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IS THERE ROBUST EVIDENCE FOR 
FRESHWATER-DRIVEN AMOC CHANGES?

A SYNTHESIS OF DATA, MODELS, AND MECHANISMS
By Sophia K.V. Hines, Nicholas P. Foukal, Kassandra M. Costa, Delia W. Oppo, 

Olivier Marchal, Lloyd D. Keigwin, and Alan Condron

INTRODUCTION
The Atlantic Meridional Overturning Circulation (AMOC) plays 
a crucial role in regional and global climate. It transports mass 
and heat to the Northern Hemisphere (e.g., Frajka-Williams et al., 
2019; Trenberth et  al., 2019), is characterized by sinking at sev-
eral locations in the northern North Atlantic (e.g., Talley, 2013), 
and thus provides a pathway for sequestering anthropogenic car-
bon for centuries to millennia (e.g.,  Gebbie and Huybers, 2012; 
Brown et al., 2021). Here, we define the AMOC as the upper cell 
of the meridional overturning circulation in the Atlantic Ocean. It 
moves warm, saline waters northward where these waters lose heat 
to the atmosphere, sink, and flow southward as colder and fresher 
North Atlantic Deep Water (NADW). Due to positive feedbacks 
involving the advection of salt by the northward-flowing branch, 
the AMOC may be bistable, as suggested by simplified box models 
of meridional overturning circulation (e.g., Stommel, 1961).

Paleoclimate data are consistent with the AMOC having more 
than one equilibrium state, and they suggest that the AMOC has 
abruptly changed in the past, sometimes in just a few decades. For 
example, there is broad evidence from paleoclimate records that 
AMOC existed for thousands of years in a reduced state during the 
transition out of the last ice age (e.g., McManus et al., 2004; Lynch-
Stieglitz et  al., 2014; Rafter et  al., 2022), which may have driven 
changes in atmospheric circulation, precipitation patterns, and 
global surface temperature (e.g., Wang et al., 2001; Anderson et al., 
2009; Cheng et  al., 2009; Clark et  al., 2012). Some authors have 
interpreted these intervals as times of AMOC collapse (McManus 
et  al., 2004), but paleo data cannot quantitatively reconstruct 

the strength of the AMOC, so there is a reluctance within the 
paleoceanographic community to use this term. Nevertheless, a 
popular schematic in paleoclimate research represents the AMOC 
in either an “on” state or an “off ” state (Figure 1; Rahmstorf, 2002). 
A vigorous, or “on,” state of the AMOC would correspond to the 
meridional circulation in the modern Atlantic, which is on the 
order of 15–20 Sv (1 Sv = 106 m3 s–1; Frajka-Williams et al., 2019). 
A “collapsed,” or “off,” state of the AMOC could occur when surface 
waters are not dense enough to sink deeply in the North Atlantic. 
Importantly, the upper cell volume flux during a “collapse” can-
not be quantified by paleo data. In this paper, we do not define an 
AMOC “collapse” as a complete cessation of circulation but rather 
a large and persistent reduction in upper cell volume flux relative 
to that of the “on” state. 

Global climate models from the International Panel on Climate 
Change (IPCC) Coupled Model Intercomparison Project 6 
(CMIP6) predict that AMOC will “very likely” decline over the 
twenty-first century due to anthropogenic forcing, but it is less 
likely that the AMOC will collapse (though the term “collapse” 
is not precisely defined in this context; Fox-Kemper et al., 2021). 
Some reconstructions of North Atlantic sea surface temperature 
and other oceanographic properties during the past ~100 years 
were interpreted to mean that the AMOC has weakened during 
this period (Thornalley et al., 2018; Caesar et al., 2021), but there is 
still significant uncertainty, as other North Atlantic records show 
conflicting signals (Kilbourne et  al., 2022; Terhaar et  al., 2025). 
Time series of direct AMOC observations are not long enough 
to confidently detect trends in the magnitude of the overturning 
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circulation (Frajka-Williams et al., 2019), although a recent study 
reported a slight decline in the AMOC at 26°N between 2004 and 
2022 (Volkov et al., 2024). Thus, it is unclear whether the AMOC 
has already responded to anthropogenic forcing.

The mechanisms by which the northward-flowing surface waters 
are transformed into dense water masses and exported southward 
are complex. Classically, thermal convection has been thought of 
as a means to form dense water masses in the Labrador, Irminger, 
and Greenland Seas (Broecker and Denton, 1989; Manabe and 
Stouffer, 1995), but more recent studies show that deep convection 
does not result in net sinking (Spall, 2004; Pickart and Spall, 2007). 
Instead, sinking likely occurs in the boundary currents of mar-
ginal seas (e.g., Nordic and Labrador Seas) where those currents 
interact with each other and with steep topography (Bower et al., 
2011; Gary et al., 2011; Katsman et al., 2018; Johnson et al., 2019; 
Desbruyères et al., 2020). Convection likely exerts a strong influ-
ence on the properties of the deep waters through mixing with the 
boundary currents, but it may not be the primary mechanism for 
forming the deep waters. A similar process occurs farther south 
where NADW interacts with the lower, counter- rotating cell of 
Antarctic Bottom Water (AABW) originating from the Southern 
Ocean. The interplay between the relative strength of the NADW 
and AABW cells likely sets the depth of the AMOC and thus 
impacts AMOC dynamics (Marshall and Speer, 2012).

Paleoceanographic reconstructions, simulations from numeri-
cal models, and data inversions can provide insight into ocean cir-
culation changes during periods of past climate change and into 
the mechanisms responsible, but all approaches have their own 
limitations. Marine archives, such as corals and sediment cores, 
have limited spatial and temporal coverage, and proxy reconstruc-
tions have analytical, chronological, and interpretive uncertain-
ties. Paleoceanographic data can be used to estimate the spatial 

distribution of oceanic properties (such as temperature, isotopic 
compositions, and nutrient concentrations), but reconstructions 
of AMOC are primarily qualitative. In contrast, numerical mod-
els can provide quantitative volume flux estimates, but they suffer 
from their own limitations due to, for example, uncertainties in 
surface boundary conditions (atmospheric forcing), initial condi-
tions, and parameterization of sub-grid-scale phenomena. Notably, 
due to computational limitations, numerical ocean models applied 
in climate research are generally characterized by coarse horizon-
tal resolution (on the order of 1°), which means that the mesoscale 
and submesoscale ocean eddy fields are not explicitly resolved, 
and coastal phenomena known to contribute to shelf-ocean 
exchange are poorly or not represented. Finally, inverse methods 
have been applied to combine paleoceanographic data and mod-
els to extract quantitative information about past ocean circula-
tion (e.g., LeGrand and Wunsch, 1995; Gebbie and Huybers, 2006; 
Marchal and Curry, 2008; Burke et al., 2011; Amrhein et al., 2015; 
Zhao et  al., 2018; Marchal and Zhao, 2021). These applications 
showed that firm inferences about past circulation states from 
existing paleoceanographic data are difficult given the combined 
limitations of data and model.

In this paper, we review the paleoceanographic data that have led 
to the prevailing view of a weak AMOC for millennia (or longer) 
during the last glacial-interglacial transition and climate model 
simulations of these events. We also discuss the mechanisms that 
could have driven past AMOC changes, with particular attention 
to freshwater forcing. Finally, we discuss the extent to which exist-
ing observational and model results are relevant to current and 
future changes in the AMOC, with particular emphasis on the pos-
sible role of background climate state. This review is distinct from 
other recent reviews on similar topics (e.g., Lynch-Stieglitz, 2017; 
Liu, 2023) through a focus on (1) the lessons learned about the 
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FIGURE 1. Schematic of two different states of the Atlantic Meridional Overturning Circulation (AMOC). (a) A vigorous or “on” state, with a relatively deep and 
strong upper cell, similar to the circulation in the modern Atlantic. (b) A collapsed or “off” state, with a relatively shallow upper cell and a larger lower (Antarctic 
Bottom Water) cell. A number of paleoceanographic observations have been interpreted as reflecting a collapsed state of the AMOC, as in (b), during the 
last deglaciation. The unlabeled contours and colors schematically represent water masses originating from the North Atlantic (orange) and Southern Ocean 
(green), with darker colors qualitatively representing a greater fraction of the water mass. 
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mechanisms of past AMOC changes as inferred from paleoceano-
graphic reconstructions and modeling studies, and (2) the implica-
tions of these changes for future AMOC variability.

PALEOCEANOGRAPHIC PROXIES 
OF THE AMOC
Paleoceanographic data provide an avenue for extending the rel-
atively short instrumental record and for documenting the state 
of the ocean during periods of past climate change. In particu-
lar, they provide a source of empirical information for assessing 
the capacity for AMOC to undergo a drastic state change, such as 
depicted schematically in Figure 1. We focus on the most recent 
glacial-interglacial transition (also called the last “deglaciation” 
or “Termination  I”), which occurred following the Last Glacial 
Maximum (LGM; ~22–18 ka; ka = thousands of years ago) and 
ended at the start of the Holocene (10 ka), the current interglacial 
period (see Lynch-Stieglitz, 2017, for a broader review of AMOC 
proxy data during the last glacial period). During the deglacia-
tion, several abrupt cooling and warming events occurred in the 
circum-North Atlantic that have been linked with, respectively, 
AMOC decrease and increase through its role in transporting heat 
to the high-latitude North Atlantic. After describing the deglacial 
sequence of climatic events, we review the evidence that led to the 
widely held view that deglacial climate oscillations were linked 
to AMOC changes. 

The first event, called Heinrich Stadial 1 (HS1; 18–14.7 ka), was a 
North Atlantic cold interval notable for high iceberg discharge and 
thought to be associated with reduced AMOC strength (Heinrich, 
1988; Bond et al., 1992, 1993; Broecker et al., 1992; Broecker, 1994; 
Hemming, 2004). Following HS1, the North Atlantic warmed 
abruptly at the beginning of the Bølling-Allerød (BA, 14.7–12.6 ka), 
thought to be associated with rejuvenation of the AMOC (T. Chen 
et  al., 2015). The BA was followed by another cold period, the 
Younger Dryas (YD, 12.9–11.6 ka), which is also thought to be 
associated with a weak AMOC (Broecker, 2003). Finally, the YD 
concluded with another abrupt warming, at the beginning of the 
Holocene, the relatively stable current warm period.

Paleoceanographic proxies used to make inferences about the 
strength and/or structure of the AMOC (and/or the associated deep 
counter-rotating cell) are often classified into two basic categories: 
water mass proxies and kinematic proxies. Water mass proxies are 
thought to record the distinct isotopic or chemical signature of dif-
ferent deep water masses, in particular, northern-sourced NADW 
and southern-sourced AABW. Examples of water mass proxies are 
the stable carbon isotope ratio (δ13C) of fossil benthic foramin-
ifera (W.B. Curry et al., 1988; Duplessy et al., 1988; W.B. Curry and 
Oppo, 2005; Eide et  al., 2017), the cadmium/calcium concentra-
tion ratio of fossil benthic foraminifera, from which the seawater 
Cd concentration (CdW) is estimated (Boyle, 1988; Marchitto and 
Broecker, 2006; Oppo et  al., 2018), and the authigenic neodym-
ium isotopic composition (εNd) of sediments and deep-sea corals 
(Frank, 2002; Goldstein and Hemming, 2003; Du et  al., 2020). 

Kinematic proxies are assumed to be more sensitive to flow rate 
than water mass proxies. Examples include the radiocarbon age 
of fossil benthic foraminifera and deep-sea corals (Keigwin, 2004; 
Robinson et al., 2005), the protactinium-231 to thorium-230 activ-
ity ratio of bulk sediment, 231Pa/230Th (Yu et al., 1996; McManus 
et al., 2004), and the mean size of sortable silt, SS— (McCave et al., 
1995, 2017; McCave and Hall, 2006). Note that, albeit conceptually 
useful, the distinction between water mass and kinematic proxies is 
not without ambiguity: all water properties derived from measure-
ments in the sediment or deep-sea coral are affected by the flow 
rate, which would make them “kinematic,” and kinematic proxies 
reflect to some degree the composition of water masses.

All proxies are imperfect in the sense that proxy values may be 
sensitive to multiple factors, other than the effects of water mass 
composition and circulation rate, and each of them has limita-
tions that are necessary to consider when interpreting paleoceano-
graphic records. Some of the water mass tracers (δ13C of dissolved 
inorganic carbon and CdW) are functions of biological activity. 
The differences in composition between northern- and southern- 
sourced deep water reflect regeneration of dissolved inorganic car-
bon and nutrients in the deep ocean as organic matter from the 
surface is remineralized at depth. Thus, changes in biological activ-
ity can alter the spatial distribution of these tracers independently 
of water mass or circulation rate change. The δ13C of dissolved 
inorganic carbon is also affected by air-sea gas exchange (Lynch-
Stieglitz and Fairbanks, 1994; Lynch-Stieglitz et al., 1995).

Radiocarbon measurements on benthic foraminifera or deep-
sea coral samples are corrected for isotopic fractionation (includ-
ing biological fractionation), so biological activity should not 
affect the distribution of these measurements. However, radio-
carbon is still a complicated tracer, because surface waters that 
sink to depth in high-latitude regions are characterized by dif-
ferent initial radiocarbon values (Key et al., 2004). It takes about 
a decade for the carbon isotopic ratios in the ocean mixed layer 
to equilibrate with the atmospheric values (Broecker and Peng, 
1974; Lynch-Stieglitz et  al., 1995; Sarmiento and Gruber, 2006; 
Jones et al., 2014). This equilibration time is longer than the resi-
dence time of surface waters in deep-water formation regions, par-
ticularly in the Southern Ocean (Bard, 1988). Processes such as 
upwelling and the presence of sea ice, which reduces air-sea gas 
fluxes (Prytherch et al., 2017), can lead to large differences between 
the radiocarbon activity, or age, of the surface waters and that of 
the atmosphere (“surface reservoir age”). Therefore, radiocarbon 
records from benthic foraminifera and deep-sea corals reflect 
both the water mass transit time from the surface (due to en route 
radioactive decay) and the surface reservoir age. Some recent work 
(Muglia and Schmittner, 2021) suggests that surface reservoir age 
is the primary driver of deep radiocarbon distributions in the 
Atlantic Ocean, thus making Atlantic radiocarbon values more a 
water mass tracer than a kinematic tracer.

For neodymium isotopes, deep-water values are thought to be 
dominated by conservative mixing, but sedimentary sources can 
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also alter isotopic compositions along deep-water flow paths, par-
ticularly in poorly ventilated basins, such as the deep Pacific and 
Indian Oceans (Abbott et al., 2015; Du et al., 2018, 2020). Certain 
types of sediment (particularly volcanic ash and ice-rafted debris) 
can also be more reactive and prone to delivering non- conservative 
additions of Nd to seawater (Wilson et al., 2013; Blaser et al., 2016; 
Du et al., 2016).

The use of bulk sediment 231Pa/230Th as a circulation tracer relies 
on the theoretical expectation that, while 231Pa and 230Th are pro-
duced at approximately uniform rates in the ocean (from the decay 
of 235U and 234U, respectively), 231Pa is in general scavenged less 
intensively by sinking particles than 230Th and hence is more sensi-
tive to circulation than 230Th (Henderson and Anderson, 2003). As 
a result, the ratios of the two isotopes in sinking particles and sedi-
ment would be dependent on lateral transport of water (i.e., on the 
AMOC), with stronger transport leading to lower 231Pa/230Th in 
the underlying sediment. However, the 231Pa/230Th ratio of marine 
particles in the water column has been found to vary with their 
chemical compositions (e.g., Chase et al., 2002; Hayes et al., 2015) 
and with sediment lateral redistribution (S.Y.-S. Chen et al., 2021), 
complicating its use as an AMOC proxy.

One of the most widely cited reconstructions used as evidence 
of AMOC change across the deglaciation is the 231Pa/230Th record 
from the Bermuda Rise in the Northwest Atlantic (Figure 2e; 
McManus et  al., 2004). This record shows an abrupt increase in 
231Pa/230Th to values close to the production ratio (which would 
imply very little lateral flow out of the North Atlantic) during 
HS1, and another smaller increase during the Younger Dryas. The 
high 231Pa/230Th values during HS1 were attributed to a dramati-
cally weakened AMOC. Other 231Pa/230Th data from across the 
North Atlantic broadly support this interpretation (Ng et al., 2018). 
Compilations of benthic foraminifera δ13C from across the deep 
Atlantic show low values during HS1 and an abrupt increase at the 
start of the Bølling-Allerød (Figure 2g; Thiagarajan et  al., 2014; 
Lynch-Stieglitz et al., 2014; Lynch-Stieglitz, 2017), values that have 
been interpreted as the resumption of a deep AMOC at the Bølling-
Allerød from a weaker state during HS1. Radiocarbon data from 
the Northwest Atlantic also show an abrupt decrease in apparent 
ventilation age at the start of the Bølling-Allerød from “older” val-
ues during HS1 and another pulse of old water at the YD (Figure 2f; 
Robinson et al., 2005; Hines, 2017; Rafter et al., 2022). Compiled 
εNd data are also consistent with a weakened AMOC during HS1 
and the YD (Figure 2h; Pöppelmeier et al., 2019; Du et al., 2020), 
although these data are less supportive of a fully collapsed AMOC.

The processes that might decouple variations in each proxy from 
AMOC differ among proxies. Therefore, if these processes were the 
dominant control on the deglacial variability in each record, we 
would not expect them to correlate with one another. The finding 
that many deglacial ocean circulation proxy records share com-
mon features at approximately the same times is apparent evidence 
for changes in AMOC over the deglaciation. In other words, while 
each proxy record could be explained by processes other than 

circulation, the most parsimonious explanation for all the records 
taken together would be that AMOC was abruptly reduced (or col-
lapsed) during HS1 and the YD.

This interpretation is also consistent with paleoclimate records 
from terrestrial archives, including the oxygen isotopic composition 
of Greenland ice cores (Figure 2a; North Greenland Ice Core Project 
Members, 2004); the oxygen isotopic composition of Chinese spe-
leothems (Figure 2d; Wang et al. 2001; Cheng et al., 2009, 2016), 
which records coeval shifts in atmospheric circulation patterns; 
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FIGURE 2. Paleoclimate records across the deglaciation. (a) Northern 
Hemisphere temperature from NGRIP δ18O of ice (North Greenland Ice Core 
Project Members, 2004; Andersen et  al., 2006; Rasmussen et  al., 2014). 
(b) Atmospheric CO2 from the West Antarctic Ice Sheet (Marcott et al., 2014). 
(c) Ice-rafted debris concentration in the Northwest Atlantic at sites DY081-
GVY001 (solid) and EW9309-37JPC (dashed) (Zhou et  al., 2021). (d) Hulu 
cave δ18O (Cheng et al., 2016). (e) 231Pa/230Th from the Bermuda Rise (thin 
lines: McManus et al., 2004; Lippold et al., 2009, 2019) and across the North 
Atlantic (thick line: Ng et  al., 2018). (f) Compiled deep Atlantic 14C venti-
lation age (Rafter et  al., 2022). (g) Deep North Atlantic δ13C (as in Lynch-
Stieglitz et  al., 2014; data from Hodell et  al., 2008; Tjallingii et  al., 2008; 
Mulitza et al., 2008; Zarriess and Mackensen, 2011; Shackleton et al., 2000; 
Skinner and Shackleton, 2004; Skinner et  al., 2007). (h) εNd from the 
Blake Bahama Outer Ridge (Pöppelmeier et al., 2019). YD = Younger Dryas. 
B/A = Bølling-Allerød. HS 1 = Heinrich Stadial 1. LGM = Last Glacial Maximum. 
IRD = Ice-rafted debris.
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and the atmospheric CO2 concentration recorded in Antarctic ice, 
which in turn is sensitive to the interplay between the AMOC and 
the lower AABW circulation cell (Figure 2b; Marcott et al., 2014). 
A complication to this picture is the possibility that the atmosphere 
can respond to a weakened AMOC by strengthening its meridi-
onal heat transport due to increased equator-to-pole temperature 
gradients (Bjerknes, 1964). This feedback in the coupled ocean- 
atmosphere system is referred to as “Bjerknes Compensation” and 
likely diminishes the signal in atmospheric-linked proxy records of 
a weakened or collapsed AMOC. Despite this possibility, collective 
paleoclimate data from both marine and continental archives are 
consistent with AMOC weakening during both HS1 and the YD, 
with a period of reinvigorated circulation during the BA. The HS1 
and YD emerge, therefore, as key time intervals for investigating 
AMOC changes and their driving mechanisms. Information from 
these time intervals could in turn be used to inform our under-
standing of possible AMOC changes in future.

FRESHWATER FORCING IN TRANSIENT 
MODEL SIMULATIONS OF AMOC DECLINE/
COLLAPSE ACROSS THE DEGLACIATION
To study deglacial climate variability, scientists have performed 
and analyzed transient simulations with numerical climate models. 
The most coordinated of such efforts is the Paleoclimate Modelling 
Intercomparison Project (PMIP), where participating groups apply 
climate models to conduct numerical experiments with prescribed 
boundary conditions. The “Last Deglaciation” is one such experi-
ment, which simulates the period from 21 ka to 9 ka (Ivanovic et al., 
2016). Given its relatively long duration—about 12,000 years—
there are severe computational limitations to the spatial resolu-
tion of climate models that can be run to simulate the deglacial cli-
mate. The horizontal resolution of the ocean component of climate 
models, such as those included in the most recent PMIP (PMIP4), 
is too coarse (on the order of 1°) to explicitly simulate ocean eddies, 
which play important roles in a wide variety of processes that are 
thought to be crucial for AMOC—such as deep convection, lat-
eral restratification, and the dispersal and dilution of continental 
freshwater. For example, recent observations around the convective 
region of the Labrador Sea have confirmed that submesoscale pro-
cesses (smaller than 100 km) are critical to the restratification of 
deep convective plumes (Clément et al., 2023), yet large-scale ocean 
models with sufficient resolution can take years to run (Pennelly 
and Myers, 2020). Eddies produced from the instability of buoyant 
coastal currents formed by meltwater discharge may also be effec-
tive in transporting melt water offshore (Marchal and Condron, 
2025). To address the limitation due to coarse resolution, sub-grid-
scale processes (e.g.,  deep convection, dense overflows, coastal 
eddies) are parameterized in the PMIP models, but this approach 
can lead to inaccuracies in model sensitivity to freshwater fluxes, 
with some models reported to be overly sensitive to fresh water 
(Bouttes et al., 2023) and others not sensitive enough (Valdes, 2011; 
He and Clark, 2022; Snoll et al., 2024).

Some model experiments (Liu et al., 2009; Menviel et al., 2011) 
have explicitly used AMOC proxy records as tuning targets; in these 
experiments, the temporal evolution of the freshwater flux into the 
ocean is manipulated so as to qualitatively match the proxy records 
(in both studies, the McManus et al. [2004] 231Pa/230Th record from 
the Bermuda Rise and reconstructed Greenland temperature vari-
ations were used). The motivation for using freshwater forcing to 
simulate the AMOC changes inferred from the proxy records is as 
follows: over the deglaciation, continental ice sheets melted, lead-
ing to the release of vast amounts of fresh water into the ocean, 
driving a sea level rise of ~130 m (Clark et al., 2009; Carlson and 
Clark, 2012; Lambeck et al., 2014). The released fresh water could 
have reduced the density of surface waters in deep-water forma-
tion regions of the North Atlantic, inhibiting deep convection 
there and reducing the AMOC. Deglacial simulations by Liu et al. 
(2009, “TraCE-21k”) and Menviel et al. (2011) reproduce this sce-
nario. Both simulations also match other paleoclimate reconstruc-
tions, in addition to those taken as evidence for AMOC changes 
and used as tuning targets. 

While deglacial simulations with prescribed freshwater forcing 
can produce results that match paleoclimate records, the magni-
tude and timing of the freshwater fluxes assumed in these simu-
lations are not consistent with freshwater fluxes calculated from 
the data-constrained deglacial reconstructions of continental ice 
sheets (e.g., GLAC-1D: Tarasov and Peltier, 2002; Tarasov et al., 
2012; Briggs et al., 2014; and ICE-6G_C: Argus et al., 2014; Peltier 
et  al., 2015; Ivanovic et  al., 2016). Both the simulations of Liu 
et al. (2009; TraCE-21k) and Menviel et al. (2011) prescribe fresh-
water fluxes of approximately 0.2 Sv during HS1 that are nearly 
twice as high as those predicted from GLAC-1D and ICE-6G_C 
(Bouttes et  al., 2023; Figure 3a). There are also significant off-
sets in the timing of the freshwater fluxes: Meltwater Pulse 1A, at 
the beginning of the BA (Deschamps et al., 2012; Lambeck et al., 
2014), occurs earlier (by a few centuries) in the ice sheet recon-
structions than in the climate simulations, and the peak of melt-
water input in the ice sheet reconstructions occurs when fresh-
water flux is shut off in the TraCE-21k simulation. A similar result 
holds true for Meltwater Pulse 1B, which roughly coincides with 
the end of the YD.

In summary, while freshwater forcing has been used to drive 
AMOC variability in climate models, the highest freshwater fluxes 
assumed in the climate model simulations occur when freshwater 
fluxes in the ice sheet models are believed to be relatively low. This 
phenomenon is referred to as the “meltwater paradox” (e.g., Snoll 
et al., 2024). Indeed, in other simulations forced with fresh water 
fluxes that are more consistent in magnitude and timing with 
freshwater flux reconstructions, the AMOC does not collapse at all 
or collapses at the start of the BA (Figure 3b; Bouttes et al., 2023; 
Snoll et  al., 2024). Thus, it appears that fresh water entering the 
North Atlantic from the melting of the Laurentide Ice Sheet was 
unlikely to be the driving mechanism for reducing the AMOC 
during HS1 and YD. 
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FRESHWATER MECHANISMS FOR DRIVING 
ABRUPT CHANGES IN THE AMOC
Given that geologic reconstructions suggest that HS1 and the YD 
were not times of accelerated melting of Northern Hemisphere 
ice sheets and elevated freshwater fluxes to the North Atlantic 
(Figure 3a), alternative mechanisms for AMOC weakening at 
these times must be sought. The mechanisms driving AMOC 
reduction at HS1 and the YD need not have been the same, and 
paleoceanographic data are consistent with different magnitudes 
of AMOC change at each event, with HS1 thought to be the larger 
and longer reduction of the two (Ng et al., 2018). 

Heinrich events were associated with massive iceberg dis-
charges from the Laurentide Ice Sheet (Ruddiman, 1977; Heinrich, 
1988; Broecker, 1994; Hemming, 2004), so it is possible that fresh 
water from melting icebergs played an important role. Unlike the 
deglacial meltwater that enters the ocean directly in liquid form, 
icebergs can travel much farther from the coast before they dis-
integrate (Fendrock et al., 2022). The paths of large icebergs orig-
inating from terrestrial ice sheets can be tracked by ice-rafted 
debris (IRD), which consists of coarse grains of continental origin 
that are embedded in the icebergs and deposited on the seafloor 
as the icebergs melt. In general, IRD is found most prominently 
in marine sediment cores collected from between ~40°N and 
50°N in the Atlantic Ocean (Ruddiman, 1977); however, smaller 
amounts of IRD have been found much farther north, including 
in the Nordic Seas and south of Iceland (e.g., Elliot et al., 2001; 
Thornalley et  al., 2010), and to the south on the Bermuda Rise 
(Keigwin and Boyle, 1999). Therefore, the supply of fresh water 
from melting icebergs could be a mechanism for reducing the 
AMOC (Broecker, 1994). This hypothesis is supported by low 
δ18O values measured in fossil planktonic foraminifera (indica-
tive of low salinity) from Heinrich layers within the main IRD 
belt proposed by Ruddiman (Bond et al., 1992; Hemming 2004). 
However, as yet, clear evidence of low salinity farther north has 
not been found.

The Younger Dryas is another period of IRD deposition in the 
North Atlantic (e.g.,  Zhou and McManus, 2024) and the Arctic 
Ocean (e.g.,  Hillaire-Marcel et  al., 2013; Lakeman et  al., 2018), 
although IRD fluxes at this time appear to have been smaller than 
at HS1 (e.g., Zhou and McManus, 2024). While the YD is not asso-
ciated with a time of widespread ice sheet melting according to 
sea level data and ice sheet models (Tarasov and Peltier, 2002; 
Tarasov et al., 2012; Lambeck et al., 2014; Briggs et al., 2014), it 
is notably associated with the abrupt draining of Lake Agassiz, a 
proglacial lake formed by the melting Laurentide Ice Sheet that 
sat at the boundary of Minnesota, North Dakota, Ontario, and 
Manitoba (Broecker et al., 1989; Teller et al., 2002). It was initially 
thought that Lake Agassiz drained east at the YD, directly into the 
North Atlantic via the St. Lawrence River (Broecker et al., 1989; 
Clark et  al., 2001), but direct evidence for this has been elusive, 
and more recent studies suggest that the lake instead drained north 
into the Arctic via the Mackenzie River (Tarasov and Peltier, 2005; 

Murton et al., 2010; Keigwin et al., 2018; Süfke et al., 2022). This 
result is supported by model simulations, which show that fresh 
water discharged into the ocean from the St. Lawrence River does 
not immediately spread offshore but is instead transported away 
from the subpolar North Atlantic in boundary currents, into the 
subtropical gyre. Meltwater from the Mackenzie Valley into the 
Arctic Ocean is more likely to reach deep-water formation regions 
directly, regardless of whether the Canadian Arctic Archipelago is 
ice-covered or open (Condron and Winsor, 2012).

The focus has often been on deep convection regions when it 
comes to deglacial freshwater-driven perturbations of the AMOC, 
whether the fresh water is delivered by icebergs or directly in liq-
uid form; however, recent physical oceanographic observations 
and modeling indicate that capping water mass transformation 
along the boundary currents or reducing the zonal density gradi-
ent across the mid-latitude North Atlantic (Buckley and Marshall, 
2016; Yeager et  al., 2021; Chafik et  al., 2023; Frajka-Williams 
et  al., 2023) may be more important for disrupting the AMOC. 
During the deglaciation, meltwater introduced to the western sub-
polar North Atlantic could have been entrained offshore along 
the northern flank of the western boundary currents that consti-
tute the upper limb of the AMOC, including the Gulf Stream and 
the North Atlantic Current (the eastward extension of the Gulf 
Stream). This entrained meltwater could significantly alter the 
density gradients across these powerful currents and hence reduce 
their strength and associated heat transport (e.g.,  Yeager et  al., 
2021; Madan et al. 2024).
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FIGURE 3. Transient model simulations of AMOC across the deglaciation. 
(a)  Freshwater flux from ice sheet model simulation GLAC-1D with fresh-
water flux time series in the TraCE-21k model (Liu et  al., 2009; Bouttes 
et al., 2023). (b) AMOC strength calculated as the maximum streamfunction 
between 20°N and 50°N below 500 m from TraCE-20k (Liu et al., 2009) and 
iLOVECLIM (Bouttes et al., 2023).
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While the timing of the highest meltwater delivery to the North 
Atlantic across the deglaciation does not match the times when 
AMOC appeared to be weaker (HS1 and the YD), the other mech-
anisms discussed above could have contributed to a weakening of 
the AMOC. Thus far, climate models have not been able to accu-
rately simulate these processes due to the computational cost 
required to resolve dynamical phenomena at small spatial scales for 
long time periods. Although freshwater forcing is frequently used 
as a convenient way to produce changes in the AMOC in models, 
it is not the only mechanism that can drive variations in AMOC 
strength. For example, other modeling studies using a coarse reso-
lution Earth system model suggest that abrupt AMOC oscillations 
can arise from gradual changes in ice sheet height that modify the 
wind field (Zhang et al., 2014) or atmospheric CO2 concentration 
(Zhang et al., 2017).

HOW CAN PALEO OBSERVATIONS 
INFORM MODERN UNDERSTANDING 
AND FUTURE PREDICTIONS?
Future projections of AMOC strength from coupled climate mod-
els support a moderate decline but not a full collapse of AMOC 
over the next 100 years (Fox-Kemper et al., 2021). However, these 
estimates are only reliable if we understand the underlying physics 
that drives an AMOC decline. As we discuss in the previous sec-
tion, there are still gaps in our understanding of what caused past 
abrupt changes in the AMOC. The most recent deglaciation may be 
a good past analog, because there is paleoceanographic evidence for 
abrupt AMOC changes occurring on timescales of decades to cen-
turies, and a recent quantitative estimate of freshwater input from 
iceberg melt during HS1 (Zhou and McManus, 2024) is comparable 
to modern ice fluxes from the Greenland Ice Sheet (GIS; Bamber 
et al., 2018). On the other hand, there were important differences 
from our current climate state, including large areas of land and sea 
ice cover. It has long been suggested that the AMOC is sensitive 
to background climate state, and intermediate climate conditions, 
with moderate CO2 concentrations, ice volumes, and temperatures, 
are more conducive to millennial climate variability than peak gla-
cial or interglacial conditions (McManus et  al., 1999; Sima et  al., 
2004; Barker and Knorr, 2021). For example, abrupt climate oscilla-
tions known as Dansgaard-Oeschger (DO) Events were observed in 
Greenland ice cores and North Atlantic sediment cores during the 
middle of the last glacial period (~75 ka to 25 ka), and these have 
been linked to variations in the AMOC (North Greenland Ice Core 
Project Members, 2004; Andersen et  al., 2006; Rasmussen et  al., 
2014; Böhm et al., 2014; Henry et al., 2016). Several modeling stud-
ies have replicated this observation and found that the AMOC is 
less stable under intermediate climate conditions (that is, neither 
fully glacial nor fully interglacial; Ganopolski and Rahmstorf, 2001; 
Sima et al., 2004; Galbraith and de Lavergne, 2019). 

If there is evidence that the inherent stability of the AMOC is 
dependent on background climate state, does that mean that the 
mechanism(s) that drive AMOC change also vary with the mean 

climate state? Unlike the deglaciation, no large continental ice sheets 
cover North America or Eurasia today, and no ice-dammed lakes 
are present to flood the subpolar North Atlantic. However, both the 
GIS and Arctic sea ice are rapidly melting (The IMBIE Team, 2019; 
Sumata et al., 2023; Greene et al., 2024), and the Beaufort Gyre has 
been accumulating fresh water that could be released to the North 
Atlantic more rapidly than melting ice sheets would do (Haine 
et  al., 2015). How these different freshwater sources (GIS, Arctic 
sea ice, and Beaufort Gyre) could alter the AMOC under the mod-
ern climate conditions of the North Atlantic remains unknown.

Investigating AMOC variability during warm periods, such as 
the current Holocene epoch, past interglacial periods, and even 
farther into the geologic past, may provide more context for what 
we might expect in the future. During the current Holocene epoch, 
fresh water and ice were released from Hudson Bay at 8.2 ka 
(Barber et  al., 1999), causing global impacts (Alley et  al., 1997). 
Although it is difficult to detect a decade-to-century scale event in 
the deep sea, there is some evidence for AMOC reduction at 8.2 ka 
(Keigwin et al., 2005; Kleiven et al., 2008). These reconstructions 
show different locations of freshwater delivery to the ocean during 
the last deglaciation that may help us understand the relationship 
between the location of freshwater input into the North Atlantic 
and its impacts on the AMOC. 

Today, the Greenland meltwater combines with outflow from 
the Arctic Ocean through Davis Strait (B. Curry et  al., 2014), 
Hudson Strait (Straneo and Saucier, 2008), and Fram Strait 
(Karpouzoglou et  al., 2023) to carry large amounts (1–3 Sv) of 
fresh, polar water masses into the coastal circulation system in the 
subpolar North Atlantic (Foukal et al., 2020; Le Bras et al., 2021). 
Much of this fresh water is retained on the continental shelves of 
East Greenland and Labrador, but it can be transported into the 
basin interior along West Greenland (Luo et al., 2016; Dukhovskoy 
et al., 2019; Pacini and Pickart, 2023) and the Grand Banks (Jutras 
et al., 2023; Fox et al., 2022; Furey et al., 2023; Duyck et al., 2025). 
It is likely that the Grand Banks was the source of the large fresh-
ening event seen in the Iceland Basin in 2015 (Holliday et al., 2020) 
and in the Irminger Sea in 2019 (Biló et al., 2022). However, nei-
ther how these events impacted the AMOC, nor how similar they 
were to previous freshening events—the so-called great salinity 
anomalies of the 1970s and the 1980s (Dickson et al., 1988; Belkin 
et al., 1998)—is well understood. 

Paleo freshwater discharge events may help elucidate the impact 
of freshwater routing: current understanding suggests that HS1 
originated in Hudson Strait, the YD originated in the Mackenzie 
River, and the 8.2 ka event originated in Hudson Bay and prob-
ably reached as far as Cape Hatteras. Much of the recent work 
on AMOC dynamics and stability (Boers, 2021; Ditlevsen and 
Ditlevsen, 2023) has focused on model-based surface fingerprints 
of AMOC variability (Rahmstorf et al., 2015; Caesar et al., 2018, 
2021). But the suitability of this fingerprint for inferring AMOC 
variability has been widely debated, and it is likely timescale 
dependent (Little et al., 2020; Kilbourne et al., 2022; Li et al., 2022; 
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X. Chen and Tung, 2023). Paleoceanographic records could play an 
important role in determining the spatial signature of AMOC vari-
ability by examining times with large apparent changes in AMOC 
strength (e.g.,  HS1). This effort could then inform the modern 
observations and evaluations of model results.

High temporal resolution and multiproxy paleoceanographic 
records could help determine leads and lags between different cli-
mate variables during times when there were large fluctuations 
in the AMOC, and thus constrain whether AMOC decline is the 
cause or the effect of climate variability. It is challenging to defin-
itively calculate leads and lags using marine sediment records, 
because chronology is often uncertain (especially between dif-
ferent locations), but chronological uncertainties can be circum-
vented by making proxy measurements of the AMOC and surface 
climate change on the same sediment core. Using this approach, 
Barker et al. (2015) showed that North Atlantic cold intervals typ-
ically precede ice rafting events during glacial times over the past 
~450 kyr. In addition, as the paleoceanographic community con-
tinues to generate, compile, and synthesize data, a more complete 
and nuanced view of past changes in the AMOC will likely emerge. 
For example, while there is evidence for a dramatically weakened 
AMOC during HS1, some sediment cores record traces of North 
Atlantic-sourced water in the deep sea (Repschläger et al., 2021).

Going much further back in time, a mean climate state closer 
to the modern climate may have occurred in the mid-Pliocene 
(~3 million years ago), when proxy data estimate that temperatures 
were ~3°C warmer, sea level was higher, and atmospheric CO2 
concentration was ~400 ppm (Haywood et al., 2016; McClymont 
et al., 2020). Draut et al. (2003) suggested that mid-Pliocene cli-
mate conditions were relatively stable, but the difficulty in recov-
ering marine archives that extend back >3 million years and have 
high enough resolution to record centennial to millennial cli-
mate variations makes it challenging to assess the stability of the 
AMOC during the Pliocene. Model simulations of the Pliocene 
suggest that the AMOC was similar or slightly stronger than the 
pre-industrial, but there is spread between model simulations in 
the amplitude and sign of the change (Weiffenbach et al., 2023). 
As a result, it is difficult to conclusively constrain AMOC stability 
under warm future climate conditions, and it is important to con-
sider that current climate conditions are changing at a rate that is 
likely faster than the rate of changes during the mid-Pliocene.

CONCLUSIONS
The fate of the AMOC under future anthropogenic warming is of 
great interest due to the wide-ranging impacts thought to be asso-
ciated with past AMOC changes, including large and abrupt tem-
perature changes and shifts in large-scale precipitation patterns. 
Paleoclimate data from the most recent glacial-interglacial transi-
tion are consistent with (but do not generally require, given their 
limitations) a large and abrupt decrease in AMOC strength during 
HS1 and the YD. Therefore, these time intervals could be used to 
determine the mechanisms responsible for large changes in the 

AMOC. Climate model simulations of the deglaciation can be 
tuned to reproduce the timing of the AMOC changes inferred from 
paleoclimate records, but only by applying freshwater fluxes that are 
unrealistic in timing and magnitude according to sea level records 
and ice sheet reconstructions (Snoll et  al., 2024, and references 
therein). Meltwater from icebergs, rather than liquid fresh water 
introduced into the ocean from ice sheet collapse, may have driven 
deglacial AMOC changes, given the correspondence between pur-
ported intervals of weak AMOC and intervals of IRD accumula-
tion in North Atlantic sediments. In addition, small-scale oceanic 
processes that are not well represented in coarse resolution climate 
models may have influenced the AMOC response to freshwater 
fluxes from disintegrating ice caps. While the Laurentide Ice Sheet 
does not exist today, some quantitative estimates of ice discharge 
during past Heinrich Events are similar in magnitude to current ice 
loss from the GIS (Zhou and McManus, 2024). However, it is not 
known how long this freshwater flux would need to be applied in 
order to significantly perturb the AMOC, or whether such a pertur-
bation depends on the background climate state.

Modern observations may be too short to resolve with high 
confidence decadal trends in AMOC strength. Paleoclimate recon-
structions for the Common Era (the past 2,000 yr) give a longer 
timescale context, but they do not always provide a clear picture 
of AMOC history, because the relationship between each proxy 
and the AMOC is complex, and because AMOC changes might 
have been relatively small during this period. Longer paleoceano-
graphic records may shed light onto other aspects of the AMOC, 
however. By examining deglacial intervals characterized by large 
climatic changes (such as HS1 and the YD), paleoceanographic 
records of surface ocean properties could be used to more clearly 
estimate the fingerprints of AMOC change, which could then be 
applied to modern observations. Further investigation of the 8.2 ka 
climate event in the early Holocene and the mid-Pliocene may pro-
vide mechanistic insight into future changes in the AMOC, given 
the similar background climate state. Thus, paleoceanography can 
play a valuable role, not only in elucidating the mechanisms that 
may drive changes in the AMOC but also for addressing other 
open questions in the study of modern AMOC.
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