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INTRODUCTION
From the outset, the mission of the inter-
national GEOTRACES program has 
included efforts to better understand the 
role of micronutrients in marine ecosys-
tems as well as the transport and fate of 
contaminants (SCOR Working Group, 
2007). One primary research theme has 
been to quantify the fluxes that control the 
distributions of key trace elements and 
isotopes (TEIs) in the marine environ-
ment. In remote regions, far from other 
major sources, aerosol deposition can be 
the primary source of soluble, and poten-
tially bioavailable, TEIs to surface waters 
where their input may impact biological 
primary production. For example, TEIs 

such as iron, manganese, zinc, copper, 
and nickel can influence phytoplank-
ton community structure in the surface 
water and material cycling in the water 
column. In addition, excess concentra-
tions of anthropogenic contaminant TEIs 
like lead and cadmium are used as tracers 
of anthropogenic emissions, and metals 
that are mainly sourced from Earth’s 
crust, such as aluminum, titanium, and 
thorium, may be used as tracers of litho-
genic material. The study of aerosol TEIs 
is therefore essential in order to better 
understand specific processes and mech-
anisms in the ocean; hence, their inclu-
sion as “key parameters” to be measured 
on all GEOTRACES research cruises. 

EXPANSION OF GLOBAL 
COVERAGE AND DATA 
ARCHIVES
By design, GEOTRACES brought disci-
pline- focused research to central ocean 
basins and provided unprecedented 
access for coincident sampling of the 
water column and atmosphere. Following 
predecessors like the US CLIVAR section 
cruises (e.g., Buck et al., 2010, 2013) and 
the repeat Atlantic Meridional Transects 
(e.g.,  Baker et  al., 2006), GEOTRACES 
has provided a means to greatly expand 
the spatial scale of aerosol sampling. 
Since the 2008 aerosol trace element 
intercomparison effort (Morton et  al., 
2013), 16 GEOTRACES research proj-
ects, including section cruises and some 
process studies, have reported aerosol 
datasets, and an additional 13 studies col-
lected aerosols but have yet to make the 
data available. Combined, these programs 
have sampled all the world’s ocean basins, 
including the understudied regions of the 
central Arctic Ocean and South Pacific 
Ocean. Most of these individual research 
projects have made aerosol data avail-
able through online data repositories. A 
smaller subset has provided data for the 
open access GEOTRACES Intermediate 
Data Products (Figure 1; Schlitzer and 
Mieruch-Schnülle, 2024, in this issue) 
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through the GEOTRACES Data Assembly 
Center, a process that requires high stan-
dards of data quality control and evalua-
tion by the GEOTRACES Committee on 
Standards & Intercalibration (Aguilar-
Islas et al., 2024, in this issue). 

STANDARDIZATION OF 
SAMPLING EQUIPMENT AND 
ANALYTICAL TECHNIQUES
GEOTRACES is a coordinated study 
that involves research groups in different 
parts of the world, and many of the tar-
get parameters are assessed by new and 
developing analytical techniques. Thus, 
community agreement on best practices 
and standard procedures for sampling, 
sample processing, and analysis is neces-
sary to reduce introduced variability and 
ensure the highest quality data. 

Aerosol loading and composition can 
vary according to characteristics of the 
sampling site (e.g.,  distance to and type 
of local and surrounding sources, alti-
tude if a land-based site, meteorological 
conditions) as well as processes occur-
ring during particle transport. Additional 
variability comes from the various collec-
tion and sample processing techniques in 
use. As with water-column parameters, 
GEOTRACES has spurred the aerosol 
community to critically assess sampling 

and analytical protocols. Prior to this 
effort, aerosol collections were made with 
a variety of equipment, including both 
low-volume and high-volume active sam-
plers, passive collectors, and total sus-
pended or size-fractionated particle sam-
plers. The choice of collection substrate, 
often a membrane filter, is yet another 
variable. A wide range of laboratory and 
sampling protocols in use resulted in data-
sets that are not readily intercomparable. 
Recognizing the importance of intercom-
parable data in global efforts, the com-
munity set out best practices for aerosol 
TEI sampling and sample handling in the 
“GEOTRACES Cookbook.” This resource 
is freely available online (https://www.
geotraces.org/methods-cookbook/) and 
is regularly revised to reflect methodolog-
ical advances in the field. Descriptions of 
aerosol extraction methods widely used 
in the community are also included.

By its nature, GEOTRACES ensured 
that ships from many nations and with 
different configurations would serve 
as observational platforms during 
program- endorsed research expeditions. 
Therefore, researchers sought a common 
sampling system that would be adapt-
able. The ideal system would be commer-
cially available and not require extensive 
modification so that a broad swath of the 

research community could acquire the 
necessary equipment. Total suspended 
particle collectors were recommended 
because they met the desired criteria and 
have been used in both land-based and 
ship-based atmospheric sampling pro-
grams. These high-volume samplers fea-
ture a relatively small footprint, brush-
less motors, and are self-contained. The 
sampling interface and vacuum pump are 
co-located within an aluminum housing 
that can be mounted to the forward rail-
ings of ships (Figure 2). The collector 
is designed for bulk collections or can 
accommodate a cascade impactor for 
particle size fractionation. In addition to 
agreements on sampling practices, guid-
ance on analysis of total TEI content 
in aerosols was provided following the 
aforementioned GEOTRACES-led inter-
comparison study effort (Morton et  al., 
2013). For example, similar total aeolian 
TEI determination protocols are now 
typically applied worldwide using nitric 
and hydrofluoric acids and heat to digest 
aerosol- laden filters. 

Not all aerosol metals reaching surface 
waters are assimilable by marine phyto-
plankton. Assessment of the soluble con-
tent in aerosols is therefore crucial for 
GEOTRACES water-column studies, as 
it is a proxy for the readily bioavailable 

FIGURE 1. Blue circles indi-
cate aerosol sampling loca-
tions whose data are avail-
able in version 2 of the 
GEOTRACES Intermediate 
Data Product (GEOTRACES 
Intermediate Data Product 
Group, 2023).

https://www.geotraces.org/methods-cookbook/
https://www.geotraces.org/methods-cookbook/
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fraction of aerosol TEIs. Constraining the 
soluble aerosol fraction remains a major 
challenge hindering our understanding 
of air-sea biogeochemical interactions. 
Laboratory methods used to assess the 
soluble aerosols typically consist of con-
ducting leaching experiments on aerosol- 
loaded filters. Currently, many leaching 
protocols, using various solutions and 
extraction techniques, are employed to 
represent different atmospheric processes 
or types of deposition (Perron et  al., 
2020). However, data resulting from the 
different techniques are used as analogs 
in modeling studies. Hence, intercalibra-
tion is necessary to reduce the associated 
uncertainty. The Scientific Committee on 
Oceanic Research Working Group 167 
(Reducing Uncertainty in Soluble aerosol 
Trace Element Deposition) is leading the 
synthesis effort and promoting best prac-
tices for intercomparable data on TEI 
bioavailability, including recommending 
broad use of community consensus ref-
erence materials that are appropriate for 
aerosols in the marine environment.

ESTIMATES OF AEROSOL 
PROPERTIES AND 
DEPOSITION FLUX
A key aspect of aerosol research within 
the GEOTRACES framework is the 
quantification of TEI deposition fluxes to 
the surface ocean as a source of biolimit-
ing nutrients. Understanding why, where, 
and when aerosol TEI concentrations 
are changing, due to climate change and 
other anthropogenic activities, is crucial 
for assessing the impact of atmospheric 
deposition on society through conse-
quences on ecosystem health, primary 
productivity, and global climate feed-
backs, among other effects. Such under-
standing requires quantifying the prop-
erties of aerosols across different ocean 
basins and timescales. To fill this knowl-
edge gap, GEOTRACES data, and data 
from other field programs, have been used 
to trace and constrain anthropogenic and 
natural sources of iron and other TEIs, 
and there have been important advances 
since the last progress report on TEI 
deposition research (Baker et  al., 2016). 

For example, in recent years, a grow-
ing avenue of study has been the use of 
GEOTRACES data to identify variations 
in isotope fractionation of specific TEIs 
to differentiate aerosol sources of metals 
(e.g.,  Conway et  al., 2019; Kurisu et  al., 
2021; Sieber et  al., 2023). GEOTRACES 
data can then constrain atmospheric 
and oceanic modeling, thus improving 
projections of future patterns in aerosol 
nutrient and contaminant distributions.

Modeling studies have shown that 
uncertainty in the input fluxes of iron 
hampers efforts to build agreement on its 
residence time in ocean waters and thus 
the ability of models to accurately repro-
duce observations within the water col-
umn (Tagliabue et  al., 2016). Long-used 
techniques, which apply a bulk deposi-
tion velocity estimate to convert observed 
atmospheric loading into a flux term, 
poorly constrain the magnitude of atmo-
spheric deposition (Duce et  al., 1991). 
Recent GEOTRACES efforts further 
indicated that deposition velocity esti-
mates should also be region, particle size, 
and element specific. For example, aero-
sol iron concentrations and solubilities 
in size-fractionated aerosols collected in 
the North Pacific region originating from 
East Asia are significantly different from 
those collected in the North Atlantic 
region where aerosols mainly origi-
nate from North Africa, including the 
Saharan desert. Recent work shows that 
Atlantic aerosol iron on particles <1.0 μm 
(the fine fraction) has a fractional solu-
bility less than about 5%, while the frac-
tional solubility of iron on Pacific parti-
cles may be greater than 30% in the same 
size fraction (Baker et  al., 2020; Hsieh 
et  al., 2022). These studies use different 
methods to estimate fractional solubil-
ity, which complicates comparisons of 
the results (Perron et al., 2020). As sum-
marized by Chance et  al. (2015), non- 
lithogenic elements are often associated 
with smaller aerosol particles and are 
subject to lower deposition velocity esti-
mates than are elements more associated 
with lithogenic material. Because aero-
sol deposition velocity and solubility are 

FIGURE 2. Total suspended particle samplers are shown mounted on the forward railing next to the 
sector-control anemometer aboard R/V Roger Revelle during US GEOTRACES section cruise GP15.
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both highly dependent on particle size, 
deficient size-fractionated data and the 
corresponding metal solubilities could 
introduce significant bias in estimates of 
soluble aerosol deposition fluxes. 

These estimates are also dependent 
on temporal snapshots of aerosol load-
ing, which may miss seasonality in atmo-
spheric deposition. GEOTRACES studies 
by their nature are short relative to sea-
sonal and episodic aerosol transport and 
deposition events. To address this issue, 
GEOTRACES affiliated researchers have 
developed methods that leverage chemi-
cal tracers in the water column—in par-
ticular, radioisotopes like thorium-230, 
thorium-232, and beryllium-7—to pro-
duce flux estimates that are less reli-
ant on snapshot observations of load-
ing in the atmosphere (Anderson et  al., 
2016; Hayes et  al., 2018; Kadko et  al., 
2015). Time-series atmospheric sam-
pling stations located on coasts or islands 
are also powerful tools that can comple-
ment GEOTRACES work and provide 
information on longer-term variability in 
atmospheric emissions/deposition.
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