like—based on the salinity maximum in this study area. 
The corresponding locations are marked as red triangles and pink 
Xs, and blue triangles and light blue Xs in Figure 1. The value of 
34.75 represents the S-max from an equal mixture of WPS and SCS 
portions. Although mixing in the subsurface water may differ from 
that in the middle layer, this study focuses only on the upper layer. 
The WPS-like water occupies the regions east of Luzon Island, the 
LS, and the eastern side of the Kuroshio Current. It is worth not-
ing that a WPS-like station at 119°E (Figure 1), which was expected 
to exhibit an SCS-like pattern, may result from incomplete mix-
ing. The SCS-like water is found in the western Luzon Islands, the 

northwest LS, and off the east coast of Taiwan, to the left of the 
Kuroshio, between approximately 21.75°N and 25°N, and even 
extends to the ECS region (Figure 1). The influence of fresher ECS 
water reduces the salinity in the region north of 25°N, where the 
lowest salinity value, around 28, is found in the surface layer (not 
shown in Figure S1A). Some data indicate vertical mixing phe-
nomena off the northeast coast of Taiwan that also involve shelf 
water and further reduce the salinity to below the typical SCS 
water pattern (Hsueh et al., 1992). As the WPS water mixes with 
SCS water along the isopycnal, the mixed water exhibits lower tem-
perature and salinity values than the original WPS water. This mix-
ing also suggests an increase in nutrient concentration, as the SCS 
has higher nutrient values than the WPS at the same depth in the 
upper layer (Figure S2). 

NUTRIENT DISTRIBUTION AND 
LATITUDINAL TRENDS
It’s important to note that various oceanographic factors, such as 
stratification, vertical mixing, eddy-driven transport, typhoons, 
winter cooling, horizontal advection, and geostrophic currents 
interacting with terrain effects, play significant roles in controlling 
the behavior and distribution of nutrients in the regions studied 
(Andres et al., 2015; Uchiyama et al., 2017; Jan et al., 2019; Y. Zhang 
et al., 2020). These physical conditions and processes influence the 
transport and availability of nutrients in the marine environment, 
contributing to the observed patterns in nutrient concentrations. 

FIGURE 6. Zonal cross sections of temperature, salinity, σθ, AOU, nitrate, phosphate, and silicate northern of the ECS based on the KEEP-MASS data. Color 
shading and black contours represent the values of individual parameters.
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For instance, a cyclonic eddy impinging on the Kuroshio east of 
Taiwan weakened poleward transport and reduced pycnocline 
slopes across the Kuroshio (Jan et al., 2017). As a result, the nitrate 
inventory changed, increasing when the pycnocline was uplifted 
and decreasing when it was depressed.

The 20°C isotherm (Figure S4) was used as a reference to com-
pare uplift occurrences at different latitudes. At 18°N and 21.2°N, 
it lies at 200 m. However, at 21.5°N and 21.75°N, it tilts westward 
to a depth of 150 m. Off the east coast of Taiwan (22.8°–25.2°N), 
it uplifts to a depth of around 100 m. Further along the PN Line 
(28°N), the 20°C isotherm reaches approximately 60 m during 
September and October 2000. The depth difference of the 20°C 
isotherm between the WPS- and SCS-like water near the LS is 
around 50 m at 21.5°N and 21.75°N, and this disparity is simi-
lar to data collected from the WPS and the LS (Shaw, 1991). As 
the latitude increases, the difference also increases to about 100 m 
between 22.8°N and 24.2°N (east of Taiwan); the colder water is 
also discernible in satellite images (Figure 1 in Z. Huang et  al., 
2021). This uplift in the coastal area is influenced by both the inter-
action of different water masses and terrain effects, with half of the 
uplift resulting from the mixing of these water masses before ter-
rain interactions. At 28°N on the PN Line, the depth difference of 
the 20°C isotherm between the western and eastern sides increases 
to approximately 120 m, as the main Kuroshio current is located at 
the shelf break (Y. Liu and Yuan, 1999; Yuan et al., 1998). In addi-
tion to the mechanisms described, year-round upwelling in north-
east Taiwan contributes to bringing cold water to the surface layer 
(at least 60 m depth; Wu et al., 2008).

Seawater temperatures are generally inversely correlated with 
nutrient concentrations (Kamykowski and Zentara, 1986). Table 1 
provides a summary of the uplifted features observed in the five 
cross sections studied. Nutrient concentrations are the most strik-
ing differences among these cross sections, especially when com-
paring data at depths of 100 m and 200 m. They are lowest in the 
southernmost cross section. The most extreme case is nitrate at 
100 m, which is only about 1 µM, compared to around 9 µM in 
the northernmost cross section. At 200 m, nitrate increases from 
5 µM at 14°N to 16 µM at 32°N (Table 1). In the southernmost 
section (14°N in Table 1), phosphate, the limiting nutrient in the 

inner ECS, registers the lowest concentrations, with values of 
0.2 µM at 100 m and 0.5 µM at 200 m. In the northernmost sec-
tion (32°N in Table 1), phosphate increases to 0.7  µM at 100  m 
and 1.2 µM at 200 m, playing a critical role in supplying essential 
nutrients to the ECS (T.-H. Huang et al., 2019). Similarly, silicate 
is abundantly available in the ECS, and its concentration shows a 
four- to fivefold increase in the northernmost section compared to 
the origin area of the Kuroshio, likely contributing to the silicate 
supply to the ECS.

NUTRIENT INVENTORIES AND 
RESEARCH IMPLICATIONS
The uplifted cold waters interact and mix with the surrounding 
waters, but nitrate behaves conservatively below 50 m on the shelf 
due to limited biological activity, as decreased sunlight inhibits the 
light-sensitive nitrifying bacteria (Guerrero and Jones, 1996a,b; 
Merbt et al., 2012). Nitrite in the euphotic zone primarily origi-
nates from phytoplankton metabolism (Kiefer et al., 1976), under-
lining the importance of biological factors in its distribution. 
For spatial comparison, nitrate concentration is integrated over 
depths of 120 m and 300 m in the repeat transects—the PN Line 
and 21.75°N (Table S1, Figure 1B,C). The shallowest area of the 
PN Line (Area I of Figure 1B, the ECS shelf) is around 120 m, 
so the depth-integrated nitrate concentrations represent the whole 
water column nitrate inventory. At a depth of 120 m in Areas I and 
II of Figure 1B,C, the nitrate inventory values along the PN Line 
are more than twice those along 21.75°N. This phenomenon 
results from the deeper nutricline depth at 21.75°N and the addi-
tion of nitrates from decomposed organic material on the ECS 
shelf (Y. Chen et al., 2016; J. Guo et al., 2018). The nitrate inventory 
values remain at similar levels from Areas III to V in Figure 1B,C 
between 0 m and 120 m, as the dominant water mass is WPS-like 
water. At a depth of 300 m in the PN Line (Area III of Figure 1B), 
the integrated nitrate concentration is higher than at 21.75°N. This 
is because the PN Line (Area III of Figure 1B) is close to the con-
tinental slope, where deeper water is uplifted by the terrain and 
mixed with high-nutrient concentration water from the SCS. The 
nitrate inventory values are at comparable levels in Areas IV and V 
of Figure 1B,C between 0 m and 300 m.

Table S1 shows the depth-integrated nitrate inventories between 
0 m and 120/125 m and 0–300 m at different latitudes during 
September and October 2000. Overall, the SCS-like seawater has 
two to six times higher nitrate inventories than the WPS-like sea-
water, and these inventories increase with latitude. From 16°N to 
25°N, the SCS-like nitrate inventories double at 125 m, whereas the 
values remain similar at 300 m. This phenomenon suggests that 
uplifting only influences the seawater at the 120 m layer but does 
not affect the deeper layer. In contrast, the WPS-like nitrate inven-
tories are stable at 125 m. At the 300 m layer, the values rise sig-
nificantly at 24.2°N, which is close to a ridge (about 800–1,000 m 
depth). This suggests that the terrain effect also increases the nitrate 
inventories of WPS-like seawater. The SCS-like nitrate inventory at 

TABLE 1. Concentrations of nitrate, phosphate, and silicate at different 
depths in various cross-sections.

Nitrate  
(µM)

Phosphate 
(µM)

Silicate  
(µM)

100 m 200 m 100 m 200 m 100 m 200 m

32°N, KEEP-MASS 9 16 0.7 1.2 15 25

28°N, TPS-24 7 13 0.6 0.9 12 20

25°N, OR1-179 6 10 0.5 0.7 11 15

21.75°N, OR1-462 5 8 0.4 0.6 6 13

14°N, INDOPAC 1 5 0.2 0.5 3 6

SCS 9 15 0.8 1.0 12 25
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120 m on the PN Line is nearly twice as high as the result at 16°N 
due to the significant increase in nitrate concentration near the bot-
tom layer. However, the WPS-like nitrate inventories at 120 m and 
300 m are consistently around 50 mmol·m–2 and 600 mmol·m–2. 

It is important to note that this analysis is preliminary at best, as 
it does not account for seasonal effects, and all the data were col-
lected between May and November. Additionally, the study did not 
investigate potential variabilities influenced by factors such as the 
El Niño-Southern Oscillation, the Pacific Decadal Oscillation, or 
long-term trends (Jan et al., 2015; Kim et al., 2022; Wei et al., 2023). 
These factors could introduce significant variations and should be 
considered in future research to provide a more comprehensive 
understanding of the dynamics in the marine environment studied.

CONCLUSIONS
The Kuroshio Current is well known for its nutrient-poor surface 
layer and nutrient-rich deeper layers. Consequently, if only the 
surface waters of the Kuroshio were to enter the ECS, they would 
contribute little to biological production in the region. The reason 
that the ECS is an important fishing ground primarily lies in the 
upwelling of nutrient-rich subsurface waters from the Kuroshio, 
which originates from the NPEC, known for its oligotrophic con-
ditions. The concentration of nitrate does not exceed 1 µM until a 
depth of 160 m, which is too deep and dark for phytoplankton to 
efficiently utilize the nutrients.

The subsurface waters rich in nutrients from the NPEC begin to 
rise when the NPEC encounters the Philippines. The subsequent 
northward-flowing portion is known as the Kuroshio, where the 
nitrate concentration reaches 1 µM at a depth of 100 m. This indi-
cates an uplift of nutrients by about 50 m. Some of the Kuroshio 
waters enter the SCS, where intensive upwelling and vertical mix-
ing bring up subsurface waters along with nutrients. Consequently, 
by the time these waters exit the SCS and rejoin the Kuroshio, the 
nutrient content is enriched. In other words, the left-hand part of 
the Kuroshio now contains SCS waters with higher nutrient con-
centrations. This phenomenon is clearly observed in the cross sec-
tion southeast of Taiwan.

Further upwelling occurs when the Kuroshio is forced to turn 
northeastward as it encounters the continental shelf and slope of 
the ECS. Topographically induced upwelling further lifts nutri-
ents from the SCS-influenced left-hand part of the Kuroshio. This 
continuous upwelling as the Kuroshio flows along the shelf break 
of the ECS provides an additional supply of nutrients to the ECS 
shelf, contributing to its significance as a productive fishing area. 
The complex interplay of oceanographic processes, upwelling, and 
the exchange of water masses significantly impacts nutrient avail-
ability in the ECS, ultimately influencing the region’s biological 
productivity and its role as a vital fishing ground.

SUPPLEMENTARY MATERIALS
The supplementary materials are available online at https://doi.org/10.5670/oceanog. 
2025.e304.
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