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INTRODUCTION
Globally, biological dinitrogen (N2) fix-
ation provides the majority of bioavail-
able nitrogen (N) to the ocean, with 
additional contributions from atmo-
spheric deposition, river runoff, and sub-
marine groundwater discharge (SGD; 
Figure 1). These processes contribute to 
the inventory of bioavailable N in the 
forms of nitrate (NO3

–), nitrite (NO2
–), 

and ammonium (NH4
+), as well as par-

ticulate and dissolved organic N (PON 
and DON, respectively), all of which are 
considered “fixed” N. 

Bioavailable N is cycled among these 
forms through assimilation processes 

whereby inorganic and dissolved organic 
forms of N are incorporated into bio-
mass (PON), and the reverse, whereby 
PON is degraded to DON and ammo-
nium (Figure 1). Reduced N in the forms 
of ammonium and DON can then be oxi-
dized to nitrite and nitrate through nitri-
fication, which produces nitrous oxide 
(N2O) as a byproduct (Stein, 2019; Wan 
et al., 2023). Alternatively, uptake of these 
reduced forms of N by primary producers 
supports regenerated production, which is 
defined as phytoplankton growth using N 
sourced from within the sunlit (euphotic) 
zone (Dugdale and Goering, 1967). By 

contrast, new and export production 
are fueled by N supplied to the euphotic 
zone via N2 fixation, atmospheric depo-
sition, fluvial inputs, laterally transported 
organic nutrients, and/or upward trans-
port of nitrate from the aphotic zone 
(Dugdale and Goering, 1967; Eppley and 
Peterson, 1979; Figure 1).

Nitrogen loss occurs through N2 pro-
duction via the processes of denitrifi-
cation and anaerobic ammonia oxida-
tion (anammox) in anoxic sediments and 
water parcels (Figure 1). Because N2 is 
not widely bioavailable, its production is 
considered a loss of bioavailable N from 
the marine environment. The burial of 
organic N that escapes degradation in 
the water column and shallow sediments 
is the other main loss of bioavailable N 
from the water column. Of these, benthic 
denitrification is perhaps the largest sink 
for bioavailable N, although estimates of 
N loss range widely and are a key uncer-
tainty in the marine N budget (Gruber 
and Sarmiento, 1997; Brandes and Devol, 
2002; Codispoti, 2007; DeVries et  al., 
2013; Wang et al., 2019). 

The N cycle is unique among marine 
elemental cycles in being primarily driven 
by biological processes. As described 
above, the main inputs and losses of bio-
available N, as well as its internal cycling, 
rely on the activities of specialized micro-
bial metabolisms. The enzymes that cat-
alyze N oxidation and reduction reac-
tions can be some of the most abundant 
proteins in the global ocean (Saito et al., 
2020), and because they rely on metal 
cofactors at their active sites (Morel and 
Price, 2003), their activity can be lim-
ited by trace metal availability (Morel 
et al., 2020). A classic example is the lim-
itation of nitrate assimilation in high- 
nutrient, low-chlorophyll regions by low 
iron availability (Martin et al., 1991). Iron 
is also required for enzymes involved in 
N2 fixation, as well as some steps of nitri-
fication (Wei et al., 2006; Ferguson et al., 
2007; Shafiee et al., 2019), denitrification 
(Zumft, 1997), and anammox (Kartal 
and Keltjens, 2016) (Figure 1). Thus, the 
utilization of nitrogenous substrates for 

ABSTRACT. Because nitrogen availability limits primary production over much of 
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supply to the surface ocean is essential for understanding biological productivity and 
exchange of greenhouse gases with the atmosphere. Quantifying the ocean’s inputs, 
outputs, and internal cycling of nitrogen requires a variety of tools and approaches, 
including measurements of the nitrogen isotope ratio in organic and inorganic nitro-
gen species. The marine nitrogen cycle, which shapes nitrogen availability and specia-
tion in the ocean, is linked to the elemental cycles of carbon, phosphorus, and trace ele-
ments. For example, the majority of nitrogen cycle oxidation and reduction reactions 
are mediated by enzymes that require trace metals for catalysis. Recent observations 
made through global-scale programs such as GEOTRACES have greatly expanded our 
knowledge of the marine nitrogen cycle. Though much work remains to be done, here 
we outline key advances in understanding the marine nitrogen cycle that have been 
achieved through these analyses, such as the distributions and rates of dinitrogen fixa-
tion, terrestrial nitrogen inputs, and nitrogen loss processes. 

FIGURE 1. Schematic of the marine nitrogen cycle showing the major fixed N inputs (blue arrows) of 
rivers, submarine groundwater discharge (SGD), atmospheric deposition, and N2 fixation; losses (red 
arrows) via benthic and water column denitrification and anammox and organic N burial; and inter-
nal cycling processes (green arrows) of assimilation, ammonification, and nitrification. Processes 
requiring iron (Fe) and/or other trace metal cofactors are indicated with black squares overlaid on 
the arrows. Ocean circulation is represented with dashed arrows. Figure modified with permission 
from Fitzsimmons and Conway (2023)
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assimilation or energy generation can 
be affected not only by the availability of 
those substrates but also by the availability 
of trace metals for enzyme activity (Morel 
et  al., 2020; Rafter, 2024, in this issue). 
Understanding the distribution of pro-
cesses involved in the marine N cycle and 
budget is thus aided by considering trace 
metal availability in the environment. 

Nutrient Stoichiometry
Accurate estimates of N inputs and losses 
are necessary for a first-order constraint 
on the oceanic N inventory, which has 
implications for better understanding 
ocean fertility and climate. The quanti-
ties of fixed N supply to and loss from the 
ocean have been widely explored through 
the distributions of nitrate and phosphate 
(PO4

3–) concentrations, which are rou-
tinely measured on oceanographic expe-
ditions. Combining these nutrient mea-
surements to compute the tracer N*, 
typically defined as [NO3

–] – 16 × [PO4
3–], 

has been instrumental in mapping and 
quantifying N2 fixation and N loss in the 
Atlantic and Pacific Oceans (Gruber and 
Sarmiento, 1997; Deutsch et  al., 2001). 
Subsequently, surface distributions of P*, 
typically defined as [PO4

3–] – [NO3
–] ÷ 16 

(Deutsch et al., 2007), have been used to 
diagnose regions that may favor N2 fix-
ation, where positive P* values indicate 
the availability of PO4

3– in excess of stoi-
chiometric N requirements (Deutsch 
et al., 2007; Moore et al., 2009). The sur-
face layer convergence of P* computed by 
ocean circulation models has also been 
used to quantify N2 fixation, by attrib-
uting the consumption of excess PO4

3– 
to N2 fixation (Deutsch et  al., 2007; 
Wang et  al. 2019). These estimates pro-
vide some of the most spatially integrated 
evaluations of basin-scale N input and 
loss but are sensitive to locally signifi-
cant atmospheric and riverine inputs, as 
well as internal cycling through varia-
tions in the N:P ratio of nutrients incor-
porated into and released from organic 
matter (Arrigo, 2005; Mills and Arrigo, 
2010; Martiny et  al., 2013; Wang et  al., 
2019; Liang et  al., 2023). Further, in 

regions where N2 fixation and denitrifi-
cation may both impact nutrient ratios, 
those signals counteract each other, lead-
ing to a net effect that diminishes the sig-
nal of both N input and N loss in inor-
ganic nutrient distributions (Sigman 
et al., 2005; Yoshikawa et al., 2015). These 
limitations can be overcome by comple-
mentary measurements of biogenic N2 
distributions (Chang et al., 2010; DeVries 
et  al., 2012), instantaneous production 
rates (Moore et al., 2009; Yoshikawa et al., 
2015; Shao et al., 2023), and stable isotope 
ratios (see below).

Isotopic Systematics
The N and oxygen (O) isotope ratios in 
nitrate (15RNO3 and 18RNO3, respectively) 
provide an alternate view of nitrate input, 
loss, and internal cycling in the ocean. 
The mean ocean nitrate δ15N,

δ15N (‰) = (15RNO3/15RN2 – 1) × 1,000, 

where 15RN2 is the N isotope ratio of N2 in 
air, is around 5‰ (Sigman et  al., 2000), 
set by the balance between the input of 
N with a low δ15N from N2 fixation and 
the isotopic fractionation imposed by N 
loss via denitrification (and anammox) in 
the water column and marine sediments 
(Brandes and Devol, 2002). Water col-
umn denitrification, in particular, causes 
a large increase in nitrate δ15N for a given 
amount of nitrate consumed, whereas ben-
thic denitrification causes relatively little 
change in nitrate δ15N (Cline and Kaplan, 
1975; Brandes et al., 1998). There has also 
been recent recognition of a role for isoto-
pic fractionation during nitrate consump-
tion in the Southern Ocean in modulat-
ing mean ocean nitrate δ15N (Fripiat et al., 
2023). The mean nitrate δ18O,

δ18O (‰) = (18RNO3/18RVSMOW – 1) × 1,000,

where 18RVSMOW is the O isotope ratio 
in Vienna Standard Mean Ocean Water 
(VSMOW), is approximately 2‰ 
(Casciotti et  al., 2002; Sigman et  al., 
2005). In contrast to mean ocean nitrate 
δ15N, this mean δ18O value is predomi-
nantly controlled by nitrification, which 
adds O atoms to the nitrate pool, and 

nitrate assimilation, which removes them 
(i.e.,  internal N cycle processes; Sigman 
et al., 2005; Rafter et al., 2013). Water col-
umn denitrification plays a lesser role in 
setting the average deep ocean nitrate 
δ18O because it represents a smaller 
global flux than nitrate assimilation, 
which is the dominant sink for nitrate 
O isotopes. Measurements of nitrate 
δ15N and δ18O thus allow overlapping N 
cycle processes to be disentangled, often 
through their difference as the tracer 
Δ(15–18) = δ15N – δ18O (Sigman et  al., 
2005; Rafter et al., 2013). 

For example, during nitrate assimila-
tion and denitrification, the O isotopes in 
nitrate are fractionated to approximately 
the same extent as the N isotopes, so that 
the δ18O and δ15N of the nitrate pool rise 
in a ratio of 1:1 as consumption proceeds 
(Casciotti et al., 2002; Granger et al., 2004, 
2008, 2010; Karsh et  al., 2012; Rohde 
et al., 2015). As a result, these processes 
lead to no change in nitrate Δ(15–18) 
(Rafter et al., 2013). In contrast, the rem-
ineralization (via ammonification and 
nitrification) of PON yields nitrate with a 
δ15N that roughly equals that of the PON 
being regenerated while its δ18O is set by 
nitrification, which incorporates the δ18O 
of seawater (typically ~0‰) plus an isoto-
pic offset of ~1.1‰ (Sigman et al., 2009; 
Buchwald et  al., 2012; Marconi et  al., 
2015, 2019; Boshers et  al., 2019). When 
nitrification occurs coincident with par-
tial nitrate assimilation, the δ18O of the 
combined (i.e., partially assimilated plus 
newly nitrified) nitrate pool initially 
increases while its δ15N is unaltered, lead-
ing to a decline in Δ(15–18) (Wankel 
et  al., 2007; Sigman et  al., 2009; Rafter 
et  al., 2013; Fawcett et  al., 2015). While 
the remineralization of newly fixed N can 
also cause nitrate Δ(15–18) to decline, 
this change is due to a stronger decrease 
in nitrate δ15N than δ18O (Knapp et  al., 
2008; Rafter et  al., 2013; Marshall et  al., 
2023). As such, the influence of N2 fix-
ation on nitrate isotopes can be sepa-
rated from that of coupled partial nitrate 
assimilation and nitrification (Fawcett 
et  al., 2015; Marshall et  al., 2023). By 
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investigating the regional- and basin-
scale distributions of nitrate δ15N and 
δ18O (Figure 2), we aim to understand 
the balance of processes affecting the N 
inventory. More background on nitrate 
isotope applications in the ocean is avail-
able in the original literature and recent 
overviews (Casciotti, 2016b; Sigman and 
Fripiat, 2019). Here, we aim to illustrate 
how major questions in marine N cycle 
research have been informed by basin-
scale measurements of nitrate isotopes, 
such as: what are the rates and controls 
on the N inputs and losses that govern the 
marine N budget on a global scale, and 
what are the dominant forms of and sup-
ply routes for N fueling biological pro-
duction and altering the health of ecosys-
tems? We additionally consider insights 
gleaned from measurements of dissolved 
organic nutrients and the δ15N of DON.

NITROGEN INPUTS TO 
THE OCEAN
Biological N2 Fixation
Geochemical tracers such N* and nitrate 
δ15N provide a spatially integrative 
approach to identifying and quantifying 
N input through N2 fixation. The δ15N 
of Trichodesmium, a widespread tropical 

diazotroph, ranges from –2‰ to 0‰ 
(Carpenter et al., 1997; Karl et al., 1997; 
Montoya et  al., 2002; Holl et  al., 2007), 
which is significantly lower than ther-
mocline and deep ocean nitrate δ15N 
(2‰–7‰; Figure 3; Sigman et al., 2000; 
Knapp et  al., 2008; Rafter et  al., 2013, 
2019; Fripiat et  al., 2021a). The remin-
eralization of newly fixed organic matter 
thus lowers nitrate δ15N while raising N* 
by introducing nutrients with a high N:P 
ratio (i.e., 25:1 to 50:1; White et al., 2006; 
Knapp et al., 2012) relative to mean ocean 
N:P (i.e., ~16:1; Redfield et al., 1963). 

N2 fixation rates can be estimated by 
coupling these geochemical tracer distri-
butions with information on ocean cir-
culation. Inferred estimates of N2 fixa-
tion that rely on N* necessarily involve 
assumptions of the N:P stoichiometry 
of N2 fixing (diazotrophic) and non-di-
azotrophic plankton. These estimates 
suggest that N2 fixation predominantly 
occurs in the warm, well-lit low latitude 
ocean but with zonal differences (Gruber 
and Sarmiento, 1997; Deutsch et al., 2007; 
Moore et al., 2009; Wang et al., 2019). At 
a global scale, higher N2 fixation rates in 
the Pacific (95–100 Tg N yr–1) than in 
the Atlantic (20–34 Tg N yr–1) and the 

Indian Oceans (22–27 Tg N yr–1) sug-
gest that while N gain is greatest in the 
Pacific, this ocean basin is actually a net 
sink for N (Luo et al., 2012; Landolfi et al., 
2018; Wang et  al., 2019). However, gaps 
in global ocean nutrient distributions 
(e.g., the South Atlantic and much of the 
Indian Ocean) as well as observed tempo-
ral and spatial variability in organic mat-
ter N:P ratios (White et al., 2006; Martiny 
et al., 2013; Liang et al., 2023) leave open 
the possibility for new insights into the 
rates and distribution of N2 fixation, par-
ticularly in the Southern Hemisphere.

The addition of isotopic measurements 
to basin-wide transects has provided new 
insights into the distribution of N2 fixa-
tion in the global ocean. For example, 
some of the first efforts to combine nitrate 
δ15N data from a transect in the western 
subtropical North Atlantic with an ocean 
model yielded a whole Atlantic N2 fixa-
tion rate of 15–24 Tg N yr–1 (Knapp et al., 
2008). This N isotope-based estimate is 
remarkably consistent with one based 
on N* and volume fluxes from transects 
across the Atlantic, of 15–21 Tg N yr–1 
(Moore et al., 2009). Notably, these geo-
chemical signals (δ15N and N*) mani-
fest most strongly in the thermocline, 

FIGURE 2. Map of the published global ocean nitrate δ15N databases from 2010 to 2024. The background color indicates N* 
(= [NO3

–] – 16 × [PO4
3–]) in μM along the 26.5 kg.m–3 isopycnal, which is where some of the lowest N* signals occur in the Pacific 

and some of the highest in the Atlantic. The solid and dashed black contours indicate the 1 and 20 μM surface nitrate con-
centrations, respectively. N* and nitrate concentration data are from the World Ocean Atlas 2018 (Garcia et al., 2018). Symbol 
color indicates the database in which observations were first included (see legend). Supplementary Table S1 provides refer-
ences for new data included in the 2024 update.
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where remineralized products accumu-
late (Figure 2), and integrate over the 
spatial and temporal scales of that water 
mass, so they do not necessarily repre-
sent in situ rates. For example, the low-
δ15N nitrate observed in the Sargasso Sea 
thermocline is largely representative of a 
basin-wide N2 fixation signal rather than 
incidences of local N2 fixation (Knapp 
et al., 2008; Marconi et al., 2015).

In addition, the thermocline nitrate 
concentration affects the δ15N signal. In 
the North Atlantic along the cross- basin 
GEOTRACES GA03 transect (35°N, 
70°W to 18°N, 15°W), a strong positive 
correlation was observed between the 
concentration and δ15N of thermocline 
nitrate, with both parameters decreas-
ing from east to west (Figure 3; Marconi 
et al., 2015). The authors concluded that 
the low nitrate concentration at the top 
of the thermocline acts to focus the low 
δ15N signal deriving from the regen-
eration of newly fixed N, such that the 
observed zonal decrease in thermocline 

nitrate δ15N does not require a coin-
cident increase in the N2 fixation rate. 
Quantification of the meridional flux of 
nitrate δ15N and N* across multiple zonal 
transects of the Atlantic Ocean has also 
revealed that N2 fixation predominantly 
occurs in the tropical Atlantic between 
11°S and 24°N (Marconi et al., 2017b). 

In the subtropical South Pacific (~17°S) 
and South Indian (~32°S) Oceans, zonal 
transects of nitrate δ15N and/or N* sug-
gest that N2 fixation occurs largely in the 
western subtropics and is negligible to the 
east (Grand et al., 2015; Yoshikawa et al., 
2015), consistent with regional stud-
ies from the boundaries of both basins 
(Knapp et al., 2016a, 2018; Bonnet et al., 
2017, 2023; N. Lehmann et  al., 2018; 
Forrer et al., 2023; Marshall et al., 2023). 
N2 fixation also appears to be limited in 
the central subtropical South Atlantic 
(Moore et  al., 2009) and South Pacific 
(Peters et  al., 2018b) where iron avail-
ability (Figure 3b) and the aeolian iron 
supply to surface waters are low (Jickells 

et al., 2005; Mahowald et al., 2009). This 
notion is borne out by existing nitrate iso-
tope sections that do not show a pervasive 
signal of low δ15N nitrate in the subtrop-
ical South Atlantic thermocline between 
35° and 40°S (Figure 3a; Tuerena et  al., 
2015; Marconi et  al., 2017b). However, 
across the tropical South Atlantic (~12°S), 
signals of N2 fixation are apparent in the 
Angola Gyre in the east, yet not in the west 
(Marshall et al., 2022) (Figure 4a). These 
zonally heterogeneous distributions of N2 
fixation across the low latitudes suggest 
that N2 fixation may not occur as homo-
geneously as some models predict, and 
more importantly, that the controls on N2 
fixation are dependent on regional P and 
iron availability, as discussed below.

Converging Controls on N2 Fixation
Diazotrophs can be limited by both iron 
and P (Berman-Frank et  al., 2001; Mills 
et  al., 2004; Held et  al., 2020). Large-
scale sampling of N2 fixation proxies 
(e.g.,  nitrate δ15N, N*, 15N incubation 

FIGURE 3. Three-dimensional visualization of (a) nitrate δ15N (‰ vs. air), and (b) dissolved iron (dFe; nmol.kg–1) in the Atlantic Ocean. In each 
panel, low values are shown in blue and high values are shown in yellow. Nitrate δ15N data in panel a were obtained from the locations shown 
in Figure 2 (Somes et al., 2010; Rafter et al., 2019; Fripiat et al., 2021b), and the dissolved iron data from the same region (panel b) are from 
GEOTRACES IDP2021v2 (GEOTRACES Intermediate Data Product Group, 2023). The dashed white line indicates the equator. 3D graphics cre-
ated by Reiner Schlitzer, Alfred Wegener Institute
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experiments, diazotroph abundances) 
coincident with measurements of dis-
solved iron and (in)organic P pools sug-
gest that N2 fixation is driven by both the 
availability of iron and excess P. In other 
words, where iron is locally available, 
excess P is taken up by diazotrophs to fix 
N2 (Deutsch et al., 2007; Moore et al., 2009; 
Weber and Deutsch, 2014; Snow et  al., 
2015; Wang et  al., 2019). For example, 
in the North Atlantic where iron is often 
non-limiting (Figure 3b), diazotrophs 
appear to use excess P (including both 
PO4

3– and dissolved organic P, DOP) to 
fix N2 (Dyhrman and Ruttenberg, 2006; 
Sohm and Capone, 2006; Orchard et al., 
2010; Landolfi et al., 2015), while in the 
South Atlantic where excess PO4

3– is 
present, diazotrophs appear to use non- 
aeolian iron to fix N2 (Marshall et  al., 
2022; Figure 4b). In the subtropical 
North Pacific Ocean, elevated N2 fixation 
rates have recently been surmised to be 
jointly regulated by iron and P availabil-
ity (Wen et al., 2022; Horii et  al., 2023). 
Similarly, in the Southwest Indian Ocean, 
elevated N2 fixation rates coincide with 
an overlapping supply of aeolian and 
sedimentary iron and excess P (Grand 
et  al., 2015; Chowdhury et  al., 2023; 

Marshall et al., 2023). 
Improvement in our understanding 

of the sources, distributions, and cycling 
of both iron and P over the last decade 
has contributed to the discovery of new 
regions of N2 fixation (Zehr and Capone, 
2020). For many years, dust deposition 
was considered the only quantitatively 
important source of iron to the ocean, 
with other iron sources thought to con-
tribute negligibly to the euphotic zone 
(Mahowald et  al., 2005). More recently, 
however, non-aeolian iron sources 
(e.g.,  oxygenated and anoxic ocean sed-
iments, hydrothermal vents, and sea 
ice) are increasingly being recognized as 
quantitatively important (Tagliabue et al., 
2010, 2022; Conway and John, 2014; 
Rijkenberg et al., 2014; Resing et al., 2015; 
Fitzsimmons et  al., 2017; Jenkins et  al., 
2020; Homoky et al., 2021; Fitzsimmons 
and Conway, 2023), including for alle-
viating regional diazotroph iron limita-
tion (Bonnet et al., 2023). In concert, our 
understanding of P cycling, and its uti-
lization by diazotrophs, has improved, 
aided by an expanding DOP database 
(Liang et al., 2022b). 

The three major oxygen deficient 

zones (ODZs; i.e.,  the eastern tropi-
cal North and South Pacific [ETNP and 
ETSP, respectively], and the Arabian 
Sea) have presented specific challenges 
to our understanding of the controls on 
N2 fixation using the geochemical trac-
ers discussed above, due to the oppos-
ing effects of N2 fixation and denitrifi-
cation on N* and nitrate δ15N. In these 
areas, the upwelling and offshore advec-
tion of iron- and P-replete (N-deplete) 
waters from the ODZ appear to generate 
ideal conditions for N2 fixation (Deutsch 
et  al., 2007); however, the observations 
are inconsistent as to the importance of 
N2 fixation in these regions, with some 
studies indicating considerable N2 fixa-
tion (Capone et  al., 1998; Sigman et  al., 
2005; Fernandez et  al., 2011) and others 
indicating that N2 fixation rates can be 
exceedingly low (Turk-Kubo et al., 2014; 
Berelson et al., 2015; Knapp et al., 2016a). 
The spatial decoupling of excess P and 
iron availability could explain the incon-
sistency, with iron being more quickly 
depleted in nearshore waters than P, thus 
limiting N2 fixation despite the pres-
ence of excess P (Fernandez et  al., 2011; 
Dekaezemacker et  al., 2013; Jayakumar 
et al., 2017). Another explanation relates 
to the variable time and depth scales over 
which iron, P, nitrate δ15N, N*, and N2 fix-
ation experiments integrate. For exam-
ple, 15N2 fixation rates are often measured 
over a day or less (Montoya et al., 1996; Luo 
et al., 2012; White et al., 2020; Shao et al., 
2023), while iron recycling can occur over 
days to weeks (Boyd and Ellwood, 2010; 
Rafter et al., 2017; Tagliabue et al., 2019) 
and the accumulation of newly fixed N as 
nitrate in the thermocline integrates over 
years to decades (Gruber and Sarmiento, 
1997). The variability associated with P 
and iron limitation on N2 fixation over 
various spatial (i.e., intra- and inter- basin) 
and temporal scales suggests that iron 
exerts the dominant control on regional 
N2 fixation rates and that P in excess of N 
exerts the dominant control on global N2 
fixation rates (Weber and Deutsch, 2014; 
Wen et al., 2022). 

a

b

FIGURE 4. Zonal depth sections across the tropical South Atlantic Ocean (CoFeMUG along ~11°S) 
of (a) nitrate δ15N (‰ vs. air) with black contours indicating N* (= [NO3

–] – 16 × [PO4
3–]) (μM), and 

(b) dissolved iron (dFe, nM) with white contours indicating P* (= [PO4
3–] – [NO3

–] ÷ 16) (μM) (Noble 
et al., 2012; Marconi et al., 2017b; Marshall et al., 2022). On panel a, low-δ15N nitrate and elevated 
N* in the Angola Gyre thermocline (east of 10°W, 50–400 m) both signal N2 fixation, neither of which 
are apparent in the western portion of the CoFeMUG transect. On panel b, elevated dissolved iron 
concentrations supplied by the margin overlap with elevated surface P* in the Angola Gyre; the 
coincidence of these two conditions appears to favor N2 fixation.
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Atmospheric and Margin Influences 
on the Marine Nitrogen Cycle
Globally, atmospheric deposition con-
tributes 39–90 Tg N yr–1 and river run-
off contributes 11–43 Tg N yr–1 to the 
ocean (Duce et al., 1991; Seitzinger et al., 
2010; Yang and Gruber, 2016; Jickells 
et al., 2017; Wang et al., 2019). Submarine 
groundwater discharge (SGD), while 
poorly constrained, likely adds fluxes 
of N comparable in magnitude to rivers 
(Santos et al., 2021). For a comprehensive 
review on N cycling between the atmo-
sphere and surface ocean, including the 
use of geochemical tracers such as nitrate 
δ15N and N*, see Altieri et al. (2021). 

The riverine N flux is small relative 
to other N sources and is also highly 
regional, making it difficult to quantify. In 
addition, at least a quarter of river- derived 
N fails to reach the open ocean and is 
instead trapped by intense recycling over 
the shallow continental shelves (Jickells 
et al., 2017; Sharples et al., 2017; Izett and 
Fennel, 2018). For example, Mississippi 
River nitrate, which has a distinct δ15N of 
8‰ (Bryant-Mason et al., 2013), has not 
been detected in the off-shelf waters in the 
Gulf of Mexico (Howe et al., 2020; Knapp 
et al., 2022), most likely because it is con-
sumed in nearshore waters (Rabalais 
et  al., 1996). Nevertheless, the Amazon 
River has been found to enhance regional 
ocean productivity by supplying N, along 
with excess P and iron that fuel local 
N2 fixation (Subramaniam et  al., 2008). 

Similarly, the Congo River margin sup-
plies a significant flux of iron to the east-
ern tropical South Atlantic (Noble et  al., 
2012; Vieira et  al., 2020) that appears to 
support regional N2 fixation (Sohm et al., 
2011; Marshall et al., 2022).

The δ15N of nitrate and DON from 
river runoff and SGD are perhaps the 
most unconstrained N sources to the 
ocean, with measurements of nitrate δ15N 
from rivers ranging from –3‰ to 28‰ 
and averaging 7.1‰, and from shallow 
aquifers ranging from 2‰ to 27‰ and 
averaging 7.7‰ (Matiatos et  al., 2021). 
Each of these sources may have distinct 
relationships with trace elements, but 
few studies include measurements of dis-
solved metal concentrations and nitrate 
isotopes, or DON and DOP concentra-
tions and DON δ15N to constrain source 
relationships, especially in margin envi-
ronments where multiple sources may 
mix. Existing datasets from nearshore 
regions show significant correlations 
between concentrations of dissolved 
organic matter (DOM), salinity, and/
or trace metal concentrations associated 
with rivers and/or continental shelves 
(Chen et  al., 2022, 2023). For example, 
along the oligotrophic West Florida Shelf 
(WFS; Figure 5a), significant correla-
tions of DON and dissolved iron concen-
trations have been observed (Figure 5b; 
Mellett and Buck, 2020). Here, high con-
centrations of DON and dissolved iron 
in nearshore waters give way in offshore 

waters to lower concentrations consis-
tent with those observed in the oligotro-
phic North Atlantic, i.e., ~4–5 µM DON 
and <1 nM dissolved iron, respectively 
(Knapp et  al., 2011; Hatta et  al., 2015). 
The highly correlated concentration gra-
dients on the WFS have been interpreted 
as indicating common margin sources of 
DON and trace metals, raising questions 
about how DON from margin sources 
such as SGD may serve as a ligand for 
trace metals and thus impact their trans-
fer from nearshore to offshore environ-
ments (Beck et al., 2007, 2010).

Allochthonous Dissolved 
Organic Nutrient Fluxes
Decades of work have shown that about 
20% of new production is released 
as DOC (Hansell and Carlson, 1998; 
Romera-Castillo et al., 2016), and recent 
work suggests similar relationships for 
DON (Letscher et al., 2013; Knapp et al., 
2018; Zhang et al., 2020) and DOP (Liang 
et  al., 2023). These findings are consis-
tent with field-based incubation stud-
ies showing that DON is preferentially 
released by phytoplankton when grown 
on “new” sources of N, including nitrate 
(Bronk and Ward, 1999, 2000) and N2 
(Capone et al., 1994; Glibert and Bronk, 
1994; Bonnet et  al., 2016; Knapp et  al., 
2016b). Observations suggest that there 
is net DON and DOP production in 
coastal and other upwelling areas, with 
advection of DON and DOP into the oli-
gotrophic gyres (Letscher et  al., 2013; 
Liang et  al., 2022a) where they may be 
used to support a significant fraction of 
new and export production (Letscher 
et  al., 2013, 2022; Knapp et  al., 2018; 
Liang et al., 2022a, 2023). 

Many of the enzymes that enable dis-
solved organic nutrient assimilation have 
metal co-factors. These include urease, 
which requires nickel (Dupont et  al., 
2008); enzymes allowing the use of pri-
mary amines and/or amino acids, which 
require copper (Palenik and Morel, 1991); 
and enzymes supporting the utilization of 
various forms of DOP, which require zinc, 
cadmium, cobalt, and/or iron (Duhamel 

FIGURE 5. (a) Map of West Florida Shelf stations sampled in June 2015 and February-March 2018, 
and (b) dissolved organic nitrogen (DON, μM) versus dissolved iron concentrations (dFe, nM) at 
these stations, with symbol color indicating station longitude. DON is highly correlated with dis-
solved iron (r2 =0.89 for 2015 and r2 =0.91 for 2018). The dissolved iron data were previously pub-
lished in Mellett and Buck (2020). DON was measured according to Knapp et al. (2005). 

a b
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et  al., 2021). Thus, it would perhaps be 
unsurprising if DON and DOP distri-
butions correlated with dissolved metal 
availability in the surface ocean. However, 
few studies of marine DOM cycling have 
also included measurements of dissolved 
trace metal concentrations, limiting our 
understanding of the extent to which 
DOM release by new production is influ-
enced by trace metal availability. Because 
dissolved organic nutrients fuel a signifi-
cant fraction of export production in oli-
gotrophic gyres, our poor understanding 
of the controls on marine DOM produc-
tion means we lack constraints on an 
important source of nutrients. 

Additionally, while dissolved organic 
nutrient fluxes from ocean margins to 
gyres are required by models to resolve 
oligotrophic nutrient budgets (Torres-
Valdes et  al., 2009; Letscher et  al., 2016, 
2022), surface ocean concentration gradi-
ents have been challenging to document 
due to the sparse datasets for DOP, and 
for DON, by the poor precision of high 
temperature chemical oxidation mea-
surements of its concentration (Letscher 
et  al., 2013). New DON (Hansell et  al., 
2021) and DOP (Liang et  al., 2022b) 
concentration datasets should improve 
our understanding of spatial distribu-
tions. Additionally, new measurements 
of DON concentration using higher- 
sensitivity wet-chemical oxidation meth-
ods paired with the analysis of DON δ15N 
have revealed patterns of both DON pro-
duction and consumption. For exam-
ple, DON consumption was inferred 
from its isotopic variations for the first 
time in the eastern tropical South Pacific 
(Knapp et  al., 2018) and was later con-
firmed in the South China Sea (Zhang 
et  al., 2020). Cross-basin sections pair-
ing DON concentration measured by 
wet-chemical oxidation methods, DON 
δ15N analyses, and trace metal concen-
tration and speciation measurements are 
now being made for some GEOTRACES 
and GO-SHIP transects, providing con-
straints on the role of trace metal avail-
ability in dissolved organic matter pro-
duction and consumption.

INTERNAL CYCLING OF 
NITROGEN IN THE OCEAN
Nitrogen Speciation, Transport, and 
Uptake in the Euphotic Zone
The internal cycling of N in the ocean 
strongly affects the distribution of the N 
species and their isotopes. In this section, 
we focus on the imprint of the internal 
N cycle on the isotopes of nitrate, as this 
is the species predominantly measured 
as part of global-scale programs such as 
GEOTRACES. In addition, nitrate is the 
major subsurface source of fixed N for 
phytoplankton, and its residence time is 
longer than that of many other fixed N spe-
cies such as ammonium, nitrite, and labile 
DON; thus, processes that alter the isoto-
pic composition of nitrate exert a dom-
inant control on the distribution of oce-
anic N isotopes. This is especially true in 
water masses sourced from the Southern 
Ocean (e.g.,  Antarctic Intermediate 
Water, AAIW; Subantarctic Mode Water, 
SAMW), which supply nitrate to the 
global thermocline (see below).

An early examination of nitrate N iso-
tope data from samples collected along 
transects of the eastern Indian (WOCE 
I09S) and Pacific (ANT XII/4) sectors of 
the Southern Ocean (Sigman et al., 1999, 
2000) revealed a strong negative correla-
tion between nitrate concentration and 
δ15N in the surface layer. This relation-
ship is due to the preferential assimilation 
of 14N-bearing nitrate by phytoplankton 
(i.e., isotope fractionation), which causes 
15N enrichment of the residual nitrate 
pool relative to the immediate source of 
nutrients to the surface layer (Sigman 
et  al., 1999; Altabet, 2001; Karsh et  al., 
2003; Lourey et al., 2003). Investigations 
of large-scale sections of nitrate δ15N and 
δ18O have revealed that nitrate assimila-
tion is typically the dominant biologi-
cal process acting on the surface nitrate 
pool (cyan arrow in Figure 6a), with lit-
tle room for sustained in situ nitrification 
(Rafter et al., 2013; Marconi et al., 2015; 
Tuerena et  al., 2015; Fripiat et  al., 2019; 
Marshall et  al., 2023). A notable excep-
tion is the Antarctic Zone of the Southern 
Ocean, where winter conditions are 

extremely unfavorable for phytoplank-
ton growth. Smart et al. (2015) measured 
the dual isotopes of nitrate along WOCE 
line A12 between 52.0°S and 57.8°S in 
austral winter and found the δ18O of 
mixed-layer nitrate to be strongly ele-
vated relative to its δ15N (purple arrows 
in Figure 6b), characteristic of in situ 
nitrification, with the newly produced 
nitrate having a δ15N of <–5‰ (i.e., set by 
the PON plus ammonium being remin-
eralized) and a δ18O of +1.1‰ (Sigman 
et  al., 2005; Wankel et  al., 2007). In the 
Antarctic Zone mixed layer, nitrate 
assimilation and nitrification appear to 
occur dominantly in summer and winter, 
respectively, with the apparent winter-
time rise in nitrate δ15N and δ18O toward 
the surface due not to assimilation but 
to mixing between the summer/autumn 
mixed layer (lower nitrate concentration, 
higher δ15N and δ18O) and underlying 
Circumpolar Deep Water (higher nitrate 
concentration, lower δ15N and δ18O) 
(Smart et al., 2015). 

Nitrate isotope sections are particu-
larly powerful for investigating how N 
cycle processes occurring in geograph-
ically limited regions are connected via 
large-scale ocean circulation. Rafter et al. 
(2013) used measurements of nitrate 
δ15N and δ18O from the Pacific—CLIVAR 
P16S, augmented by data from 7°S to 7°N 
(Rafter et al., 2012) and station ALOHA 
at 22.75°N (Sigman et  al., 2009)—to 
explore subsurface patterns in the nitrate 
isotopes, which they found to be strongly 
influenced by N cycle processes occur-
ring in overlying surface waters. For 
instance, partial nitrate assimilation in 
Southern Ocean surface waters yields 
sinking PON that is relatively low in δ15N 
compared to the background nitrate. 
As a result, subsurface nitrate, particu-
larly in the Subantarctic, has a low δ15N 
for its δ18O (Rafter et  al., 2013; Fripiat 
et al., 2019, 2021a). The subsequent sub-
duction and northward advection of the 
partially assimilated surface nitrate in 
AAIW and the less dense SAMW means 
that thermocline nitrate sourced from the 
Southern Ocean is relatively high in δ15N 
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(Sigman et al., 2000, 2009; DiFiore et al., 
2006; Rafter et  al., 2013; Marconi et  al., 
2015). The upward supply and consump-
tion of this high-δ15N nitrate in the low- 
latitude surface yields sinking PON that 
is as high or higher in δ15N than the sub-
surface water mass into which it is rem-
ineralized, causing the δ15N of subsurface 
nitrate to be elevated relative to its δ18O 
(Rafter et al., 2013). This trend is eroded 
in the western Pacific, North Atlantic, 
and southwest Indian subtropical gyres 
where the remineralization of low-δ15N 
material causes the δ15N of thermocline 
nitrate to decrease considerably more 
than its δ18O (Bock et  al., 1989; Knapp 
et  al., 2008; Rafter et  al., 2013; Marconi 
et  al., 2015, 2017b; Forrer et  al., 2023; 
Marshall et al., 2023). In nitrate δ18O ver-
sus δ15N space, N2 fixation drives thermo-
cline nitrate towards a δ15N of –1‰ and 
δ18O of +1.1‰, the values expected for 

the nitrification of newly fixed N (orange 
arrow in Figure 6c; Knapp et al., 2008). 

Estimating the δ15N of sinking PON 
from nitrate isotope sections has implica-
tions for determining the extent to which 
surface productivity is fueled by N2 fix-
ation versus subsurface nitrate (Altabet, 
1988; Casciotti et  al., 2008; Rafter et  al., 
2013; Marconi et al., 2019) and for under-
standing the influence of denitrification 
in the Pacific ODZs on basin-scale bio-
geochemistry (Figure 7a; Rafter et  al., 
2013; Peters et al., 2018b). However, the 
preferential consumption of 14N-bearing 
(and/or low-δ15N) forms of DON and/
or suspended PON may also contribute 
to the accumulation of low-δ15N nitrate 
in the upper thermocline (Casciotti et al., 
2008; Knapp et  al., 2018; Zhang et  al., 
2020) and would have a similar effect on 
thermocline nitrate isotopes to that of 
remineralization of N2 fixation-sourced 

sinking PON described above.
Deman et  al. (2021) measured the 

nitrate isotopes along GA01 (40°–60°N, 
12°–54°W) to the north of GA03, sam-
pling both the subtropical and subpolar 
North Atlantic. They concluded from 
the cohesive relationship of nitrate con-
centration to δ15N that nitrate is supplied 
to the subpolar gyre surface from the 
upward mixing of Labrador Sea Water, 
then consumed as the Ekman layer flows 
equatorward. In addition, at the base of 
the deep mixed layer of the subpolar gyre, 
the rise in nitrate δ18O coincident with no 
change in its δ15N indicates coupled par-
tial nitrate assimilation and nitrification 
(as exemplified by the magenta arrow in 
Figure 6c; Sigman et  al., 2005; Fawcett 
et  al., 2015). The nitrate sections show 
that this signal is transported into the 
subtropical thermocline via the subduc-
tion and equatorward flow of isopycnals 

(a) Summertime Antarctic 
(IO8)

(d) ETSP ODZ (GP16)

(b) Wintertime Antarctic 
(A12)

(e) Southern BUS

(c) Subtropical SWIO 
(ASCA16)

FIGURE 6. Nitrate δ18O (‰ vs. VSMOW) versus δ15N (‰ vs. air) for the (a) summertime Antarctic (IO8) (Fripiat et al., 2019), (b) winter-
time Antarctic (A12) (Smart et al., 2015), (c) subtropical southwest Indian Ocean (ASCA16) (Marshall et al., 2023), (d) Eastern Tropical 
South Pacific (GP16) (Peters et al., 2018b), and (e) southern Benguela upwelling system (SBUS) (Flynn et al., 2020). Symbol color 
shows sample nitrate concentration, and the effect of the major N cycle processes on the nitrate isotopes is indicated by the arrows 
(see legend). Dashed contour lines show Δ(15-18) [(‰) = δ15N – δ18O] (Sigman et al., 2005; Rafter et al., 2013). The gray diamonds 
on panels a and b indicate the mean δ18O and δ15N of nitrate in Circumpolar Deep Water (CDW), and those on panels c and e, of 
nitrate in Subantarctic Mode Water (SAMW); these water masses constitute the ultimate source of nutrients to the surface layer of 
the Antarctic and subtropical southwest Indian Ocean and SBUS, respectively (Sigman et al., 2000; Flynn et al., 2020; Marshall et al., 
2023). In panel e, samples with dissolved oxygen concentrations (DO) <60 μM are distinguished by triangles. 
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that outcrop in the subpolar region. The 
authors conclude that repeated cycles of 
nitrate consumption and nitrification act 
to drive down the δ18O of nitrate in the 
east-to-west flowing thermocline waters 
of the subtropical gyre, with nitrate 
eventually converging on the low δ18O 
(1.1‰; essentially the nitrification value) 
observed at the Bermuda Atlantic Time-
series Study site (Knapp et  al., 2008; 
Fawcett et al., 2015, 2018). The same rem-
ineralization pathways also cause the δ15N 
of subtropical North Atlantic thermocline 
nitrate to decline as newly fixed nitrate is 
added (Knapp et  al., 2008; Bourbonnais 
et al., 2009; Marconi et al., 2015).

Lehmann et  al. (2019) measured the 
nitrate isotopes along line GN02 that 
transects the Labrador Sea, Baffin Bay, 
and the Canadian Arctic Archipelago. 
In Baffin Bay, the high δ15N (7‰) and 
low δ18O (1‰) of deep-water nitrate 
suggest a Pacific origin for the nutri-
ents that ultimately support export pro-
duction. Because the lower δ15N (5.8‰) 
of nitrate in the overlying intermediate 
waters evinces a contribution of Atlantic 
water, and given that less sinking material 
will be remineralized in deep than inter-
mediate waters, the authors conclude that 

the deep basin residence time must be 
much longer than that of the intermedi-
ate layer. The implication is that nutrients 
removed from Baffin Bay surface waters 
are trapped at depth over long timescales. 
By combining their nitrate isotope data 
(invariant δ15N and δ18O at depth) with 
N* (<–4 μM), N. Lehmann et al. (2019) 
also determine that sedimentary denitri-
fication is a substantial sink for fixed 
N in Baffin Bay. 

UNDERSTANDING NITROGEN 
CYCLING AND LOSS IN OXYGEN 
DEFICIENT ZONES
The quantity of fixed N loss from the 
ocean has been widely documented 
through the distributions of oxygen and 
nutrients (nitrate and phosphate). For 
example, nitrate deficits were used to 
estimate the quantity and rate of N loss 
in the low oxygen waters of the ETNP 
(Cline and Richards, 1972). N* has also 
been used to estimate the Pacific N bud-
get (Deutsch et al., 2001). This approach 
yielded rates of water column denitrifica-
tion in the ETNP and ETSP of 22 ± 3.4 
and 26 ± 4.1 Tg N yr–1, respectively. While 
N* inherently makes assumptions about 
the N:P stoichiometry of organic matter 

and the mechanism of N loss, these esti-
mates are remarkably similar to those 
based on the distributions of excess N2, 
which are independent of N:P reminer-
alization ratios and N loss mechanisms 
(Chang et al., 2010; DeVries et al., 2012, 
2013). Global models that allow variation 
in the N:P of exported organic matter 
also yield similar rates of water column N 
loss in the Pacific (Wang et al., 2019). 

Nitrate isotope measurements have 
provided additional insights into N 
cycling and loss in water column ODZs 
(Sigman et  al., 2005; Casciotti, 2016b). 
As nitrate is consumed by denitrifica-
tion, preferential removal of 14N-nitrate 
leads to progressive enrichment of 15N 
in the remaining nitrate pool (green 
arrow in Figure 6d). This isotopic frac-
tionation is clearly observed in marine 
ODZs (Figure 7a) and has been quan-
tified as an isotope effect, which relates 
a given increase in δ15N or δ18O to the 
amount of nitrate removed (Mariotti 
et al., 1981). In order to translate nitrate 
isotope measurements into a quantity of 
N loss, it is important to know this con-
version factor (isotope effect) accurately. 
However, estimates of the isotope effect 
range from 13‰ to 40‰ for water col-
umn denitrification (Cline and Kaplan, 
1975; Brandes et  al., 1998; Voss et  al., 
2001) and 0‰–3‰ for benthic denitri-
fication (Brandes and Devol, 1997; 
M.F. Lehmann et al., 2007; Somes et al., 
2013), with differing implications for the 
fraction of N loss occurring in the water 
column versus the sediments and the 
overall amount of N lost from the ocean. 
For example, using an isotope effect for 
water column denitrification of 25‰ to 
evaluate the marine N isotope budget, 
sedimentary denitrification is required 
to exceed water column denitrification 
by a factor of 3 to 4 (Brandes and Devol, 
2002). This magnitude of sedimentary 
denitrification, however, results in a sig-
nificant imbalance in the global marine 
N budget (Codispoti, 2007). 

Subsequent work has shown that pro-
cesses other than denitrification are 
important to consider in the N cycle 

a

b

FIGURE 7. Zonal depth sections across the eastern tropical South Pacific Ocean (GP16 along 
~15°S) of (a) nitrate δ15N (‰ vs. air) (Peters et al., 2018b) with black and gray contours indicating 
N* (= [NO3

–] – 16 × [PO4
3–]) (μM), and (b) dissolved iron (dFe) (nM) (GEOTRACES Intermediate Data 

Product Group, 2023) with white and gray contours indicating P* (= [PO4
3–] – [NO3

–] ÷ 16) (μM). On 
panel a, high-δ15N nitrate and low N* result from water column denitrification, the signal of which is 
advected westward from the eastern tropical South Pacific low oxygen margin. On panel b, elevated 
dissolved iron concentrations supplied by the margin overlap with elevated P*, which together 
could promote N2 fixation in the nearshore waters.
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of marine ODZs. Anammox (Kuypers 
et al., 2005; Lam et al., 2009; Ward, 2013; 
Babbin et al., 2014), nitrite (re)oxidation 
(i.e.,  the oxidation of nitrite produced 
via dissimilatory nitrate reduction in the 
ODZ; Fussel et al., 2012; Casciotti, 2016a), 
and migration of zooplankton (Bianchi 
et al., 2014) can contribute to the specia-
tion, quantity, and isotopic composition 
of fixed N species and subsequent marine 
N loss. In particular, the isotope effect for 
denitrification could be overestimated 
based on water column nitrate isotope 
measurements due to two factors linked 
to nitrite oxidation: (1) the nitrate defi-
cit does not accurately reflect the amount 
of nitrate reduction that has occurred 
(i.e.,  if most of the nitrate reduced to 
nitrite is subsequently reoxidized, it does 
not contribute to the nitrate deficit), and 
(2) the 15N enrichment in nitrate is ampli-
fied through the inverse kinetic isotope 
effect for nitrite oxidation, which causes 
nitrite enriched in 15N to be preferen-
tially reoxidized to nitrate (yellow arrow 
in Figure 6d; Casciotti, 2009; Casciotti 
et al., 2013; Gaye et al., 2013; Bourbonnais 
et al., 2015; Peters et al., 2018a). A wide-
spread influence of nitrite oxidation in 
marine ODZs (T.S. Martin et  al., 2019a; 
Babbin et al., 2020; Buchanan et al., 2023; 
Sun et  al., 2023) thus suggests that the 
isotope effect for water column denitri-
fication is likely lower than 25‰, which 
would require less benthic denitrification 
to balance the N isotope budget.

Further insights into the isotope 
effects for water column denitrifica-
tion come from sectional studies and 
large- scale data analyses (Marconi et al., 
2017a; Peters et al., 2018b). Marconi et al. 
(2017a) compared the results of a multi-
box model involving aerobic respira-
tion and denitrification to nitrate isotope 
measurements along isopycnal surfaces 
across the South Pacific. They observed 
that as the δ15N of nitrate increases along 
isopycnal surfaces, its concentration also 
increases. They modeled the increases in 
nitrate concentration and δ15N arising 
from the combination of aerobic remin-
eralization, which produces nitrate with a 

δ15N reflecting that of the biomass being 
degraded, and denitrification, which con-
sumes nitrate and raises the δ15N of the 
residual nitrate pool. From this analysis, 
an isotope effect for denitrification as low 
as 13‰ was found to fit the nitrate iso-
tope data, which is in keeping with stud-
ies of denitrifying bacteria grown under 
conditions (i.e.,  organic matter and 
nitrate supplies) similar to those found in 
the ocean (Kritee et al., 2012), and could 
allow a nitrate mass and isotope budget 
that is balanced (DeVries et al., 2012).

The influence of ODZ processes on 
nitrate isotope distributions was also 
examined in the South Pacific along the 
GEOTRACES GP16 section between 
Peru and Tahiti (Peters et  al., 2018b). 
Coincident measurements of nitrate iso-
topes (Figure 7a; Peters et al., 2018b) and 
dissolved iron (Figure 7b; GEOTRACES 
Intermediate Data Product Group, 2023) 
on this GEOTRACES section also pro-
vided insights into potential limitation of 
N2 fixation by iron in the subtropical gyre. 
Surface samples with low nitrate and iron 
concentrations appear to be affected pri-
marily by nitrate assimilation, without 
clear effects of N2 fixation (Peters et  al., 
2018b). In contrast, the samples from the 
ODZ have higher nitrate concentrations 
and are impacted by a combination of 
water column denitrification and nitrite 
reoxidation (Figure 6d; Casciotti and 
Buchwald, 2012). Using an isotope mixing 
model, the contributions of preformed, 
regenerated, and ODZ-derived nitrate to 
the distribution of nitrate isotopes along 
the section were also determined. Both 
denitrification and remineralization of 
high-δ15N organic matter likely contrib-
ute to elevating nitrate δ15N above the 
preformed values imported from the 
Southern Ocean (Rafter et al., 2013). This 
interpretation supports that of Marconi 
et al. (2017a), who found that by includ-
ing remineralized nitrate, the nitrate iso-
tope distributions could be explained by 
a 13‰ isotope effect for water column 
denitrification. T.S. Martin et al. (2019b) 
also found that a lower isotope effect for 
denitrification (13‰) was suitable for 

simulating nitrate δ15N values observed 
in and around ODZs using a 3D global 
inverse model (T.S. Martin et al., 2019a). 

Shorter, more spatially resolved nitrate 
isotope sections have also proven valu-
able in regions where the biogeochem-
ical and physical variability is high. For 
example, Flynn et  al. (2020) measured 
the nitrate isotope ratios along four 
zonal transects (extending ≤300 km off-
shore and comprising at least 10 stations 
each) of the southern Benguela upwell-
ing system (SBUS). Here, wind-driven 
upwelling of offshore SAMW occurs in 
spring and summer, with quiescent con-
ditions prevailing in autumn and winter 
(Hutchings et al., 2009). Primary produc-
tivity in SBUS surface waters is remark-
ably high, exceeding that which can be 
supported by the offshore SAMW nutri-
ent supply. Flynn et  al. (2020) found in 
both summer and winter that regenerated 
nitrate and phosphate were “trapped” on 
the shelf, significantly augmenting the 
nutrient reservoir available for upwell-
ing. Moreover, this subsurface nitrate was 
high in δ15N and low in δ18O relative to 
off-shelf SAMW, the bottom waters were 
characterized by a significant N deficit 
(shelf-wide mean of 4.6–6.0 μM; individ-
ual values as high as 23 μM), and oxygen 
concentrations were typically >60  μM. 
These data are best explained by cou-
pled nitrification-denitrification in the 
sediments, which drives the loss of low-
δ15N N2 and raises the δ15N of the fixed 
N remaining in the water column, while 
concurrently decreasing its δ18O (blue 
arrows in Figure 6e; Granger et al., 2011; 
Brown et  al., 2015). Similar relation-
ships of nitrate δ15N to δ18O and N defi-
cit have been observed on the Bering 
Sea and Chukchi shelves in the Arctic 
(Granger et al., 2011, 2013; Fripiat et al., 
2018). In the SBUS, Flynn et  al. (2020) 
also observed a few incidences of nitrate 
δ15N and δ18O rising in concert for sub-
surface samples characterized by the 
lowest oxygen concentrations, consis-
tent with water column denitrification 
(triangles in Figure 6e; that these data 
do not fall along a slope of 1:1 and are 
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not characterized by a lower dissolved 
oxygen concentration can be explained 
by on-shelf mixing with higher- oxygen 
waters containing nitrate with a differ-
ent relationship of δ18O to δ15N). In the 
SBUS, therefore, the dual nitrate iso-
topes yield insights into oxygen condi-
tions because denitrification (coincident 
rise in δ15N and δ18O) requires water col-
umn suboxia whereas coupled nitrifica-
tion-denitrification (δ15N rise and δ18O 
decline) signals the development of sub-
oxia in the sediments. The former sce-
nario indicates a loss of N availability in 
the water column, with negative implica-
tions for higher trophic levels including 
fish, while the latter is most deleterious 
for benthic species. 

LOOKING AHEAD 
The increasing availability of isotope 
measurements of nitrate and DON lends 
itself to interpretation using regional-, 
basin-, and global-scale model frame-
works. Modeling of nitrate isotopes has 
already enabled significant advances in 
our understanding of the inputs, outputs, 
and internal cycling of N in the ocean 
(Somes et al., 2010; DeVries et al., 2013; 
Yang and Gruber, 2016; Martin et  al., 
2019b; Rafter et  al., 2019; Fripiat et  al., 
2021a, 2023). For example, the sensi-
tivity of deep ocean nitrate δ15N to sur-
face productivity and ocean circulation 
(Fripiat et  al., 2023) implies that past 
changes in deep nitrate δ15N may not 
have been entirely due to variations in the 
fixed N budget (Brandes and Devol, 2002; 
Deutsch et al., 2004; Fripiat et al., 2023), 
particularly given likely changes in both 
productivity and circulation (Sigman 
et al., 2010). Further improvements in the 
spatial and temporal coverage of N iso-
tope measurements will continue to con-
strain N cycle processes and their vari-
ability across seasons and ocean basins 
with differing circulation, productivity, 
ventilation rates, trace metal availabil-
ity, and patterns of net N input or loss. In 
particular, we anticipate additional data 
from the Pacific and Indian Oceans from 
GEOTRACES cruises and analyses still 

underway. Moreover, the incorporation 
of rapidly growing N isotope databases 
(e.g., Figure 2, as well as DON δ15N) into 
coupled biogeochemical ocean mod-
els will improve coherent quantification 
and characterization of rates, transforma-
tions, and isotope effects for N cycle pro-
cesses needed to reproduce these expand-
ing data on a global scale. 

SUPPLEMENTARY MATERIALS
Table S1 is available online at https://doi.org/10.5670/
oceanog.2024.406.
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