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PERSPECTIVE

GEOTRACES REFLECTIONS
By Robert F. Anderson

SPECIAL ISSUE ON TWENTY YEARS OF GEOTRACES

Though geochemists have long sought to 
understand biogeochemical cycles, initial 
attempts to measure the extremely low 
concentrations of trace elements in sea-
water were frustrated by contamination 
problems. It was not until the 1970s that 
contamination-free methods were devel-
oped, launching a new era of research to 
characterize the biogeochemical cycles of 
trace elements in the ocean. 

Nevertheless, by the beginning of the 
new millennium, after two decades of 
improved and, generally, contamination- 
free sample collection, work was pro-
ceeding so slowly that description of 
the marine biogeochemical cycles of 
most trace elements was beyond reach. 
For example, by 2003, dissolved iron 
(dFe) profiles from the surface ocean 
to >2,000 m had been reported for no 
more than two dozen locations world-
wide (Anderson et al., 2014). Despite reli-
able data, for the most part, they were 
grossly inadequate to define biogeochem-
ical cycling of Fe. 

Efforts would have to be coordinated 
to characterize the global biogeochem-
ical cycle of any trace element: no sin-
gle nation, let alone an individual inves-
tigator, could hope to compile sufficient 
information. This recognition led to the 
creation of the GEOTRACES program 
(https://www.geotraces.org/), an inter-
national study of the marine biogeo-
chemistry of trace elements and their 
isotope (TEIs). 

The objectives of the program were 
straightforward: to determine ocean dis-
tributions of TEIs globally and to under-
stand the processes that control them 
well enough to code the defining param-
eters into models. Achieving the neces-
sary global coverage required contribu-
tions from many investigators in many 
nations, which, in turn, led to two further 
prerequisites: intercalibration, to ensure 
internal consistency of data generated by 
different labs (Aguilar-Islas et al., 2024, in 
this issue) and a data management sys-
tem that combined the international suite 

of intercalibrated data into a single data-
base that was available in multiple for-
mats, including graphical illustration of 
the results in an electronic atlas (Schlitzer 
and Mieruch-Schnülle, 2024, in this 
issue). These prerequisites were put into 
place in advance of the global study. 

International workshops held in 2007, 
focusing on the Pacific, Atlantic, and 
Indian Oceans, enabled investigators to 
identify target locations, either where 
strong sources or sinks of TEIs were 
thought to exist, or where internal cycling 
processes (biological uptake, regener-
ation, abiotic scavenging, transport by 
ocean circulation) have a strong influ-
ence over TEI distributions. Investigation 
of the Arctic and Southern Oceans began 
in 2007 under the International Polar 
Year (IPY). Although GEOTRACES 
was not ready at that time to under-
take a full study of all TEIs of interest, 
the development of new technologies 
for the collection of contamination-free 
samples (de Baar et  al., 2008) in prepa-
ration for GEOTRACES allowed some 
GEOTRACES investigators to partic-
ipate in the IPY. More complete plan-
ning for Arctic Ocean work (Jensen and 
Colombo, 2024, in this issue) was orga-
nized during an international workshop 
in 2009. Workshop reports, containing 
recommendations for a global survey, are 
available at https://www.geotraces.org/
planning-documents/. 

A global survey of TEI distributions 
(Figure 1) was designed using the targeted 
locations noted above, enabling investi-
gators to develop, and in some cases test, 
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hypotheses concerning sources, sinks, 
and internal cycling of TEIs. The global 
survey is nearly complete. An interac-
tive map with up-to-date information 
about GEOTRACES sections, as well 
as GEOTRACES process studies and 
the locations of compliant data (meets 
GEOTRACES standards of intercalibra-
tion), can be found at https://www.bodc.
ac.uk/geotraces/cruises/section_maps/
interactive_map/. By comparison with 
hydrographic data, the TEI data are still 
sparse, but they are adequate to convey a 
three-dimensional view of TEI distribu-
tion at the ocean basin scale, for example, 
dFe in Figure 2. 

GEOTRACES has nearly completed 
the first part of its mission: to estab-
lish the distributions of key TEIs glob-
ally. However, much remains to be done 
to identify the processes that control 
TEI distributions, the rates of those pro-
cesses, and their sensitivity to chang-
ing environmental conditions. As fore-
seen in the GEOTRACES science plan 
(GEOTRACES Planning Group, 2006), 
there is a need now for synthesis, which 
includes modeling and process studies. 

Iron (see also Conway et  al., 2024, in 
this issue) provides an example of new 
insights gained by GEOTRACES because, 
though essential for all organisms, it is so 
insoluble in oxygenated seawater that its 
low concentration, often <0.1 nmol kg–1 
in surface waters, is thought to limit 
the growth of phytoplankton through-
out much of the ocean (Browning and 
Moore, 2023). Furthermore, the distri-
bution of iron is influenced by multiple 
complicating factors. For example, opera-
tionally defined dissolved iron (iron pass-
ing through a filter with a pore diame-
ter of 0.2 µm or 0.4 µm) consists of both 
colloidal and soluble forms (the latter is 
thought to exist in true solution, although 
this is also operationally defined based on 
passing through a membrane with a nom-
inal pore diameter; e.g., 0.02 µm). Soluble 
Fe exists almost entirely as organic 
complexes (Gledhill and Buck, 2012). 
Although the structure of the complex-
ing ligands is unknown in most cases 

(Boiteau et al., 2016, 2019), there is grow-
ing evidence that humic compounds 
are important ligands (Dulaquais et  al., 
2023; Fourquez et  al., 2023). Whitby 
et al. (2024, in this issue) provide a more 
in-depth review of trace metal speciation. 
Colloidal forms, the abundance of which 
varies spatially, may be either organic or 
inorganic and constitute about half of 
the operationally defined dissolved Fe in 
seawater (e.g.,  Nishioka et  al., 2001; Wu 
et  al., 2001; Bergquist et  al., 2007; Boye 
et  al., 2010; Fitzsimmons et  al., 2017; 
Kunde et  al., 2019; Lough et  al., 2019; 
Homoky et al., 2021; Jensen et al., 2021; 
Tagliabue et al., 2022). 

With multiple contributing sources 
(rivers, dust, hydrothermal fluids, and 
sediments), the total supply rate of iron 
is difficult to quantify (Tagliabue et  al., 
2017; Somes et  al., 2021). Biological 
uptake of Fe, and abiotic scavenging, pro-
cesses that remove Fe from the ocean, 
are both sensitive to the chemical specia-
tion and physical form of Fe (e.g., Wang 
and Guo, 2000; Chen and Wang, 2001). 
These factors create large uncertainty in 
the rates of supply, removal, and internal 
cycling of Fe in the ocean, as illustrated 
by the two orders of magnitude spread of 

estimated residence times of dFe in the 
ocean among 13 models presented in the 
first iron model intercomparison project 
(Tagliabue et al., 2016). As these models 
were tuned to match observed dFe distri-
butions, the range of residence times is a 
measure of the uncertainty in the rates of 
supply and removal.

Several studies have since attempted 
to improve global models of iron in 
the ocean (see Tagliabue and Weber, 
2024, in this issue). For example, Somes 
et al. (2021) combined the University of 
Victoria Earth System Climate Model 
with the Model of Ocean Biogeochemis-
try and Isotopes (MOBI), incorporating 
estimates of iron supply by dust, by reduc-
tive sediment dissolution, and by hydro-
thermal fluids. They varied the inputs of 
Fe from dust and from sediments and 
used either constant or variable concen-
trations of Fe-binding ligands. For each 
scenario, scavenging (removal) rates were 
tuned to achieve an approximation of the 
observed dFe distribution. High rates of 
Fe supply and removal were required to 
match observed spatial gradients in dFe 
concentration. Consequently, average 
surface and global-ocean residence times 
of dFe were short, 0.83 and 7.5 years, 

FIGURE 1. Status of the GEOTRACES global survey of trace elements and their isotopes, omit-
ting the Arctic Ocean. Sections in black were completed as the GEOTRACES contribution to the 
International Polar Year. Sections in yellow were completed, as of February 1, 2024, as part of the 
primary GEOTRACES global survey. Sections in red are being considered but not yet completed. 
This figure is available from https://www.bodc.ac.uk/geotraces/cruises/section_maps/interactive_
map/ where an interactive version is available with more information about each cruise. 
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respectively. This estimate for the global- 
ocean residence times of dFe is at the 
low end of the range obtained in previ-
ous models (Tagliabue et  al., 2016), and 
much lower than the often-used estimate 
of deep-water scavenging residence time 
for dFe of 270 ± 140 years (Bergquist 
and Boyle, 2006). 

Short residence times of dFe, 
which imply high rates of supply and 
removal, are supported by results from 
radionuclide- based methods employed 
in GEOTRACES. Investigators have used 
7Be to estimate the supply of Fe from the 
atmosphere (Kadko et al., 2020), 234Th to 
estimate the export of Fe from the sur-
face ocean (Black et al., 2020), and com-
bined 230Th with 232Th to estimate the 
supply of dFe from atmospheric sources 
to surface waters (Hayes et al., 2015, 2017; 
Hayes, 2024, in this issue). While the sur-
face-ocean dFe residence times esti-
mated by these methods ranged widely 
(with season and proximity to produc-
tive upwelling systems), they were com-
parable to the average value generated by 
Somes et  al. (2021). Likewise, full water 

column dFe replacement times estimated 
for the tropical North Atlantic Ocean by 
combining 230Th with 232Th were also at 
the low end of model estimates (four to 
eight years; Hayes et al., 2018), consistent 
with the global-ocean residence times of 
dFe reported by Somes et al.

Agreement between model estimates 
and radionuclide-based methods, noted 
above, provides incentive to combine 
radionuclides and trace element data in 
future synthesis efforts that aim to con-
strain rates of TEI supply and removal. 
Improvement can be expected as lim-
itations of observational and model-
ing approaches are overcome. For exam-
ple, the Somes et  al. (2021) model does 
not contain non-reductive mobili-
zation of dFe from sediments, or the 
release of colloidal Fe, both of which 
have been shown to be important com-
ponents of the ocean Fe cycle (Conway 
and John, 2014; Homoky et  al., 2021). 
Radionuclide-based methods, on the 
other hand, require assumptions about 
the solubility of Fe derived from aerosols 
(Kadko et al., 2020), about the lithogenic 

Fe/Al ratio (Black et  al., 2020), and/or 
about the relative solubility of Fe and Th 
(Hayes et al., 2015, 2018). Future synthe-
sis studies that address these assump-
tions will provide new insight into criti-
cal biogeochemical cycles.

New understanding of biogeochemi-
cal cycling has come from process stud-
ies as well as from the global survey. For 
example, time-series measurements at 
the Bermuda-Atlantic Time Series sta-
tion (BATS) show a strong seasonal vari-
ability of dFe in surface water that is not 
accompanied by an equivalent variabil-
ity of ligands (Tagliabue et al., 2023). This 
suggests that much of the dFe supplied 
during the summer dust maximum is 
removed by formation of authigenic col-
loids that then coagulate into larger, set-
tling particles (Tagliabue et  al., 2023), a 
process that was not considered in pre-
vious models. This shows how studies 
can be designed to address critical pro-
cesses that cannot be extracted from 
global survey data. 

While this article focuses on Fe, uncer-
tainties about sources, speciation, and 

FIGURE 2. Dissolved Fe concentrations in the Atlantic (a) and Pacific (b) Oceans extracted from the eGEOTRACES electronic atlas (https://www.
egeotraces.org/). Elevated concentrations of dissolved Fe are seen around the crests of mid ocean ridges, indicating hydrothermal sources, and near 
continental margins, indicating mobilization from sediments and from dust. Data are available in the GEOTRACES Intermediate Data Product IDP2021 
(IDP, 2021). Images courtesy of Reiner Schlitzer, Alfred Wegener Institute 
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removal processes also limit our under-
standing of the marine biogeochemical 
cycles of other trace elements. For exam-
ple, although it was established decades 
ago that most dissolved Cu in seawater 
exists as organic complexes (Coale and 
Bruland, 1990), it was recently discov-
ered that much of the organically com-
plexed Cu may be inert (unavailable for 
biological uptake or abiotic scaveng-
ing; Moriyasu et  al., 2023). The possi-
ble existence of organically complexed 
or colloidal inert Cu was noted in previ-
ous GEOTRACES studies (Ruacho et al., 
2020), and terrestrial sources of these 
chemical species have been suggested 
(Zitoun et  al., 2021; Moriyasu et  al., 
2023), but the impact of these inert forms 
on the biogeochemical cycle of Cu has 
not yet been explored in models (Richon 
and Tagliabue, 2019; Roshan et al., 2020). 
Future studies that establish the nature 
and source(s) of these inert forms, as 
well as their impact on the marine bio-
geochemical cycle of Cu, will constitute a 
major advance of the field.

Synthesis in GEOTRACES has also led 
to some notable advances in our under-
standing of TEIs. For example, the strong 
correlation between dissolved Zn and dis-
solved Si has been known since the first 
reliable Zn data were produced (Bruland, 
1980). However, the incorporation of Zn 
into diatom frustules cannot explain this 
correlation given their low Zn concen-
tration (Ellwood and Hunter, 2000). An 
alternative hypothesis to explain the cor-
relation centers on the mixing of deep 
waters in the Southern Ocean that are 
rich in both Zn and Si, combined with the 
strong biological uptake of both Si and Zn 
in Southern Ocean surface waters (Vance 
et al., 2017; de Souza and Morrison, 2024, 
in this issue). Some models largely repro-
duce the global correlation with ele-
vated biological Zn/Si uptake ratios in 
the Southern Ocean (de Souza et  al., 
2018). However, other models (Roshan 
et al., 2018; Weber et al., 2018) also need 
to incorporate abiotic reversible scav-
enging of Zn to fit global observations 
of Zn distribution. Further modeling of 

GEOTRACES data confirms the impor-
tance of reversible scavenging while also 
explaining the vertical distribution of 
the isotopic composition of dZn (Sieber 
et  al., 2023), illustrating the multiple 
steps involved in establishing the global 
distribution of TEIs, a process facilitated 
by the global and internally consistent 
data of GEOTRACES. 

Other advances based on GEOTRACES 
findings are described in the papers 
that follow in this issue and elsewhere 
(e.g., Anderson, 2020). The wealth of data 
(Figures 1 and 2) has already resolved 
previously unanswered questions, but the 
combination of different observational 
methods together with different mod-
eling approaches is leading to unprece-
dented opportunities. We welcome and 
look forward to continued synthesis of 
GEOTRACES results and to novel pro-
cess studies that will contribute even fur-
ther to our understanding of global bio-
geochemical cycles of TEIs.
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