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NOVEL INSIGHTS INTO OCEAN 
TRACE ELEMENT CYCLING 

FROM BIOGEOCHEMICAL MODELS
By Alessandro Tagliabue and Thomas Weber (both authors contributed equally)

SPECIAL ISSUE ON TWENTY YEARS OF GEOTRACES

ABSTRACT. Ocean biogeochemical models have become critical tools for interpreting trace element and isotope (TEI) distri-
butions observed during the GEOTRACES program and understanding their driving processes. Models stimulate new research 
questions that cannot be addressed with observations alone, for instance, concerning processes that occur over vast spatial scales 
and linkages between TEIs and other elemental cycles. A spectrum of modeling approaches has been applied to date, including 
(1) fully prognostic models that couple TEIs to broader biogeochemical frameworks, (2) simpler element-specific mechanistic 
models that allow for assimilation of observations, and (3) machine learning models that have no mechanistic underpinning but 
allow for skillful extrapolation of sparse data. Here, we evaluate the strengths and weaknesses of these approaches and review three 
sets of novel insights they have facilitated. First, models have advanced our understanding of global-scale micronutrient distribu-
tions, and their deviations from macronutrients, in terms of a “ventilation-regeneration-scavenging” balance. Second, models have 
yielded global-scale estimates of TEI inputs to and losses from the ocean, revealing, for instance, a rapid iron (Fe) cycle with an 
oceanic residence time on the order of decades. Third, models have identified novel links among various TEI cycling processes and 
the global ocean carbon cycle, such as tracing the supply of hydrothermally sourced Fe to iron-starved microbial communities in 
the Southern Ocean. We foresee additional important roles for modeling work in the next stages of trace element research, includ-
ing synthesizing understanding from the GEOTRACES program in the form of TEI state estimates, and projecting the responses of 
TEI cycles to global climate change. 
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Model-simulated aluminum distribution along the GEOTRACES GA02 section in the West Atlantic Ocean. 
The black labeled arrows represent ocean circulation pathways. Modified from Xu and Weber (2021)
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BACKGROUND AND 
MOTIVATION
The overall mission of the GEOTRACES 
program is “to identify processes and 
quantify fluxes that control the distri-
butions of key trace elements and iso-
topes (TEIs) in the ocean, and to estab-
lish the sensitivity of these distributions 
to changing environmental conditions” 
(GEOTRACES Planning Group, 2006). 
Addressing these challenges requires the 
community to move beyond direct quan-
tification of concentrations to explore key 
fluxes and cycling mechanisms. While 
this has proceeded via observational 
efforts as part of GEOTRACES section 
and process study voyages, numerical 
models that resolve critical processes and 
properties are also playing a growing role 
and are now considered an integral part 
of the GEOTRACES toolkit. 

A wide range of modeling frame-
works with varying complexity have been 
applied to interpret GEOTRACES obser-
vations. Because even the most complex 
models remain incomplete, they represent 
simplified views of the dominant biogeo-
chemical processes governing TEI cycling 
as they are embedded within ocean circu-
lation models that are often too coarse to 
accurately capture the scales of TEI fluxes 
across ocean boundaries and within the 
water column. Numerous papers have 
been written enumerating the shortcom-
ings and biases of TEI models and their 
inability to reproduce the finer details 
of GEOTRACES data (e.g.,  Tagliabue 
et  al., 2016; Eisenring et  al., 2022). 
Nevertheless, the application of these 
imperfect models has often advanced 
our understanding of TEI distributions 
and cycling, yielding myriad new insights 
that could never have been gleaned from 
observations alone. Specifically, mod-
els have facilitated (1)  extrapolation of 
sparse TEI observations, (2) testing of 
hypotheses regarding controlling mech-
anisms, and (3) upscaling and assess-
ment of TEI impacts on the carbon cycle 
and its response to climate change. In 
this way, the field of TEI modeling has 
closely conformed to British statistician 

George E.P. Box’s classic mantra that “All 
models are wrong, but some are useful.” 

The objective of this manuscript is 
not to provide an exhaustive review of 
all TEI modeling studies that have lev-
eraged GEOTRACES data. Instead, our 
goals are threefold: (1) to provide a con-
cise description of the general categories 
of models that are commonly used in this 
field and an assessment of their strengths 
and weaknesses; (2) to highlight with 
examples some key successes, where 
models have provided novel insight into 
the cycling of TEIs and made critical con-
tributions toward the GEOTRACES mis-
sion; and (3) to outline a set of outstand-
ing challenges to and opportunities for 
developing this model-data nexus further 
in the coming years.

CATEGORIES OF TEI MODELS
The wide range of modeling approaches 
that have contributed to our under-
standing of TEI cycling vary in their 
complexity, resolution, predictive capa-
bilities, and how they leverage observa-
tions. Here, we recognize three broad 
categories of models: (1) fully prognos-
tic biogeochemical models, (2) element- 
specific transport matrix models, and 
(3) machine learning and diagnostic 
models. The first two categories are both 
mechanistic in that they simulate trace 
element cycles inside ocean circulation 
models using mathematical functions 
that represent TEI sources, sinks, and 
internal cycling processes. They differ, 
however, in scope and how extensively 
they incorporate GEOTRACES obser-
vations in order to refine the mechanis-
tic framework. The third category is not 
underpinned by a mechanistic under-
standing of TEI cycling but instead lever-
ages observations only in a statistical 
sense. The three categories thus define a 
spectrum between prognostic and diag-
nostic modeling philosophies, with the 
former predicting the state of a system 
(here, the distribution of a TEI) based 
on mechanistic process information 
and the latter inferring process informa-
tion from a known system state. Below, 

we review the distinguishing features of 
each category and their unique strengths 
and weaknesses. 

Fully Prognostic Biogeochemical 
Models
In this type of model, the mechanistic 
representation of trace element cycling 
is coupled to an existing biogeochem-
ical framework that resolves multiple 
nutrient cycles, planktonic ecosystems, 
formation and degradation of particu-
late and dissolved organic matter, oxy-
gen, and inorganic carbon chemistry 
(Figure 1a). These marine biogeochemi-
cal models are either run independently 
(at the global scale, or at high resolution 
regional scales) or further coupled with 
atmospheric and terrestrial modeling 
components to comprise an Earth sys-
tem model that can be used for climate 
projection (Seferian et al., 2020). In con-
trast to the other two modeling catego-
ries we define, there is no explicit incor-
poration of GEOTRACES observations 
to constrain the model. Instead, a large-
scale TEI distribution emerges solely as a 
prediction of the source, sink, and cycling 
parameterizations adopted (hence, “fully 
prognostic”), although model-data com-
parison is employed for validation, to 
inform the inclusion of key processes, 
and to guide parameter selection. 

Due to its critical role in limiting pri-
mary production, the iron (Fe) cycle is 
now represented in almost all biogeo-
chemical models incorporated in Earth 
system models, although the level of 
detail and predictive skill of these mod-
els varies widely (Tagliabue et al., 2016). 
Currently, additional micronutrients like 
cobalt (Co), copper (Cu), manganese 
(Mn), and zinc (Zn) are being added to 
prognostic models (Figure 1a), with the 
end goal of resolving their biological roles 
in co-limiting productivity and shap-
ing the microbial ecosystem (Richon and 
Tagliabue, 2019; Tagliabue et  al., 2018; 
Hawco et  al., 2022). Efforts have also 
been made to couple the cycling of non- 
bioactive elements, such as Al, Pa/Th, and 
Nd, to fully prognostic biogeochemical 
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models (Arsouze et al., 2009; van Hulten 
et al., 2013, 2014, 2018).

The primary strengths of prognostic 
biogeochemical models are that they link 
TEIs to the global carbon cycle and climate 
system (see section on Connecting Trace 
Metals to the Global Carbon Cycle) and 
are able to predict TEI cycle responses to 
environmental change, including poten-
tial TEI-climate feedback loops (Moore 
et  al., 2018). They also explicitly resolve 
multiple processes spanning phytoplank-
ton uptake, zooplankton recycling, parti-
cle dynamics, and abiotic TEI input and 
removal pathways. Their primary limita-
tion is their computational cost—because 
each simulation requires days to weeks 
of supercomputer time, these models are 
not efficient tools for exploratory science 
and extensive hypothesis testing. While 
this limitation also prevents direct incor-
poration of GEOTRACES observations, 
prognostic models have made exten-
sive use of hypotheses emerging from 
GEOTRACES observations and have 
been employed to assess multiple pro-
cesses emerging from the external input 
and internal cycling of TEIs (e.g., Resing 
et al., 2015; Tagliabue et al., 2023a).

Element-Specific Transport 
Matrix Models
This category comprises mechanis-
tic models that are specifically designed 
to explore the cycling of a single TEI, 
uncoupled from a broader biogeochem-
ical framework (Figure 1b). The TEI of 
interest is often coupled to fluxes of one 
or two other nutrient tracers (e.g., phos-
phate, silicic acid) in order to resolve 
net biological cycling, rather than link-
ing to a full planktonic ecosystem (John 
et  al., 2019). Other biogeochemical flux 
parameterizations are similar (albeit sim-
pler) to those used in fully prognostic 
models, with observed properties often 
standing in for model-predicted proper-
ties—for instance, anoxic processes may 
be linked to observed, rather than pre-
dicted, oxygen fields (e.g.,  Weber et  al., 
2018). The circulation of TEIs is often 
represented using the Transport Matrix 

Method— a highly efficient method for 
directly predicting steady-state tracer 
distributions (Primeau, 2005; Khatiwala, 
2007). Recently, the Ocean Circulation 
Inverse Model (DeVries and Holzer, 
2019) has been widely adopted for this 

purpose, because it incorporates water 
mass and ventilation tracer data to ensure 
faithful representation of the large-scale 
global circulation in the ocean interior. 

The strengths and limitations of 
these models are largely opposite to the 

FIGURE 1. Schematic illustrations of three trace element and isotope (TEI) modeling categories. 
(a) In the fully prognostic PISCES model (Tagliabue et al., 2023a), TEIs are linked to a broader bio-
geochemical framework. (b) In a transport matrix inverse model, parameters are optimized using 
GEOTRACES data to constrain the oceanic Zn cycle (Weber et al., 2018). Orange and green boxes in 
(a) and (b) represent inorganic and organic tracers predicted by the models that can be compared 
to observations. (c) In an artificial neural network model, a TEI is predicted statistically as a function 
of hydrographic and biogeochemical predictor variables. 
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previous category. They are highly com-
putationally efficient (each simulation 
takes seconds to minutes), facilitating 
broad exploration, hypothesis testing, 
and assimilation of GEOTRACES data 
to “optimize” the model structure and 
parameters (i.e., seeking the formulations 
and parameter values that bring the pre-
dicted TEI distribution into best agree-
ment with observations in an objective 
manner; Figure 1b). In this way, they 
are often used as “inverse models” that 
extract estimates of TEI sources, sinks, 
and internal cycling processes that are 
consistent with observed distributions. 
Inverse models can therefore be thought 
of as an intermediate on the spectrum 
between prognostic and diagnostic mod-
eling philosophies, combining the mech-
anistic underpinning of the former with 
the observational underpinning of the lat-
ter. As for their limitations, these mod-
els lack temporal resolution (generally 
only predicting steady-state annual-mean 
TEI distributions), neglect complex bio-
logical processes (e.g.,  those associated 
with phytoplankton uptake or zooplank-
ton recycling), cannot be used for future 
predictions, and do not resolve com-
plex interactions between TEIs and other 
elemental cycles. Over the last decade, 
transport matrix models have been suc-
cessfully applied to understand the large-
scale distributions and oceanic budgets 
of a suite of TEIs (see later section on 
Understanding Fundamental Controls on 
Large-Scale Trace Element Distributions), 
including zinc (Vance et al., 2017; Weber 
et al., 2018), nickel (John et al., 2022), cop-
per (Liang et al., 2023), iron (Pasquier and 
Holzer, 2018; Roshan et  al., 2020), and 
aluminum (Xu and Weber, 2021).

Machine Learning and 
Diagnostic Models
Machine learning has been widely 
adopted in ocean biogeochemistry as a 
gap-filling tool to generate continuous 
spatial distribution estimates (“clima-
tologies”) from sparse datasets, includ-
ing those for greenhouse gases (Weber 
et  al., 2019; Yang et  al., 2020), organic 

matter (Roshan and DeVries, 2017), and 
more recently also TEIs (Roshan et  al., 
2018; Huang et al., 2022). Many of these 
applications have relied on artificial neu-
ral network (ANN) models, which can 
be thought of as sophisticated statisti-
cal models that are trained to predict a 
“target” variable (e.g.,  a TEI) through 
its relationship to a set of “predictor” 
variables— hydrographic and biogeo-
chemical properties such as temperature, 
salinity, nutrients, oxygen, and net pri-
mary production (Figure 1c). The statis-
tical model is then applied to continuous 
gridded distributions of those predictors 
to generate a gridded estimate of the TEI 
distribution. Compared to more famil-
iar statistical models (e.g., multiple linear 
regression), ANNs are structurally com-
plex, comprising “hidden layers” of neu-
rons in which each neuron is a nonlinear 
function of one or more inputs (pre-
dictor variables or the output of previ-
ous neurons), and neuron outputs even-
tually combine into a prediction of the 
TEI (Figure 1c). They are therefore often 
described as “black boxes,” in which the 
contribution of each input variable to the 
prediction is difficult to discern.

The primary strength of machine 
learning models is that, of all catego-
ries reviewed here, they make the most 
direct use of GEOTRACES observations 
in their TEI distribution predictions, and 
(by design) they reproduce those obser-
vations more accurately than the mecha-
nistic models covered in the previous sec-
tions. However, their lack of mechanistic 
basis is the main weakness of machine 
learning models—they predict TEI distri-
butions without providing any informa-
tion about the processes underlying that 
distribution. To partially offset this weak-
ness, a diagnostic modeling approach has 
been adopted, in which the TEI distri-
butions predicted by machine learning 
models are combined with ocean circula-
tion models to infer the patterns and rates 
of biogeochemical fluxes that are required 
to balance physical transport and mixing 
(e.g., Roshan et al., 2018). However, this 
method only provides a crude estimate of 

the net sources-minus-sinks, which can-
not be separated into individual process 
rates or linked to environmental drivers.

KEY MODELING INSIGHTS
Understanding Fundamental 
Controls on Large-Scale Trace 
Element Distributions
Since before the GEOTRACES era, ocean 
TEI distributions have been interpreted 
using the “preformed versus remineral-
ized” component framework first devel-
oped to understand macronutrient dis-
tributions (Broecker et  al., 1985). Here, 
observed subsurface tracer concentra-
tions are defined as the sum of a pre-
formed component carried by water 
masses from the ocean surface and a 
remineralized component that accu-
mulates from organic matter decompo-
sition (Ito and Follows, 2005). A clas-
sic application of this framework sought 
to explain the “kinked” (i.e.,  nonlinear) 
global cadmium (Cd) versus phosphate 
(PO4) relationship in terms of preformed 
Cd depletion in intermediate waters 
and deep accumulation of remineral-
ized Cd (de Baar et  al., 1994). Over the 
last 15 years, ocean biogeochemical mod-
els have proved to be invaluable tools 
for interpreting the TEI distributions 
revealed by the GEOTRACES sections. 
Numerical models resolve preformed 
TEI distributions more realistically than 
traditional end- member- mixing calcula-
tions and can be used to test hypothesized 
biogeochemical mechanisms that mod-
ify TEI distributions in the ocean inte-
rior. For particle-reactive TEIs, the com-
ponent framework has been expanded to 
consider a “ventilation- remineralization- 
scavenging” balance (Tagliabue et  al., 
2014, 2017; Weber et al., 2018), and mod-
els have elucidated the role of scavenging 
in stripping preformed and remineralized 
TEIs from subsurface waters or redistrib-
uting them over depth.

The most recent update to our under-
standing of the global Cd/PO4 relationship 
has emerged from a machine- learning and 
diagnostic- modeling approach (Roshan 
and DeVries, 2021), which demonstrated 



 June 2024 | Oceanography 135

that differences between the global Cd and PO4 distributions can 
almost exclusively be traced to their preformed components. This 
is driven by extreme plasticity in Cd uptake during organic mat-
ter formation, with Cd:P uptake ratios reaching a global maximum 
in the Southern Ocean. Cd therefore becomes depleted in Antarctic 
Intermediate Water (AAIW), which propagates through the low lati-
tudes at 1,000–2,000 m depth, and enriched in the ocean’s deep over-
turning cell. There is evidence for additional decoupling between 
Cd and PO4 due to slightly deeper remineralization of the former, 
although this appears to work counter to the preformed decoupling 
by adding Cd back to Cd-deficient intermediate waters, slightly 
“unkinking” the global relationship (Roshan and DeVries, 2021).

A recent series of modeling studies, constrained by GEOTRACES 
section data, have demystified the paradoxical oceanic distribution 
of the important algal micronutrient zinc (Zn). Zn exhibits a much 
deeper concentration maximum than macronutrients and closely 
correlates with Si (Bruland et al., 1978), even though very little cel-
lular Zn is incorporated alongside Si into diatom frustules (Ellwood 
and Hunter, 2000) and the vast majority is co-located with N and P 
in soft tissue (Twining and Baines, 2013). Biogeochemical models 
have revealed that the Si-like Zn distribution is largely controlled by 
efficient biological drawdown in the Southern Ocean surface, which 
strips Zn from AAIW and traps it in Antarctic Bottom Water (Vance 
et al., 2017; Weber et al., 2018), much like Si (Holzer et al., 2014). The 
stoichiometric signature of Southern Ocean water masses therefore 
imprints a Zn deficit (relative to PO4) throughout the global upper 
ocean and a Zn excess throughout the deep ocean (Figure 2a,b). 
However, models in which vertical biogeochemical cycling of Zn 
mirrors PO4 tend to underpredict Zn in the deep North Pacific and 
overpredict Zn in intermediate waters (Weber et al., 2018). These 
discrepancies can be resolved by weak reversible scavenging of Zn 
onto sinking particles, in which <1% of the oceanic Zn inventory 
exists in an adsorbed phase (Weber et al., 2018)—a conclusion that 
is also supported by a machine learning and diagnostic modeling 
approach (Roshan et al., 2018). Reversible scavenging strengthens 
the Zn deficit in the upper ocean (Figure 2c) by transferring Zn 
from intermediate to deep water masses (Figure 2d). Scavenging 
removal and subsequent redistribution of Zn also provides a mech-
anism for explaining the isotopic depletion of Zn in the upper ocean 
by removing isotopically heavy Zn and depositing it at mid-depths 
after the carrier particles remineralize (Sieber et al., 2023).

Unlike Zn and Cd, the micronutrient nickel (Ni) is found in excess 
relative to macronutrients throughout the surface ocean. According 
to recent modeling work (John et  al., 2022), this is explained by 
slow Ni uptake in productive upwelling regions and restriction of 
Ni uptake by macronutrient limitation in subtropical gyres (i.e., low 
stoichiometric plasticity). While this surface distribution allows 
unutilized Ni to subduct in intermediate waters and would pro-
duce a similar preformed distribution to PO4 and NO3, observed 
Ni actually reaches a deeper maximum. Transport matrix model-
ing again demonstrates that this phenomenon is well explained by 
weak scavenging and desorption of Ni, which redistributes it over 

FIGURE 2. Model-based interpretation of global Zn distribution. 
(a) Predicted dissolved Zn distribution along 150°W in the Pacific 
Ocean, which compares well with observations from the GP15 cruise 
(Sieber et al., 2023). (b) Component of the Zn distribution that is trans-
ported from the Southern Ocean in Antarctic Intermediate Water 
(AAIW) and Antarctic Bottom Water (AABW) masses. (c) Component 
of Zn distribution that accumulates along transport pathways after 
water masses leave the Southern Ocean, due to vertical biogeo-
chemical cycling. In (a)–(c), the white contours illustrate the Zn defi-
cit or excess relative to PO4 defined as [Zn] – RZn:P[PO4], where 
RZn:P is the mean ocean Zn/PO4 ratio of 2.5 mmol mol–1. Together, 
(a)–(c) illustrate that the global Zn deficit in intermediate waters and 
excess in deep waters (a) is partially transported from the Southern 
Ocean (b), and partially generated by vertical cycling processes out-
side the Southern Ocean (c). (d) The impact of scavenging on Zn dis-
tribution is quantified here as the difference between models with 
and without scavenging enabled. Figures adapted from Weber et al. 
(2018) and Sieber et al. (2023) 
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depth and drives a large-scale decoupling 
of its distribution from PO4 and NO3 

(John et al., 2022).
The modeling studies outlined above 

reveal a dominant role for ventila-
tion (i.e.,  the preformed component) in 
explaining the oceanic distributions of 
TEIs with long residence times. In con-
trast, elements with short residence times 
(like Fe) are removed too quickly to prop-
agate with water masses far into the ocean 
interior. In this case, a balance between 
remineralization, scavenging, and bound-
ary inputs governs TEI distribution, and 
the relative rates of those processes can be 
gleaned with models from GEOTRACES 
section data. Unlike macronutrients, 

dissolved Fe (DFe) does not increase sys-
tematically in the deep ocean with water 
mass age, reflecting a close compensa-
tion between scavenging and reminer-
alization (Tagliabue et  al., 2014, 2019), 
and instead often exhibits a mid-depth 
maximum between 200 m and 1,000 m 
(e.g., Figure 3a). Biogeochemical model-
ing attributes many of these features to the 
uptake and scavenging of dust-sourced 
Fe in the surface, followed by Fe remin-
eralization and the release of scavenged 
Fe in the shallow subsurface (Pham and 
Ito, 2018). Beneath the mid-depth maxi-
mum, Fe remineralization is too slow, rel-
ative to scavenging, to allow significant 
remineralized Fe accumulation (Pham 

and Ito, 2018). In fact, model trajectory 
calculations indicate that the majority 
of remineralized Fe will be scavenged 
before re-emerging at the ocean’s sur-
face and that most Fe supplied in upwell-
ing water to the ocean surface is not the 
product of organic matter remineraliza-
tion (Pasquier and Holzer, 2018).

Probing Trace Element 
Inputs and Losses
Distributions of TEIs close to, and down-
stream of, boundary exchange regions 
(continental margins, the air-sea inter-
face, mid-ocean ridges) provide clues 
about the magnitude of TEI fluxes across 
those boundaries that can be lever-
aged by models to construct budget esti-
mates. Models that accurately reproduce 
observed TEI distributions are generally 
assumed to do so because they contain 
sources and sinks of realistic magnitude. 
A caveat is that, to some degree, unrealis-
tic model sources and sinks can compen-
sate one another—for instance, a source 
overestimate can be balanced by unrealis-
tically rapid scavenging losses. 

The first Fe model intercomparison 
project (FeMIP; Tagliabue et  al., 2016) 
showed that 13 different models could 
all broadly reproduce the average con-
centrations observed from GEOTRACES 
data, while not reaching a consensus on 
the magnitude of external sources and 
scavenging losses. Models ranged from 
those with total sources on the order 
1 Gmol yr–1 and Fe residence times of 
hundreds of years to those with sources 
of >100 Gmol  yr–1 and residence times 
of 10 years or less. This has led to the 
impression that the observed DFe distri-
bution does not place a strong constraint 
on the magnitude of Fe fluxes. However, 
a deeper comparison of model- predicted 
DFe fields to observations (beyond just 
comparing mean concentrations) reveals 
significant differences between mod-
els with “slow” and “fast” Fe cycles. The 
former (small sources, slow scavenging) 
predict unrealistically smooth Fe fields 
with coherent water mass structures that 
are not observed in the GEOTRACES 

FIGURE 3. Comparison of model-predicted DFe distributions. (a) Observed DFe dis-
tribution along the GA02 section (Rijkenberg et al., 2012). (b,c) Predictions from two 
models included in the FeMIP intercomparison project (Tagliabue et al., 2016) include 
one with a long Fe residence time (τres) in which DFe exhibits clear water mass struc-
ture (b), and one with a short τres that captures sharp DFe source features. (d) A pre-
diction from a newly configured state of the art model (Tagliabue et al., 2023a) accu-
rately captures the observed distribution, with a relatively short τres.
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transects (Figure 3b), whereas the latter 
(large sources, fast scavenging) bet-
ter resolve observed source features and 
the sharp Fe gradients around them 
(Figure 3c). Recent modeling stud-
ies that have most successfully repro-
duced observed DFe features tend to con-
verge upon global Fe source estimates 
around 50–70 Gmol yr–1 and residence 
times of 10–20 years (Figure 3d)—a 
much closer consensus than suggested by 
the FeMIP compilation (Pham and Ito, 
2018; Tagliabue et al., 2023a). These mod-
els further agree that continental mar-
gin sediments are the dominant global 
Fe source to the ocean, while dust depo-
sition and hydrothermal vents are sec-
ondary sources, albeit with significant 
regional imprints.

Complementary TEI tracers that share 
sources and sinks with Fe are increasingly 
being incorporated into prognostic mod-
els and studied with stand-alone trans-
port matrix models to place additional 
constraints on Fe fluxes. For instance, Al 
has long been recognized as a powerful 
tracer of dust deposition from the atmo-
sphere and has been the focus of both 
prognostic and inverse modeling studies 
(Van Hulten et al., 2014; Xu and Weber, 
2021). The latter approach demonstrated 
that a source of 30–40 Gmol yr–1 of soluble 
Al from dust was required to best match 
observed Al along a set of GEOTRACES 
sections, corresponding to a soluble Fe 
source of 5–10 Gmol yr–1. 

In addition to quantifying the mag-
nitude of TEI sources and sinks, mod-
els have provided insights into the mech-
anisms and environmental controls on 
these processes. Often, the same conclu-
sions have been reached independently 
from modeling of large-scale TEI distribu-
tions and from small-scale observational 
studies, building confidence that robust 
“general rules” have been discovered. For 
instance: (1) inverse modeling found that 
large-scale variability in dust solubility 
was required to match the global Al dis-
tribution with much higher solubility in 
remote regions with low atmospheric dust 
loading (Xu and Weber, 2021), consistent 

with acid- leach experiments (Jickells 
et al., 2016); (2) two global Fe model stud-
ies demonstrated a better match to global 
GEOTRACES observations when benthic 
Fe sources were strongly amplified under 
low O2 bottom-water conditions (Dale 
et al., 2015; Pham and Ito, 2018), consis-
tent with flux chamber measurements on 
the Oregon shelf (Severmann et al., 2010); 
and (3) incorporation of Fe isotopes 
into a prognostic model demonstrated 
that distinct isotopic signatures must be 
resolved for Fe sourced from reductive 
and non-reductive sediments to match 
observed sections (König et  al., 2021), 
consistent with pore-water measurements 
(Homoky et al., 2013).

Models have also been used to explore 
TEI removal processes, especially those 
associated with scavenging and the role of 
ligands. The earliest Fe models assumed 
a constant buffering of deep ocean DFe 
to 0.6 nM, presumed to represent a static 
oceanic ligand reservoir (Archer and 
Johnson, 2000); this was refined by later 
models to explicitly resolve the ligand 
complexation of Fe using equilibrium 
assumptions (Parekh et al., 2005). Present-
day Earth system models still employ these 
parameterizations, and their assumptions 
about ligand concentrations can have 
important implications for atmospheric 
CO2 (Tagliabue et  al., 2014). Growing 
datasets for ligand concentrations and 
the recognition of greater variation in 
DFe concentrations led to the develop-
ment of alternative approaches to mod-
eling ligands, including empirical rela-
tionships that varied in response to DOC 
or O2 (e.g., Pham and Ito, 2018) or even 
fully prognostic representations of ligand 
sources and sinks (Volker and Tagliabue, 
2015). Comparing sophisticated Fe spe-
ciation models with time-series obser-
vations following dust deposition in the 
Mediterranean allowed the important 
roles of scavenging removal and competi-
tion with biological uptake to be revealed 
(Ye et  al., 2011). Most recently, a com-
prehensive model-data synthesis exer-
cise over the annual cycle at the Bermuda 
Atlantic Time-series Study site, spanning 

dissolved, ligand, and particulate Fe data-
sets, led to a revised model of the ocean 
iron cycle that placed less emphasis on 
stabilization of DFe by ligands and more 
on colloidal Fe aggregation with organic 
matter as a critical iron removal pathway 
(Tagliabue et al., 2023a). 

Connecting Trace Metals to 
the Global Carbon Cycle
A key driver of research on micronutri-
ents is their potential role in regulating 
the ocean carbon cycle via their impact on 
phytoplankton productivity. Insight into 
how micronutrients such as Fe can modu-
late the carbon cycle can be gleaned from 
observations, especially process studies 
(e.g. Boyd et al., 2007, 2012; Twining et al., 
2021), but obtaining a large-scale holis-
tic picture requires the use of prognos-
tic global ocean biogeochemical models. 
Such tools can test hypothesized impacts 
of changes in micronutrient sources and 
internal cycling on carbon and macro-
nutrients, oxygen, and primary produc-
tion, as all components are interconnected 
in these models. A notable example here 
is the exploration of hydrothermal vent 
inputs of Fe and their impact on the global 
ocean carbon cycle. 

At the launch of the GEOTRACES 
program, mid-ocean ridges were 
acknowledged as a potential exter-
nal TEI source but were not considered 
to play a major role in driving the dis-
tribution of micronutrient trace metals 
and their impacts on the carbon cycle. 
However, new observations from the 
Southern Ocean emerging from the 
International Polar Year in 2008 indicated 
unexpected elevations in dissolved Fe in 
the vicinity of the Antarctic ridge crest 
(e.g., Klunder et al., 2011). Models were 
quickly adapted to explore the implica-
tions of this unforeseen Fe source, draw-
ing on the link between hydrothermal Fe 
and mantle helium (Boyle and Jenkins, 
2008; Fitzsimmons et al., 2014) to param-
eterize vent Fe inputs based on helium 
(He) input fields first developed for the 
Ocean Carbon Model Intercomparison 
Project (Dutay et  al., 2004). Early work 
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indicated that a significant enhance-
ment in Fe was expected in the 2–3 km 
depth strata due to hydrothermal venting 
(Figure 4a) into the surface waters of the 
Southern Ocean (Figure 4b; Tagliabue 
et  al., 2010). Furthermore, models with 
hydrothermal Fe were able to better 
reproduce GEOTRACES observations 
from the abyssal ocean. Follow-up studies 
in the South Atlantic demonstrated vari-
ation in the Fe:He ratios typical of slower 
spreading ridge systems (Saito et  al., 
2013), and the large-scale plume dispers-
ing thousands of kilometers from the 
fast- spreading East Pacific Rise captured 

by the GP16 voyage was not expected 
(Resing et  al., 2015). Combined model-
ing and observational efforts that traced 
this plume across the Pacific explored the 
roles of external supply rates and inter-
nal processes that stabilize Fe against 
scavenging in explaining plume disper-
sal (Resing et al., 2015). This work, com-
bined with inverse modeling exercises, 
estimated that hydrothermal Fe fuels up 
to 30% of Southern Ocean export pro-
duction (Figure 4c; Resing et  al., 2015; 
Tagliabue and Resing, 2016; Pasquier 
and Holzer, 2017). A set of more detailed 
model experiments focusing on the roles 

of different ridge systems led to the pin-
pointing of the ridges circling Antarctica 
as playing a key role in driving the impact 
on the carbon cycle (Figure 4a; Tagliabue 
and Resing, 2016). 

Recent efforts to better quantify how 
the hydrothermal Fe supply regulates the 
ocean carbon cycle have focused on refin-
ing model parameterization of inputs and 
internal cycling processes. Due its role as 
a fingerprint for hydrothermally sourced 
waters, refining estimates of the mantle 
He source has been a particular focus area. 
The first helium input estimates linked 
the 400–1,000 mol He yr–1 global source 
to ridge spreading rates (Dutay et  al., 
2004; Bianchi et  al., 2010) and accord-
ingly assumed greater hydrothermal sup-
ply along faster spreading ridges. More 
recently, an inverse modeling approach 
that leverages the Ocean Circulation 
Inverse Model physics and all available 
He measurements found that the total He 
supply likely lies at the low end of previ-
ous estimates, with inputs from Antarctic 
ridges reduced threefold (DeVries and 
Holzer, 2019). Assuming close coupling 
between the supplies of He and Fe implies 
that perhaps the role of Southern Ocean 
ridge systems, and hence the postulated 
impact of hydrothermal Fe on the carbon 
cycle, had been overestimated. Roshan 
et  al. (2020) linked the new estimate of 
He inputs with a size-resolved model 
of hydrothermal Fe and optimized key 
parameters using the GP16 Pacific Ocean 
GEOTRACES transect. This model pre-
dicts that global hydrothermal Fe inputs 
largely originate on the East Pacific Rise 
and that there is very little hydrother-
mal Fe in the Southern Ocean, thanks to 
a combination of scavenging and weak Fe 
inputs from Antarctic ridges. Follow-up 
work with a full iron cycle model showed 
that, while low input rates along Antarctic 
ridges would indeed reduce the leverage 
of hydrothermal Fe on carbon export, 
they are not consistent with new observa-
tions of dissolved Fe from these systems 
(Tagliabue et  al., 2022). These observa-
tions suggest that some Antarctic ridges 
could be a stronger source of Fe than 

FIGURE 4. Impact of hydrothermal Fe on the ocean carbon cycle. (a) An exam-
ple is shown here of the predicted distribution of hydrothermally sourced DFe 
in the Southern Ocean (nM, along 150°W), quantified as the difference between 
simulations with and without the vent source enabled, using the model of 
Tagliabue et al. (2023a). (b) An anomaly in integrated upper 500 m DFe due to 
hydrothermalism (10–6 mol Fe m–2) indicates the emergence of the hydrother-
mal DFe anomaly into the upper ocean at the Antarctic Divergence (upwelling 
center). (c) The net primary production (mmol m–2 yr–1, depth integrated, solid 
line) and carbon export (mmol m–2 yr–1, sinking flux across 100 m, dashed line) 
production plotted here is fueled specifically by hydrothermal Fe, again quan-
tified as the difference between simulations with and without the vent source. 



 June 2024 | Oceanography 139

would be expected from their He input, 
meaning that model source schemes for 
hydrothermal Fe may ultimately need to 
look beyond a simple link to He. 

In addition to hydrothermal vents, 
modeling efforts have explored other 
aspects of how iron regulates the car-
bon cycle. For example, long-term Earth 
system model simulations run to the 
year 2300 under high emissions scenar-
ios demonstrate a role for climate per-
turbation of the Fe budget in driving 
Southern Ocean nutrient depletion and 
low latitude declines in net primary pro-
duction (Moore et  al., 2018). Similarly, 
a range of model experiments show that 
climate-forced alterations to dust depo-
sition have wide-reaching impacts on 
the biogeochemistry and carbon cycle 
of the Indian and Pacific Oceans (Pham 
and Ito, 2021; König et al., 2022). Models 
have long been used to assess the limited 
carbon sequestration potential and unin-
tended biogeochemical consequences of 
purposeful ocean iron fertilization efforts 
(Oschlies et  al., 2010; Tagliabue et  al., 
2023b). In this context, prognostic bio-
geochemical models will continue to be 
critical tools for quantifying the impacts 
of ocean iron fertilization proposals, 
especially regarding marine ecosystems. 
By coupling a global ocean biogeochem-
ical model with an ecosystem model, 
recent work showed that ocean iron fer-
tilization led to a very small increase in 
ocean carbon storage but amplified the 
negative impacts of climate change on 
ecosystems by a third (Tagliabue et  al., 
2023b). Recently, there has also been 
growing interest in the possible impact of 
other micronutrients beyond iron on the 
carbon cycle via potential regulation of 
phytoplankton growth rates and net pri-
mary production. To date, only Mn has 
been included as a directly limiting nutri-
ent in ocean models, and its inclusion 
has been shown to lessen the response 
of the Southern Ocean biological car-
bon pump to the changes in Fe supply 
typical of the Last Glacial Maximum 
(Hawco et  al., 2022). Coupled model-
ing of Fe and Mn limitations reveals 

how these micronutrients may inter-
act via region-specific adjustments to 
phytoplankton physiology and affect the 
regional carbon cycle (Anugerahanti and 
Tagliabue, 2023). In the future, address-
ing the large-scale carbon cycle impacts 
of other potentially growth-limiting 
micronutrients, such as Zn, Co, and vita-
min B12, will require use of more com-
plex ocean models.

OUTLOOK AND CHALLENGES
Modeling will remain an important tool 
in future trace element research, espe-
cially as the community’s focus increas-
ingly shifts toward synthesis, process 
understanding, and linking TEIs to 
microbial ecology. Here, we discuss just 
two of many pressing future directions. 

Toward TEI State Estimates: A “state 
estimate” represents our best understand-
ing of the current state of a dynamic sys-
tem given available observations and 
models. In marine biogeochemistry, a 
state estimate usually takes the form of a 
global, three-dimensional tracer distri-
bution (e.g.,  a monthly climatology). As 
the observational phase of GEOTRACES 
enters its final stages, there is a growing 
need to synthesize the understanding of 
TEI distributions (and their uncertain-
ties) that have emerged from the program 
as a set of state estimates. These would 
find broad applications in marine chemis-
try, but also beyond, including (1) guiding 
future observational efforts by identify-
ing key regions of uncertainty; (2) add-
ing trace element context to other datasets 
where TEIs cannot be measured directly, 
for example, comparison of biological 
rate measurements and genomic indi-
cators to estimated micronutrient levels; 
(3) providing initialization fields and fill-
ing in “unresolved tracers” in ocean mod-
els, because not every model can explic-
itly resolve all micronutrient cycles, but 
accounting for their impacts on biolog-
ical processes is desirable; and (4) pro-
viding information to policymakers, for 
instance, on the spread of anthropogenic 
trace element contaminants through the 

ocean. Given the sparseness of TEI mea-
surements, GEOTRACES state estimates 
cannot simply be generated using the 
standard interpolation and objective map-
ping approach used for familiar data-rich 
state estimates like the World Ocean Atlas 
(hydrography, nutrients, oxygen) and the 
Global Ocean Data Analysis Project (car-
bon chemistry). Instead, they must ulti-
mately rely on the three categories of mod-
els outlined in the section on Categories 
of TEI Models. Because machine learning 
models make the most direct use of obser-
vations, they are likely to be the most 
promising choice for state estimate gen-
eration. However, their ability to skillfully 
predict TEI distributions in regions with 
very few training data is not well under-
stood, especially for short residence time 
elements that can have very patchy distri-
butions. In these cases, mechanistic mod-
els that explicitly resolve the underlying 
processes may be considered more skill-
ful gap-filling tools. A major intercompar-
ison effort is needed to converge on the 
“best practices” for TEI state estimates. 

Environmental Change: A key compo-
nent of the GEOTRACES mission con-
cerns the sensitivity of TEI cycles to 
environmental change (GEOTRACES 
Planning Group, 2006). While this can 
be documented and alluded to from field 
measurements, a global-scale assessment 
of how climate change may affect TEI 
cycling requires modeling efforts. The 
roles of changes in ocean circulation, envi-
ronmental conditions, and external TEI 
inputs under different climate change sce-
narios can only be addressed using prog-
nostic biogeochemical models that are 
forced by climate change scenarios. For 
longer residence time TEIs, such as Cd 
and Zn, we might expect more predict-
able changes that can be largely accounted 
for via the distribution of water masses. 
That said, in the upper ocean, where bio- 
limiting roles will be felt, even long resi-
dence time elements such as these can 
display rapid changes in cycling, espe-
cially those mediated by phytoplankton 
uptake and zooplankton recycling, which 
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may generate biogeochemical feedbacks 
(Richon and Tagliabue, 2019). TEIs with 
shorter residence times, such as Fe, will 
exhibit not only changes due to ocean cir-
culation but also alterations due to their 
sources and elemental cycling through-
out the ocean. These may include redis-
tribution due to changes in mixing and 
nutrient limitation patterns at low lat-
itudes (Misumi et  al., 2014), as well as 
changes in Fe speciation due to tempera-
ture, pH, or oxygen perturbations that 
may affect removal processes, includ-
ing the newly identified “colloidal shunt” 
(Tagliabue et al., 2023a). A critical area of 
focus will be the impacts of Fe on ocean 
biology, specifically potential adjust-
ments in patterns of Fe limitation asso-
ciated with climate variations (Browning 
et al., 2023). This will require refinement 
of the way in which phytoplankton Fe 
requirements, uptake, and limitation, as 
well as interactions with grazers and bac-
teria in the dynamic upper ocean, are 
included in models.
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