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INTRODUCTION
Near-inertial internal waves (NIW) 
constitute a dominant mode of high-​
frequency variability in the ocean’s inte-
rior, comprising about half the kinetic 
energy in the ocean at most sites (and 
even more in the winter beneath storm 
tracks; Alford et al., 2016). Over the last 
decade there has been a significant focus 
in the physical oceanographic commu-
nity on internal tides, which produce large 
thermocline displacements, affect sound 
propagation, and control some hotspots 
of elevated turbulent mixing. Near-
inertial internal gravity waves, which are 
primarily generated not by tides but by 
winds, are of similar importance, provid-
ing comparable kinetic energy and the 
vast majority of the shear variance, and 
likely leading to a substantial amount of 
turbulent mixing. Significant deficiencies 
remain in our understanding of the phys-
ical processes that determine their gener-
ation, evolution, and destruction. 

No existing regional or global numer-
ical models fully account for the gener-
ation, radiation, and breaking of NIWs, 
largely because of the need for high reso-
lution to resolve the high-mode structure 
and because the physics is not sufficiently 
understood. The NIW problem has been 
difficult to address, partially due to the 
episodic nature of wind generation and 
the nonlinear physics involved. The sem-
inal experimental study of NIWs was the 
Ocean Storms Experiment (OSE), which 
took place in the late 1980s (D’Asaro 

et al., 1995). The main focus of the OSE 
was on the larger-scale lateral structure of 
NIWs, which theory predicts is shaped by 
Earth’s curvature through the so-called 
beta effect (Gill, 1984). During the OSE, 
the role of the beta effect in leading to the 
initial growth of horizontal gradients in 
the NIW field was clearly demonstrated, 
leading to a qualitative agreement with 
theory. However, the theory could not 
reproduce the observed “beam,” wherein 
energy migrated quickly downward with 
time from the mixed layer following 
storm events. An important consequence 
is that neither the decay of mixed-layer 
motions nor the rate of energy transfer 
into the deep ocean can adequately be 
predicted for the best-documented storm 
response on record. This conundrum 
has remained for the past 35 years since 
these data were collected, in part because 
the OSE data lacked sufficient vertical 
and horizontal resolution to quantify the 
detailed structures of the NIWs and their 
evolution. Moreover, the vital question of 
the distribution of mixing by the NIWs 
was unaddressed by the OSE. 

Motivated by these questions, in 2016 
the US Office of Naval Research spon-
sored the Near-Inertial Shear and Kinetic 
Energy in the North Atlantic experiment 
(NISKINe). The objective was to exam-
ine how NIWs rapidly radiate out of the 
mixed layer by developing smaller-scale 
horizontal structures through interaction 
with ocean eddies and how NIWs gener-
ate turbulence and mixing. Conducted 

in the eddy-rich, stormy North Atlantic 
during certain periods from 2018 to 2020, 
NISKINe utilized conceptualized studies, 
numerical modeling, and the latest tech-
nology to make direct, high-resolution 
observations of the NIW field to examine 
the physics. Here, we describe some high-
lights of the multi-year study and intro-
duce a collection of articles that elaborate 
on the findings.

NISKINe 
NISKINe combined observational, mod-
eling, and theoretical approaches to 
underpin the at-sea science. The program 
integrated results from three field years 
in the Iceland Basin: a 2018 pilot study, 
a 2019 full-scale deployment, and a mod-
est (pandemic impacted) effort in 2020. 
These data collection efforts were central 
to NISKINe, as they formed the basis for 
theoretical and process-oriented model-
ing efforts. Process-oriented studies that 
addressed NIW generation, NIW-eddy 
interactions, and the role of surface waves 
in affecting the energy input to NIWs 
included those by Asselin and Young 
(2020), Asselin et  al. (2020), Barkan 
et  al. (2021), Skyllingstad et  al. (2023), 
and Stokes et  al. (2024). These detailed 
works were framed by studies utilizing 
global ocean models for broader under-
standing of NIW significance including 
Arbic et al. (2022), Raja et al. (2022), and 
Yang et al. (2023).

For the 2018 pilot experiment, a 
dipole in the Icelandic Basin identified 
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from satellite altimetry was selected as 
the study site (Figure 1). The particu-
lar dipole targeted was identified in the 
weeks prior to the onset of the cruise. The 
study consisted of several weeks of direct 
measurements from R/V Neil Armstrong 
augmented by a large number of auton-
omous systems, including drifters, a 
Wirewalker, and uncrewed underwater 
vehicle (UUV) gliders (Figure 2). The 
cyclone/​anticyclone dipole pair was asso-
ciated with negative dynamic height 
and cold surface water on the cyclonic 
(counterclockwise circulating) side and 
positive dynamics height and warm water 
surface waters on the anticyclonic (clock-
wise circulating) side. The study period 
was characterized by extremely deep 
mixed layers on the cyclonic side of the 
dipole and winds that generally remained 

above 10 m s–1. The passage of a series of 
atmospheric cyclones with strong winds 
and high sea states (Figure 3) forced 
episodic rapid deepening of the sur-
face boundary layer (Klenz et al., 2022). 
Surface cooling was generally unim-
portant, but the Stokes forcing played a 
leading-​order role in mixed and turbu-
lent boundary layer deepening (Figure 3; 
Skyllingstad et al., 2023).

The findings from the pilot study moti-
vated the larger 2019 study of a similar 
dipole at almost the same site (Figure 2), 
which again utilized R/V Neil Armstrong 
along with profiling floats (Kunze et  al., 
2023; Girton et  al., 2024, in this issue), 
uncrewed surface vehicle (USV) Wave 
Gliders, gliders, surface drifters, and 
moorings (Voet et al., 2024, in this issue). 
This range of resources allowed the team 

to examine the properties of near-​inertial 
response in both cyclonic and anti
cyclonic flows (Thomas et al., 2020, 2023; 
and 2024a, 2024b, both in this issue). The 
2019 program consisted of four mod-
ules: (1) “jet + confluence,” that exam-
ined the evolution of inertial oscillations 
(35 kts wind event) in strong cyclonic 
and anticyclonic vorticity, (2) “sheepdog” 
with a drifting array in a quieter region, 
(3) a mapping survey, and (4) “fence” and 
“greyhound” to sample the inertial wave 
field at the edge of an anticyclonic eddy 
with strong submesoscale gradients in a 
strong frontal region (Figure 4).

A second full-scale process cruise 
planned for 2020 was scaled back due to 
the Covid pandemic and reoriented to 
focus on mooring recovery with a min-
imal autonomous presence. With the 
loss of ship time, the focus of the study 
shifted closer to Iceland, north of the 
North Atlantic Current frontal system, 
with measurements made during the 
September to November period using 
drifters, floats, and USV and UUV glid-
ers (Figure 2a). The 2020 effort also fea-
tured an Air-Launched Autonomous 
Micro-Observer profiling float and a spar 
buoy system (Zimmerman et al., 2024, in 
this issue) that measured the enhanced 
near-inertial forcing and breakdown of 
summer surface stratification caused by 
the passage of an extratropical cyclone. 

FIGURE 1. Track of R/V Neil 
Armstrong (heavy black line). 
Drifter tracks are colored by sea 
surface temperature. They are 
overlaid by satellite dynamic 
topography (absolute dynamic 
topography [ADT] from EU 
Copernicus Marine Service, 
https://​doi.org/​10.48670/​moi-​
00148), with negative ADT 
(cold surface waters) indicated 
by dashed contours and posi-
tive ADT (warm surface waters) 
indicated by solid contours. 

FIGURE 2. (a) Autonomous assets 
used during the Near-Inertial Shear 
and Kinetic Energy in the North 
Atlantic experiment (NISKINe), 
2018–2021. While the focus of the 
experiment was on the vorticity 
associated with the North Atlantic 
Current Extension, other observa-
tional efforts centered on the role 
of the near-inertial response above 
the Reykjanes Ridge and along 
the margin of the Icelandic Basin. 
(b)  R/V Neil Armstrong tracks in 
support of NISKINe, 2018–2019. 
The 2020 field effort was also 
orchestrated using a combination 
of chartered vessels and the sup-
port of the Icelandic Coast Guard.

a b
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FIGURE 3. UUV sampling during the 2018 pilot experiment. The left panels are temperature and salinity from Seaglider 124, with mixed layer depth indi-
cated. Wind and wave conditions (top right panels) and upper ocean turbulent dissipation rate (lower right panel) from Slocum glider “Husker” over the 
course of several strong storms during the cruise period. White dots indicate mixed layer depth, and the contours indicate the ε = 10–9 and 10–7 W kg–1 
dissipation levels. See also Figure 2.

SUMMARY AND DISCUSSION
During the multiple years of the NISKINe 
program, an extraordinary number 
of autonomous assets were employed 
(Figure 2a). The NISKINe study may be 
among the largest collective deployments 
of autonomous assets for a single pro-
gram. This focused use of autonomous 
assets was particularly helpful in 2020, 
when the Covid pandemic significantly 
impacted the availability of ship-based 
sampling. Together with ship sampling 
and moorings, autonomous platforms 
captured processes happening on many 
different temporal and spatial scales that 
are fundamental to understanding the 
evolution of near-inertial waves.

While results from the NISKINe study 
are still being assessed and written up, a 
clear outcome of the program is a better 
understanding of the significant role that 
vorticity plays in moderating the input 
and subsequent cascade of near-inertial 
energy and shear into the ocean interior. 
Such NIW-eddy interactions are high-
lighted in this special issue (e.g., Thomas 
et al., 2024a). The coupling of the atmo-
spheric storm track with enhanced 
oceanic vorticity in the region of the 
North Atlantic Current distinguishes 

FIGURE 4. Sampling modules during the 2019 process cruise. The cruise track, colored by abso-
lute sea surface salinity, is overlaid upon contours of dynamic topography (2 cm intervals). The color 
scale for salinity, the same for all panels, shows the details of the frontal stratification that character-
izes the submesoscale dynamics of the flow. Modules 1–4 are described in the text.
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the NISKINe campaign from the earlier 
OSE program. This special issue includes 
additional comparisons of NIW-eddy 
interactions in the Northeast Pacific and 
North Atlantic (Thomas et al., 2024b) and 
the Western Pacific (Lazaneo et al., 2024). 
Longer-term measurements made from 
the NISKINe mooring and float arrays 
are also featured and reveal the ubiquity 
of NIW-eddy interactions in the region 
(e.g., Voet et al., 2024; Girton et al., 2024). 
Finally, the horizontal variations of both 
oceanic conditions and the atmospheric 
forcing impact the generation of NIWs 
and how they evolve. These variations 
can be extreme in the North Atlantic and 
require state-of-the-art techniques to be 
observed in situ (e.g., Zimmerman et al., 
2024). With coordinated modeling and 
multi-scale observations, NISKINe pro-
vides an example of how this complex 
problem can be approached. 
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