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PERSPECTIVE

GEOTRACES: IRONING OUT 
THE DETAILS OF THE OCEANIC 
IRON SOURCES?
By Tim M. Conway, Rob Middag, and Reiner Schlitzer

SPECIAL ISSUE ON TWENTY YEARS OF GEOTRACES

MEASURING Fe IN THE OCEAN: 
A HISTORICAL PERSPECTIVE
Although our understanding of many 
chemical tracers in the ocean advanced 
significantly with the GEOSECS pro-
gram of the 1970s, there remained sig-
nificant challenges to contamination-free 
sample collection, filtration, and analy-
sis of sub-nanomolar (10–9 mol kg–1) con-
centrations of dissolved iron in seawater 
(dFe; here operationally defined as what 
will pass through a 0.2 or 0.4 micron pore 
size filter) so that the first accurate oce-
anic dFe water column profiles date only 
to the early 1980s (Landing and Bruland, 
1981; Gordon et  al., 1982). These stud-
ies were followed by shipboard incuba-
tions showing that sub-nanomolar dFe 

concentrations limit primary produc-
tivity over HNLC (high-nutrient, lower- 
than- expected chlorophyll) regions of 
the surface ocean, where major nutri-
ents are underutilized by phytoplank-
ton (Martin and Fitzwater, 1988; Martin 
et al., 1990a, 1990b). Such findings led to 
the “Iron Hypothesis” that postulated Fe’s 
role in influencing global climate change 
and a large body of research, includ-
ing surface ocean Fe fertilization experi-
ments (Martin, 1990; De Baar et al., 2005; 
Boyd et al., 2007). 

By 1997, a synthesis of available oce-
anic dFe measurements established a 
paradigm which asserted that the main 
source of Fe to the ocean was dissolu-
tion of Fe-bearing aeolian dust, and that 

deep-water dFe concentrations (away 
from proximal sources) were buffered 
around 0.6 nmol L–1 by complexation 
with organic ligands (Johnson et  al., 
1997; Tagliabue et  al., 2017). Fe profiles 
were characterized as “nutrient” type, 
with depleted surface concentrations 
due to biological uptake of Fe and sub-
sequent release from particles at depth, or 
as “hybrid,” which also accounted for the 
dust source and the competing effects of 
particle scavenging and organic complex-
ation (Bruland and Lohan, 2003; Boyd 
and Ellwood, 2010; Conway and Middag, 
in press). In this view, surface dFe con-
centrations would be elevated only in 
upwelled deep waters or in surface waters 
that had received high atmospheric dust 
fluxes or were very close to other terres-
trial Fe sources. The effects of dust addi-
tion were later elegantly demonstrated by 
observations of a dramatic shift in dFe 
concentrations from 0.1 to 2 nmol  kg–1 
between winter and summer in the sub-
tropical North Atlantic, a region that 
receives large Saharan dust fluxes only in 
summer (Sedwick et al., 2005). Fe released 
from hydrothermal “black smoker” vents 
was typically thought to be lost to sedi-
ments close to the vent sources via pre-
cipitation of sulfide and oxide minerals 
(German et al., 1991).

However, by the birth of the interna-
tional GEOTRACES endeavor (during 
discussions in 2003–2004; Jeandel, 2024, 
in this issue), and despite demonstrable 
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high-quality dFe measurements from 
multiple international groups from dif-
ferent oceanic regions (Johnson et  al., 
2007), dFe data were geographically lim-
ited to just ~25 depth profiles deeper 
than 2,000 m (GEOTRACES Planning 
Group, 2006; Anderson et al., 2014). This 
paucity of dFe data stymied a complete 
understanding of much of the marine Fe 
cycle—especially understanding of the 
roles of deep Fe sources such as hydro-
thermal vents and marine sediments in 
influencing dFe distributions—and it pro-
vided impetus for the establishment of 
the international GEOTRACES program 
that named dFe as a “key parameter” to 
be measured on all GEOTRACES cruises. 
GEOTRACES aimed to “determine global 
ocean distributions of selected trace ele-
ments and isotopes (TEIs)—including 
their concentrations, chemical specia-
tions, and physical forms—and to evalu-
ate the sources, sinks, and internal cycling 
of these species to characterize more com-
pletely the physical, chemical and biolog-
ical processes regulating their distribu-
tions” (GEOTRACES Planning Group, 
2006). As is described later in this article, 
the knowledge gained from GEOTRACES 
dFe distributions has led to a shift away 

from the dust-focused paradigm of the 
1990s to a new paradigm wherein mul-
tiple boundary sources influence open 
ocean dFe distributions, and dust inputs 
are largely restricted to dusty regions of 
the globe (Tagliabue et al., 2014, 2017).

Our intention here is not to review the 
entire field of marine Fe research, nor to 
explore global biogeochemical Fe models, 
Fe speciation and complexation, the role 
of internal cycling processes, or marine 
particles, because this has been aptly done 
by others (e.g., Boyd and Ellwood, 2010; 
Tagliabue et  al., 2017), or is well cov-
ered by other articles in this special issue 
(Anderson, 2024, in this issue; Twining, 
2024; Tagliabue and Weber, 2024; Whitby 
et al., 2024). Instead, we focus on show-
casing the breadth of the GEOTRACES 
dFe datasets that are publicly available 
in the latest GEOTRACES data product 
(IDP2021v2; GEOTRACES Intermediate 
Data Product Group, 2023) and discuss 
how our view of the importance and per-
vasive nature of (non-dust) boundary 
sources of Fe to the ocean has changed 
dramatically with the availability of new, 
high-resolution, geographically distrib-
uted dFe and other oceanic TEI datasets 
since the birth of GEOTRACES.

THE GEOTRACES TEI 
DATA “EXPLOSION”
In 2024, at the time of writing, the current 
GEOTRACES Intermediate Data Product 
2021v2 contains over 16,000 observations 
of dissolved Fe (Figure 1), corresponding 
to about three orders of magnitude more 
than the pre-GEOTRACES era (Schlitzer 
and Mieruch-Schnülle, 2024, in this issue). 
This represents a veritable “explosion” in 
both data quality and quantity, and pro-
vides detailed, basin-scale mapping of all 
the oceans for many TEIs (e.g., Figure 2 
for dFe). The amount of data for dFe will 
also increase further with the availabil-
ity of the next Intermediate Data Product 
(IDP) in 2025. The GEOTRACES data 
product includes TEI data from section 
cruises, numerous “process” studies, and 
also compliant (i.e.,  non-GEOTRACES) 
datasets. It relies on rigorous intercalibra-
tion of data for inclusion and the use of 
“crossover stations” between sections (see 
Aguilar-Islas, 2024, in this issue), mean-
ing that all data can be synthesized for 
comparison and interpretation and can 
be used to create elegant World Ocean 
Circulation Experiment (WOCE)-style 
two- and three-dimensional visualiza-
tions as in Figures 2–4 (Schlitzer et  al., 
2018). Such impressive cooperative pro-
duction of freely available intercali-
brated data and visualizations (available 
as an electronic atlas) is perhaps one of 
the greatest successes of GEOTRACES to 
date, ranking alongside a plethora of sci-
ence outcomes (Anderson et  al., 2020) 
and the proliferation and standardization 
of “clean techniques” across 35+ coun-
tries, all built on the pioneering clean col-
lection techniques of earlier researchers 
(e.g., Bruland et al., 1979; Measures et al., 
2008; Cutter and Bruland, 2012).

APPLICATION OF COMBINED 
TOOLS, EXISTING TOOLS, AND 
NEW TOOLS
It was clear from the very beginning of 
planning for a GEOTRACES-style pro-
gram that a multi-tracer approach was 
needed to address complex marine bio-
geochemical questions (Jeandel, 2024, 

FIGURE 1. Distribution of all dissolved Fe concentration data included in the GEOTRACES Data 
Product 2021v2 (GEOTRACES Intermediate Data Product Group, 2023). The data show ranges from 
0.01 to 420 nmol kg–1, with the most elevated values associated with Fe sources (anoxic Black Sea 
waters and/or Mid-Atlantic Ridge [MAR] hydrothermal plumes), and most data falling between 0 and 
1 nmol kg–1. Note nonlinear x axis on left-hand panel.
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FIGURE 2. The GEOTRACES data “explosion”—a synthesis of dissolved Fe concentrations from four ocean basins. (a) A global map shows 
GEOTRACES cruise sections and process studies from which dissolved Fe concentrations are available in the Intermediate Data Product 
2021v2 (GEOTRACES Intermediate Data Product Group, 2023), taken from the eGEOTRACES electronic atlas (Schlitzer, 2021). (b–e) Three-
dimensional ocean basin views show plots of dissolved Fe concentration sections (nmol kg–1) from the Atlantic, Arctic, Pacific, and Indian 
Oceans, respectively. Graphics by Reiner Schlitzer, Alfred Wegener Institute 
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in this issue; Anderson et  al., 2014). 
For example, an understanding of the 
sources, sinks, and behavior of the bio-
active elements such as Fe could be greatly 
enhanced by measuring the suite of 
micronutrient TEIs (e.g., Cd, Cu, Co, Mn, 
Ni, Zn) or by measuring flux (e.g., Ra, Th), 
particle- scavenging (e.g.,  Th, Pa, U, Po), 
boundary source addition (Al, Pb, Ra, 
Th, He), or circulation tracers (e.g., REE, 
CFCs). Accordingly, a key strength of 
the GEOTRACES approach and sci-
ence plan, in addition to high- resolution 
intercalibrated datasets, is both measure-
ment of multiple TEIs and application of 
these measurements to biogeochemical 
marine science questions (GEOTRACES 
Planning Group 2006; Anderson et  al., 
2014). Cooperative work by multiple PIs 
on the same ship, with samples collected 
from the same trace-metal clean rosette 
(or other coordinated sampling systems), 
means that a suite of different TEIs is 
measured on subsamples of water, par-
ticle, or aerosol samples. This is a mam-
moth undertaking—as an example, the 
recent US GEOTRACES GP17-OCE 
cruise in the South Pacific collected 
~12,000 filtered samples for 21 labora-
tories (Halbeisen, 2024, in this issue)—
but the benefit for understanding sources 
and biogeochemical processes cannot be 
overstated as compared to the single-TEI 
studies that were much more typical prior 
to GEOTRACES.

GEOTRACES has also stimulated the 
development and/or widespread appli-
cation of sampling systems, techniques, 
and parameters. An excellent exam-
ple of a “new” parameter is the applica-
tion of dissolved stable Fe isotope ratios 
(δ56Fe) to provide key insights into the 
sources, sinks, and internal cycling of dFe 
(de Jong et  al., 2007; Fitzsimmons and 
Conway, 2023). These ratios were mea-
sured in seawater for the first time by 
GEOTRACES participants, with inter-
calibration facilitated by community 
exercises (Boyle et  al., 2012) and sub-
sequently applied at high resolution on 
at least 10 GEOTRACES sections. Other 
“Fe” parameters such as measurement of 

Fe-binding organic ligands, Fe speciation 
(Fe2+ versus Fe3+), dFe size partitioning 
(subdivision of the 0.2 micron dFe pool 
into smaller operationally defined dis-
solved size fractions), and various forms 
of particulate Fe, which had all been mea-
sured to a very limited extent previously, 
could now be applied together at high- 
resolution at the basin scale (Figure 3). 

The second US GEOTRACES cruise 
in 2011 across the subtropical North 
Atlantic (GA03_w) provides a particu-
larly relevant example of all these aspects 
of GEOTRACES, with sections examin-
ing multiple parameters illuminating dif-
ferent aspects of the Fe cycle (Figure 3). 
For instance, dissolved Fe concentra-
tions and δ56Fe identify multiple exter-
nal point sources of Fe to the section 
(Mid-Atlantic Ridge venting and margin 
sediments) set against a pervasive surface 
dust source across the basin, while par-
ticulate Fe highlights deep benthic neph-
eloid layers. Further insight into the form 
and longevity of Fe may be gleaned from 
the redox speciation, the size partitioning 
of the dissolved Fe (percentage colloids), 
and the presence of Fe binding ligands 
(Figure 3). Thorium isotopes (230Th, 
232Th, 234Th) have perhaps been especially 
useful here in the “dusty” North Atlantic, 
because they can provide constraints not 
only on dust and particle (and therefore 
multiple TEI) flux rates but also on export 
of Fe from the surface ocean as well as for 
residence times of multiple TEIs across 
the basin (see Hayes, 2024, in this issue). 
Radium provides further unique insights 
because its multiple isotopes with varying 
half-lives allow for TEI flux calculations, 
and coupling (or decoupling) of 228Ra, 
232Th, dFe, and δ56Fe in ocean sections can 
be used to discriminate different sources 
(Charette et al., 2015, 2016). For example, 
diffusive sediment fluxes of dFe2+ in the 
deep eastern portion of GA03_w may be 
indicated by benthic 228Ra and low δ56Fe, 
while the presence of near-crustal δ56Fe, 
elevated 232Th, and a lack of 228Ra at inter-
mediate depths on both margins (includ-
ing within low-oxygen waters) points to 
lithogenic particulate fluxes and perhaps 

a supply of small colloidal-size lithogenic 
particles that would be classified as dFe 
rather than a large diffusive supply of 
reduced Fe2+ (Conway and John, 2014; 
Charette et al., 2015; Fitzsimmons et al., 
2015; Hayes et al., 2018; Figure 3).

A MULTI-SOURCE VIEW 
OF DISSOLVED Fe
The latest combined oceanic dFe dataset 
(GEOTRACES Intermediate Data Product 
Group, 2023), which spans concentrations 
from just 9 pmol kg–1 (10–12 mol kg–1) in 
remote surface waters to ~400 nmol kg–1 
in the anoxic subsurface of the Black Sea 
(Figure 1, measured on Dutch GA04-N), 
confirms that most open oceanic dFe data 
are in the 0.1–1 nmol kg–1 range, and that 
lowest concentrations are found in remote 
surface waters that receive little dust. 
However, the dataset also clearly shows 
that the deep ocean cannot simply be 
characterized by a near-constant dFe con-
centration but instead ranges from ~0.2 to 
well in excess of 1 nmol kg–1. Elevated dFe 
concentrations are found near bound-
ary sources (dust, sediments, hydro-
thermal vents) and also in some cases at 
remarkably long distances (thousands of 
kilometers) from the nearest implicated 
boundary source (Figures 1 and 2). Such 
elevated dFe concentrations are thought 
to be not only facilitated by the presence of 
Fe-binding organic ligands but also depen-
dent on the physical Fe speciation, notably 
the presence of colloids and via dissolved- 
particulate exchange (e.g.,  Resing et  al., 
2015; Fitzsimmons et  al., 2017; Kondo 
et al., 2021; Wong et al., 2022).

So, what does the global compila-
tion tell us about dFe sources in the dif-
ferent ocean basins? The major finding 
was the prevalence of intermediate-deep 
Fe sources such as hydrothermal venting 
or marine sediment release throughout 
all ocean basins (Figure 2). Indeed, it is 
now a remarkably safe bet that crossing 
a location of known high-temperature 
hydrothermal venting will mean observa-
tions of a dFe plume associated with that 
vent. Our view of the ocean must there-
fore now reflect multiple sources as being 
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influential in setting the distribution of 
dFe (see Figure 4), while the question of 
how influential such sources are for driv-
ing surface productivity requires under-
standing of both the longevity of dFe spe-
cies during transport and the regional 

to basin wide circulation. Although the 
locations of different cruise sections in 
different basins were laid out during 
GEOTRACES planning to target differ-
ent and specific biogeochemical pro-
cesses and boundary sources (Anderson 

et al., 2014), the compilation shows that 
the importance of different sources var-
ies regionally, basin-by-basin (Figure 2).

A second critical aspect of the 
GEOTRACES dFe cycling paradigm 
is that dFe can be transported over 

FIGURE 3. A GEOTRACES high-resolution, multiparameter approach for interrogating Fe cycling, with distributions from the subtropical North Atlantic 
(GEOTRACES Section GA03_w). GEOTRACES cruises sample a range of different dissolved and particulate parameters at high spatial resolution to pro-
vide a synthetic view of the processes that control elemental cycling, with an example here from the first US GEOTRACES section: (a) dissolved Fe con-
centration (0.2 µm size), (b) chemical speciation (fraction Fe(II)), (c) physicochemical Fe speciation (fraction colloidal Fe; ~0.02–0.2 µm size), (d) small 
size fraction (SSF) particulate Fe (0.8–51 µm), (e) dissolved Fe isotope ratio (δ56FeIRMM-014), (f) organic complexation (L1-type Fe-binding ligand concen-
trations), (g) dissolved 228Ra (sediment diffusive flux tracer), and (f) dissolved 232Th (lithogenic tracer). Data from the proximal Trans-Atlantic Geotraverse 
(TAG) hydrothermal plume (Mid-Atlantic Ridge crest near 26°N) sampled during the cruise are not included in sections. These data are reproduced from 
the GEOTRACES Intermediate Data Product 2021v2 (GEOTRACES Intermediate Data Product Group, 2023; Conway and John, 2014; Buck et al., 2015; 
Charette et al., 2015; Fitzsimmons et al., 2015; Hatta et al., 2015; Ohnemus and Lam, 2015; Sedwick et al., 2015; Hayes et al., 2018), and plotted using 
Ocean Data View (Schlitzer et al., 2023). For more geographic context of cruise locations, see Figure 2.
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unexpected distances through the 
ocean. Several selected GEOTRACES 
sections in Figure 5 highlight the long- 
distance transport of dFe from sources 
such as sediments or hydrothermal 
vents, despite expectations that most Fe 
would be lost near-source, constituting 
a second critical aspect of the updated 
view in Figure 4. In fact, deep sources 
and transport appear to be pervasive, 
although intriguingly, long- distance 
transport is not always observed. For 
rivers, where most dFe was thought to 
be lost within estuaries during floc-
culation (Boyle et  al., 1977), German 
GEOTRACES GA08 (Figure 5a) showed 
a dramatic and persistent plume of dFe 
from the Congo River for ~1,000  km 
into the South Atlantic, where it is 
thought to relieve Fe limitation (Vieira 
et  al., 2020). Such behavior is likely to 
vary from river to river, as such large-
scale transport was not observed for the 
Amazon River (Rijkenberg et  al., 2014; 
Figure 5b). Similarly, data from German 
and US GEOTRACES cruises in the 
Arctic indicate that the transpolar drift 
carries riverine and shelf dFe long dis-
tances (Figure 5b; Charrette et al., 2020). 

Turning to the Pacific, Japanese GP02 
shows a remarkable plume of sediment- 
derived dFe being transported across 
the North Pacific, up to 4,000 km away 
from the source in marginal seas near 
Japan (Nishioka et al., 2020). The mech-
anisms for such long-distance travel of 
sediment-derived dFe remain unclear, 
with organic- complexation invoked in 
most cases, while dFe may be stabilized 
and transported through low dissolved 
oxygen (Kondo et al., 2021; Wong et al., 
2022). Lastly, the zonal US GP16 sec-
tion across the South Pacific shows a 
remarkably persistent dFe plume that 
travels ~4,000 km from the East Pacific 
Rise (Resing et al., 2015; Figure 5d). This 
observation, although somewhat in con-
trast with vents in the Atlantic, reinforces 
the “leaky vent hypothesis” of hydrother-
mal venting, where a small fraction of 
dFe from high-Fe vent fluids, stabilized 
by organic-ligands or as microparticles, 
or from particulate-dissolved exchange, 
can persist over great distances through-
out the ocean (Toner et  al., 2012; 
Fitzsimmons et  al., 2017; Fitzsimmons 
and Steffen, 2024, in this issue). 

Finally, the GEOTRACES sections 

clearly highlight interoceanic differ-
ences in dFe distributions. For exam-
ple, dust adds Fe to subtropical Atlantic 
surface waters, most notably near the 
Sahara, and there are sediment and riv-
erine sources along the margins, as well 
as “bullseyes” of elevated Fe around 
the Mid-Atlantic Ridge (Figure 2b). 
However, the dominant Atlantic meridi-
onal circulation means that there is little 
prospect of dFe plumes spreading out 
zonally from sources. Further, little evi-
dence of long-distance transport is seen 
in the GA02 Atlantic meridional sec-
tion (Rijkenberg et  al., 2014). By con-
trast, the Pacific, which remains less well 
sampled than the Atlantic, has compara-
tively lower dust fluxes to surface waters 
but notable large deep sources of Fe (sed-
iments and hydrothermal) that travel 
zonally through the subsurface ocean 
over thousands of kilometers, facili-
tated by ocean circulation (Figures 2c 
and 5c–d). The degree to which these 
deep Fe sources may influence surface 
waters then depends on the depth of the 
source, the longevity of this dFe, and rele-
vant ocean circulation, with some studies, 
for example, suggesting that upwelling 
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FIGURE 4. A GEOTRACES-updated multiple boundary source perspective for dissolved iron distributions in the ocean illus-
trates how dust, sediments, hydrothermal vents, and freshwater sources (with possible long-distance transport of Fe) all play 
regionally variable roles in determining marine Fe distributions. The illustration is based on the boundary source portion of 
the GEOTRACES Science Plan schematic (GEOTRACES Planning Group, 2006), as adapted by Conway and Middag (2024). 
Arrow sizes provide a representative (but inexact) view of the importance of these different fluxes, though we note this var-
ies with ocean basin and setting, moderated by internal biogeochemical cycling processes. It is also important to note that the 
internal cycling processes that moderate dFe distributions are deliberately not shown (for a comprehensive view of those, see 
Tagliabue et al., 2017). OMZ = Oxygen minimum zone. 
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waters (or shallow vents) bring deeper 
hydrothermal Fe to the surface Fe-limited 
Southern Ocean (Tagliabue and Resing, 
2016; Ardyna et al., 2019). 

SPOTLIGHT ON MARINE 
SEDIMENTS AS AN Fe SOURCE
Because aerosols and hydrothermal vents 
are dealt with in detail by others in this 
special issue of Oceanography (Buck et al., 

2024; Fitzsimmons and Steffen, 2024), 
here we highlight some details of marine 
sediments as Fe sources. Although dust 
was at first considered to be the primary 
source of Fe to the open ocean, a growing 
number of studies also hinted at the rival 
importance of marine sediments as dFe 
sources. Starting in the late 1990s, it was 
shown that sediments were an important 
source of dFe to surface waters along the 

California margin, with offshore stations 
also indicating that sediment-derived Fe 
was transported offshore at intermedi-
ate depths through lower-oxygen waters 
into the North Pacific (Johnson et  al., 
1997, 1999). Soon after, it was postu-
lated that sediment-margin Fe fluxes—
that could be transported hundreds of 
kilometers offshore—in fact rivaled aero-
sols as an ocean Fe source (Elrod et  al., 

FIGURE 5. GEOTRACES data-
sets from multiple international 
groups illuminate the (non- 
atmospheric) oceanic bound-
aries as influential Fe sources 
to the open ocean, sometimes 
with subsequent long-distance 
transport of dFe: rivers, hydro-
thermal vents, and margin sedi-
ments. (a) (left) Riverine addition 
of Fe to the equatorial Atlantic 
via the Congo River Plume, 
and (right) the Arctic Transpolar 
Drift (TPD) and Congo River 
Plume in the context of global 
rivers (modified from Vieira 
et  al., 2020). (b) Riverine and 
shelf additions of Fe to the 
Transpolar Drift in the Arctic 
(US-GN01 and German-GN04). 
(c) Long-distance transport 
of sediment- derived Fe from 
Japan to the North Pacific 
(Japanese-GP02). Hyd = Hydro-
thermal. (d) Long-distance trans-
port of hydrothermal- and sed-
iment-derived Fe in the South 
Pacific (US-GP16). Data for 
b–e are reproduced from the 
GEOTRACES Intermediate Data 
Product 2021v2 (GEOTRACES 
Intermediate Data Product 
Group, 2023; Resing et  al., 
2015; Fitzsimmons et  al., 2017; 
John et al., 2018; Charette et al., 
2020; Jensen et  al., 2020; 
Nishioka et  al., 2020; Gerringa 
et  al., 2021), and were plot-
ted using Ocean Data View 
(Schlitzer, 2023). For more geo-
graphic context of cruise loca-
tions, see Figure 2.
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2004). Subsequently, and prior to the 
GEOTRACES field campaign, several 
studies indicated that sediment-derived 
Fe could be supplied to surface waters, 
especially important around islands in the 
Fe-limited Southern Ocean (Blain et  al., 
2007; Pollard et al., 2007). At the time of 
writing, ocean section studies of dFe have 
firmly established benthic sediments 
as an important Fe source to the ocean, 
possibly even the dominant Fe source 
to some regions via upwelling of deep 
waters (Tagliabue et al., 2014). Examples 
of long-distance transport of sediment- 
derived dFe away from its source has also 
now been demonstrated across all ocean 
basins (e.g.,  Noble et  al., 2012; Conway 
and John, 2014; Klunder et al., 2014; John 
et  al., 2018; Moffett and German, 2020; 
Nishioka et al., 2020; Jensen et al., 2020; 
Jensen and Colombo, 2024, in this issue). 
But what of the mechanisms of release 
and transport of this dFe, and how has 
GEOTRACES informed these aspects? 

The classic pathway for release of dFe 
from sediments to the overlying water 
column (so-called reductive dissolution, 
or RD) is via diffusion of Fe2+ from sedi-
ment porewaters, where dFe can be pres-
ent at orders of magnitude higher con-
centrations (micromolar levels) than in 
bottom waters, produced via microbial 
respiration of organic carbon using Fe(III) 
as an electron accepter (Elrod et al., 2004; 
Homoky et  al., 2009; Severmann et  al., 
2010, and references therein). Here, Fe2+ 
fluxes to bottom waters are thought to be 
primarily controlled by organic carbon 
oxidation rates and bottom water oxygen 
conditions (Dale et  al., 2015). Sediment 
porewater studies have been instrumen-
tal in demonstrating that the porewater 
Fe2+ reservoir has an extremely fraction-
ated Fe isotope signature (–1‰ to –5‰) 
relative to marine sediments, at +0.1‰, 
providing a potential diagnostic tracer 
for sediment-derived Fe (Homoky et al., 
2009; Severmann et al., 2010; Klar et al., 
2017; Fitzsimmons and Conway, 2023, 
and references therein). Although the 
degree to which such low δ56Fe may be 
attenuated during oxidative loss of Fe at 

the sediment-water interface or within 
marine bottom waters remains a sharp 
focus of Fe isotope research, both ben-
thic lander and water column studies 
demonstrate that, under the right condi-
tions, this distinctive light isotope signa-
ture can be transferred to elevated dFe in 
bottom waters, where it may persist—and 
even be transported over thousands of 
kilometers after being released into low- 
oxygen waters of the ocean (Severmann 
et al., 2010; John et al., 2018; Hunt et al., 
2022). A perhaps extreme example is the 
transport of large fluxes of dFe from sedi-
ments into the anoxic waters of the Black 
Sea, where dFe concentrations as high 
as 400 nmol kg–1 have been observed 
(Rolison et al., 2018; Figure 1).

In addition to confirming the clas-
sic pathway for release of dFe from sedi-
ments, GEOTRACES dFe isotope studies 
have also been instrumental in a pro-
posed new mechanism for dFe release 
from marine sediments, termed non- 
reductive dissolution (NRD; Radic et al., 
2011). This proposed second mecha-
nism consists of the release of lithogenic 
Fe(III) colloids produced by weather-
ing (Homoky et  al., 2021). Accordingly, 
dFe release via NRD would be decoupled 
from organic carbon supply and benthic 
oxygen conditions, and instead linked 
to regions of high benthic energy, sed-
iment disturbance, and benthic neph-
eloid layers—thus, it would be influen-
tial in deep slope and benthic sediment 
environments (Homoky et  al., 2021). 
Further, this mechanism is thought to 
dominate sedimentary dFe release in 
the deeper ocean and, unlike reductive 
dissolution, to release dFe with a near-
crustal (+0.1‰) Fe isotope signature 
(Homoky et al., 2021).

Surprises from GEOTRACES include 
not only the prevalence of shallow, 
sediment- derived Fe plumes associated 
with subsurface oxygen minimum waters 
in shelf settings but also the presence of 
Fe plumes at deeper depths on the conti-
nental slope. There may be multiple rea-
sons for these observations, including the 
non-reductive dissolution mechanism. 

Indeed, sediment addition at inter-
mediate depths in the North Atlantic 
have been attributed to non-reductive 
dissolution on—or along—the oxic North 
American margin, or exchange with par-
ticles in deep benthic nepheloid layers 
(Conway and John, 2014). Turning to 
the productive Peru margin in the South 
Pacific, as perhaps expected, high fluxes 
of Fe2+ to low-oxygen bottom waters over 
the Peru shelf lead to elevated dFe in bot-
tom waters and a plume of dFe(II) that 
is transported more than 1,000 km off-
shore at depths of 100–500 m within the 
low-oxygen core of the oxygen minimum 
zone, as seen on GP16 (John et al., 2018). 
However, work on GP16 also observed a 
second, unexpected, and more persistent 
sediment-derived dFe(III) plume ema-
nating from the Peru margin slope under 
oxygenated conditions at ~1,000–3,000 m 
depth where reductive benthic dFe fluxes 
should be low (Dale et al., 2015)—a find-
ing that defied conventional understand-
ing and models. Possible explanations for 
the persistence of a deep plume included 
elevated flux of stabilized dFe on the slope 
(perhaps from NRD, sediment resuspen-
sion, or ligand binding) or re-release of 
dFe on the slope from Fe-rich particles 
sinking from the shallow plume above 
(John et al., 2018), the so-called “shelf to 
basin” shuttle of reactive Fe oxides to slope 
sediments (Moffett and German, 2020). 
Writing later, Lam et al. (2020) concluded 
that slope sediments may be an especially 
persistent source of dFe to deeper ocean 
waters, relevant for many margins. Each 
ocean margin studied adds new insight to 
the picture, highlighting both the excite-
ment and the utility of these new data-
sets as well as the added complexity that 
must be considered when parameter-
izing global models. So far, Fe isotopes 
have been used to constrain either RD 
or NRD sediment fluxes to the water col-
umn, but it is likely that the two mecha-
nisms of release may need to be consid-
ered together as contributors to sediment 
dFe release (and influencing of δ56Fe) in 
overlying shelf and slope environments 
(Tian et al., 2023).
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WHERE NEXT?
GEOTRACES has been wildly successful 
in driving forward our knowledge of the 
distributions of TEIs and the processes 
that control them. An established multi-
source view of the Fe cycle can now be 
incorporated into models (Figure 4). Our 
understanding of the long-distance trans-
port of Fe is strongly linked to ocean circu-
lation. But have we ironed out the details 
of the mechanisms by which dFe enters 
the ocean? By design, GEOTRACES sec-
tions have focused on seawater collection 
of sufficient volumes to host multi-tracer 
analyses using the same water samples, 
limiting time available for complemen-
tary sediment coring or repeat spatiotem-
poral sampling. While GEOTRACES has 
shattered the prevailing paradigm and 
provided a tantalizing taste of the pro-
cesses occurring near sediments or at 
other ocean interfaces that facilitate and/
or hinder dFe release, these data have 
elicited many new and exciting questions 
regarding marine Fe cycling. Going for-
ward, as envisaged by the GEOTRACES 
Science Plan, these knowledge gaps must 
be addressed by smaller-scale process 
studies based on the multi-tracer and 
rigorous approach of the GEOTRACES 
section cruises. Time series that investi-
gate temporal change at dynamic ocean 
boundaries are also critical.

Taking sediments as an example, pro-
cess studies need to link porewater and 
sediment core sampling with benthic 
lander rate measurements and high- 
resolution benthic water column mea-
surements of multiple dissolved and par-
ticulate TEIs (including radionuclides), 
which could be nested in regional mod-
els of physical circulation. This would 
allow for a more complete understanding 
of the processes that facilitate TEI release 
and the ultimate speciation and fate of 
TEIs that are transported away from their 
sources. Development of new sampling 
systems for the benthic boundary layer, 
the shelves, and marginal seas are likely of 
key importance. In fact, such endeavors 
are already ongoing; to date, there have 
been ~50 GEOTRACES process studies, 

with a couple that have focused primar-
ily on benthic exchange. One example is 
GApr04, which looked at seasonal cycling 
and fluxes of TEIs in the Celtic Sea 
(Birchill et al., 2017; Klar et al., 2017), and 
another is the ongoing GApr18 STING 
process study, which couples dFe with Ra 
isotopes and focuses on how submarine 
groundwater discharge may be the main 
source of Fe and dissolved organic nitro-
gen to the eastern Gulf of Mexico (Knapp 
et al., 2024). Lastly, anoxic, high-Fe sed-
iment environments have received the 
most attention in studies of sediment dFe 
fluxes, but it is also of vital importance 
to understand the release of dFe in envi-
ronments where Fe fluxes are low but the 
speciation of Fe may allow persistence 
and transport away from sources. Similar 
process studies are needed for other Fe 
sources such as submarine groundwater, 
estuaries, cryospheric settings, dust depo-
sition, and hydrothermal venting to fully 
understand and constrain global fluxes of 
climate— and productivity- relevant dFe.
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