
October 2023 | Oceanography 101

PACIFIC HIGH-LATITUDE ECOSYSTEMS 

SPECIAL ISSUE ON THE PACIFIC MARINE ENVIRONMENTAL LABORATORY:
50 YEARS OF INNOVATIVE RESEARCH IN OCEANOGRAPHY

By Albert J. Hermann, Wei Cheng, Phyllis J. Stabeno, Darren J. Pilcher, Kelly A. Kearney, and Kirstin K. Holsman 

APPLICATIONS OF BIOPHYSICAL MODELING TO

Daily average surface chlorophyll concentration 
(July 21, 2001) from a biogeochemical model of 
the Gulf of Alaska (blue = lowest concentration, 
red = highest), with bathymetry superimposed.
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INTRODUCTION
This article provides an overview of 
biophysical modeling efforts at the 
NOAA Pacific Marine Environmental 
Laboratory (PMEL) centered on the high-​
latitude North Pacific. Over the past four 
decades, these efforts have been guided 
by observations and motivated equally 
by unknowns in fisheries oceanography 
and societal needs for effective ecosystem 
management. As an example, modeling 
for the Gulf of Alaska (GOA), carried out 
under the PMEL Fisheries Oceanography 
Coordinated Investigations (FOCI and 
successor EcoFOCI) program, was moti-
vated by observations of a surge in the 
populations of spawning walleye pollock 
(Theragra chalcogramma) in Shelikof 

Strait in the early 1980s (Figure 1 in 
Mordy et al., 2023, in this issue). The com-
plex bathymetry and hydrodynamics of 
the Shelikof Strait region limited the suit-
ability of simple analytical models and 
required a numerical modeling frame-
work capable of resolving regional topog-
raphy and fine vertical structure through 
the water column. At the time, the 
Semi-spectral Primitive Equation Model 
(SPEM), developed primarily at Rutgers 
University (Haidvogel et al., 1991), was a 
logical choice for this purpose (Hermann 

and Stabeno, 1996). SPEM was used to 
model the physics of this complex region 
and test several hypotheses regarding 
physical drivers (e.g.,  changes in advec-
tion and ocean temperature) for the wall-
eye pollock shift. Over time, this focus 
expanded to include the wider GOA and 
the Bering and Chukchi Seas as well as 
testing of a much larger set of hypothe-
ses in fisheries oceanography. Subjects 
of these hypotheses include, but are not 
limited to, the roles of larval advection, 
match/​mismatch of larvae with prey den-
sity (Doyle et  al., 2019), drivers of high 
primary production in the coastal GOA 
where downwelling circulation predomi-
nates (Coyle et al., 2019), and the impacts 
of seasonal sea ice oan production in the 

Bering Sea (e.g., the “Oscillating Control” 
hypothesis; Hunt et al., 2011).

A central goal of these efforts is to cap-
ture the realistic dynamics of the fluid 
using hydrodynamic models that are 
constructed following the laws of physics 
governing ocean circulation and changes 
in water mass properties. The models are 
driven at the sea surface by atmospheric 
forcing and at the lateral boundaries for 
limited domain modeling by input from 
the surrounding oceans and terrestrial 
runoff. The development of accurate 

lateral boundary conditions for ocean 
hydrodynamics and biogeochemistry has 
been, and continues to be, a significant 
challenge to the successful modeling of 
regional oceans.

The hydrodynamic models we use 
have evolved over the years. The numer-
ical structure of SPEM did not allow for 
a tidally varying sea surface height and 
hence proper tidal mixing and circula-
tion, a major feature of the region. SPEM 
did, however, resolve small-scale (30 km) 
eddies and other prominent features of 
the Alaska Coastal Current (Figure 1). A 
successor to this code, the S-Coordinate 
Rutgers University Model (SCRUM; 
Song and Haidvogel, 1994), did allow 
for a free ocean surface, and hence was 
used to implement nested regional mod-
els of the GOA and the Bering Sea that 
included tidal forcing. Both SPEM and 
SCRUM were based on terrain-​following 
vertical coordinates, which helped to 
resolve vertical structure over the irregu-
lar topography of our regions. Ultimately, 
developers at Rutgers and UCLA pro-
duced the Regional Ocean Modeling 

System (ROMS; Haidvogel et  al., 2008), 
which included the desirable proper-
ties of (1) a free sea surface, (2) an effi-
cient representation of vertical structure, 
and notably, (3) built-in options for data 
assimilation. Most significantly for our 
Bering Sea work, ROMS was enhanced to 
include ice dynamics and thermodynam-
ics (Danielson et al., 2011). The work at 
PMEL benefited from each of these mod-
els, and many hard-won recommenda-
tions from collaborators on best parame-
ter choices and procedures for developing 
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regional boundary conditions. More 
recently, the NOAA Geophysical 
Fluid Dynamics Laboratory’s open-​
development Modular Ocean Model 
version 6 (MOM6; Adcroft et  al., 2019) 
has played a growing role across NOAA, 
including at PMEL. While MOM6 was 
initially applied in global configura-
tions, it is now implemented in sev-
eral regional configurations that include 
Northeast Pacific and Arctic domains. 
It includes a flexible vertical coordinate 
system that permits a range of strategies 
for resolving shelf-scale features, includ-
ing steep bathymetry, while also main-
taining off-shore water masses. It also 
includes flexible time-​stepping options 
that allow for faster execution of the code 
when incorporating many state variables 
(as in biology-​focused configurations). 
Ultimately, this could allow for longer 
simulations, larger predictive ensembles, 
and finer spatial resolution than would be 
affordable using earlier codes.

These hydrodynamic models are cou-
pled with ocean biogeochemistry mod-
ules to study biophysical interactions. 

Over the years, we have been fortunate 
to work with a wide multidisciplinary 
cast of colleagues, including research 
units within PMEL, the Alaska Fisheries 
Science Center (AFSC), the University of 
Alaska Fairbanks, and Rutgers University. 
These collaborations have striven to eluci-
date the mechanisms connecting physics 
and biogeochemistry to the population 
dynamics, movement, and reproduc-
tion of managed species in a region of the 
world that is difficult to sample directly. 
Collectively, we have recognized the vir-
tue (and challenge) of combining multi-
ple elements within a single model, allow-
ing for both “bottom-up” and “top-down” 
dynamics to guide the emergent model 
behavior. For example, some allowance 
for fish and mammals to impact the pop-
ulations on which they feed is included 
(e.g.,  Ortiz et  al., 2016). In practice, 
this coupling is quite difficult, not only 
because of the sparse observations avail-
able to constrain the form and parame-
terization of the key processes but also 
because of the sheer number of desired 
state variables (many different species 

and life stages) and the computational 
demands this entails.

The coastal subarctic regions of 
the GOA and the Bering Sea present 
some unique challenges to simulating 
biogeochemistry: wide, shallow shelves 
supporting diverse mesozooplankton 
populations and large benthic commu-
nities; the presence of sea ice and ice-​
associated plankton and algae; and sub-
stantial land-based input of nutrients like 
iron (Coyle et al., 2019). Because of these 
conditions, a number of custom biogeo-
chemical (i.e.,  nutrient-​phytoplankton-​
zooplankton, or NPZ) models have been 
developed for the region, development 
that must continually balance the desire 
to simulate the complexity that has been 
hypothesized as essential for success 
with the limited amount of observational 
data available to validate and parameter-
ize such complexity. Our high-​latitude 
NPZ models initially included only a few 
nutrient, phytoplankton, and zooplank-
ton groups (Figure 2), but they have 
since been expanded to include multiple 
nutrient currencies (including carbonate 

FIGURE 1. An early comparison of moored current meter data and the Semi-spectral Primitive Equation Model (SPEM) for the northern Gulf of Alaska 
(a, with moorings numbered) illustrates observed (b) and modeled (c) velocities (cm s–1) off Cape Kekurnoi using data from moorings 1–3. From Stabeno 
and Hermann (1996)
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system dynamics), multiple phytoplank-
ton and zooplankton functional groups 
(Pilcher et  al., 2019; Kearney et  al., 
2020), and benthic and ice biogeochem-
istry modules. Computational and file 
storage constraints must also be con-
sidered as models grow to include more 
state variables, resolve smaller-scale pro-
cesses, cover longer time periods, and use 
larger ensembles to quantify uncertainty. 
Advances in computing may help to alle-
viate some of these limitations, allowing 
for larger ensembles to explore a larger 
volume of parameter space, and hence 
better quantify the uncertainty of any 

biological predictions and projections.
In classical Eulerian (fixed-grid) NPZ, 

fish, and marine mammal models, we 
track the average properties of a popula-
tion within each model grid cell, neglect-
ing the variation among individuals 
within that grid cell. An alternative 
approach treats fish and mammals as 
individuals subject to both advection and 
self-directed motion. One great motiva-
tor for this individual-based approach is 
the classic dictum (historically attributed 
to Gary Sharp) that “the average fish is 
dead”—that is, only a fortunate few sur-
vive to adulthood, and we should focus 

on what makes them successful, rather 
than on the average (hence unsuccessful) 
individual. Given the strong natural dis-
persion (mixing) of the marine environ-
ment, this approach requires a large ini-
tial population, along with “reseeding” 
of individuals where they become sparse. 
With biological colleagues, we ulti-
mately implemented this Individual-
Based Modeling method using SPEM 
and ROMS, both online (as part of the 
execution of the hydrodynamic model) 
and offline (using stored hydrodynamic 
output; e.g., Gibson et al., 2022).
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FIGURE 2. (a) Schematic of an early 
use of a hydrodynamic model (SPEM) 
with a lower trophic level model. 
Modified from Hinckley et  al. (2009). 
(b) Flowchart of hydrodynamic model 
forcing, nesting, comparisons with data, 
and linkage with biological models. 
Modified from unpublished GLOBEC 
flowchart by E.L. Dobbins, University of 
Alaska Fairbanks 
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MODELING HIGHLIGHTS AND 
INTEGRATION OF MODELING 
AND OBSERVATIONS
In this section we highlight a few regional 
downscaling activities using the models 
and approaches introduced above. Our 
modeling domains have spanned the 
Northeast Pacific, from the Washington 
coast (Siedlecki et al., 2023, in this issue) 
to the GOA (Gibson et al., 2022) and the 
Bering Sea (Cheng et al., 2021; Hermann 
et  al., 2021). Many of these multi-
disciplinary models were developed in 
conjunction with large field campaigns 
(e.g., the Bering Sea Project). The lengths 
of the simulations range from seasonal 
to multidecadal. In general, the model-
ing types can be divided into: (1) retro-
spective hindcasts where simulations are 
forced by past ocean and atmospheric 
conditions and therefore can be directly 
compared with observations; (2) seasonal 
forecasts where the regional ocean is ini-
tialized by present “known” (observed 
or estimated) conditions and run for-
ward in time for 9–12 months, driven 
by global predictions from operational 
weather forecast and research centers; 
and (3)  multidecadal projections where 
the regional ocean is forced by ocean-​
atmosphere conditions as simulated by 
global Earth System Models (ESMs) 
under greenhouse gas and aerosol forcing 
scenarios (IPCC reports; see Drenkard 
et al., 2021, for overview). We also discuss 
the importance of integration between 
modeling and observations.

Retrospective Hindcasts
Hindcasts—simulations of past condi-
tions—​have long been used in physi-
cal oceanography to identify the pri-
mary mechanisms driving observed 
ocean change (e.g.,  El Niño-Southern 
Oscillation). Many of the products result-
ing from our (PMEL and AFSC) mod-
eling efforts have been directed at users 
within the fisheries community. A funda-
mental question addressed by EcoFOCI 
has been the fate of spawned fish larvae—
where do they go and how do some lar-
vae become more successful than others? 

Hindcast simulations evaluated against 
historical observations allow us to address 
dynamical linkages among the ocean 
biophysical environment, ecosystem 
responses, and fisheries management. 
Major enhancements to our retrospective 
biophysical modeling capabilities were 
achieved through collaborations with 
large interdisciplinary programs such as 
the Global Ecology Program (GLOBEC; 
Curchitser et al., 2013), the Gulf of Alaska 
Integrated Ecosystem Research Program 
(GOAIERP; Gibson et al., 2022) and the 
Bering Sea Program (BEST-BSIERP; 
Hunt et  al., 2011). The GLOBEC work 
included an elaboration of our NPZ com-
ponents to include multiple size classes of 
plankton and highlighted the importance 
of iron in runoff influencing produc-
tion on the GOA shelf (Figure 2). Under 
BEST-BSIERP, a benthic component and 
ice algae were included for the Bering 
Sea, as well as elements of the carbon-
ate system in order to address emerging 
ecosystem stressors such as ocean acidi-
fication. These results uncovered strong 
connections between air temperature, 
winds, the Bering Sea “cold pool,” and 
large crustacean zooplankton (Hermann 
et al., 2019, 2021). The extensive field sur-
veys conducted under these programs 
provided a powerful basis for model 
improvement and validation across mul-
tiple state variables that continue to 
be used for these purposes. Regularly 
updated hindcasts are now made avail-
able to the public through a PMEL web 
server (https://beringnpz.github.io/​roms-​
bering-​sea/​B10K-​dataset-​docs/).

Over the years, integration with sus-
tained and novel observations pioneered 
by PMEL and its partners has played a key 
role in building confidence in retrospec-
tive ocean simulations, and these simu-
lations have enabled us to better under-
stand the full oceanographic context 
within which the observations were col-
lected. We have used validated models to 
quantify both heat and nutrient budgets 
of the GOA and Bering Sea. Statistical 
analysis of the model output, includ-
ing machine learning, has been used to 

identify covarying patterns among the 
physical and biological elements, which 
in turn can be used as a summary of the 
regional model dynamics. Further, a val-
idated model can be used to fill in criti-
cal missing data, for example, by provid-
ing temperature and cold pool hindcasts 
to fisheries scientists and managers; this 
was especially useful in 2020, when field-
work could not be completed for the first 
time in 40 years due to the COVID-19 
pandemic (Kearney, 2020).

Seasonal Forecasts
Model simulations can be used to forecast 
ocean future conditions on a variety of 
timescales. Fisheries managers in partic-
ular can benefit from predictions of ocean 
states at seasonal timescales (Tomassi 
et  al., 2017), including those for sum-
mer bottom temperatures and the sea-
sonal formation and retreat of ice cover 
in the Bering Sea. Thus far, downscaling 
“re-forecast” experiments for 1982–2010 
have demonstrated limited skills for the 
9–12 months over-winter prediction of 
bottom temperatures and ice retreat in 
the Bering Sea (Kearney et  al., 2021); 
however, following the spring transition, 
“persistence” forecasts based on state 
estimates of springtime conditions have 
demonstrable skill through the fall.

Multidecadal Projections
With increasing evidence of global climate 
change, our focus gradually expanded to 
include decadal projections that spatially 
“downscale” global projections to the sub-
arctic (Cheng et al., 2021; Hermann et al., 
2021; Pilcher et al., 2022). A notable find-
ing of these runs, under high emission 
scenarios, is a projected decrease in large 
crustacean zooplankton in the Bering 
Sea and a phenological shift to plankton 
blooms earlier in the year. Among other 
purposes, the longer-term projections 
are used in management strategy evalu-
ations—​that is, modeling studies where 
the impacts of alternative regional fish-
eries management strategies are explored 
under a variety of possible global futures 
(Figure 3; Hollowed et al., 2020; Holsman 

https://beringnpz.github.io/roms-bering-sea/B10K-dataset-docs/
https://beringnpz.github.io/roms-bering-sea/B10K-dataset-docs/
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et  al., 2020). These downscaled projec-
tions, developed under the Alaska Climate 
Integrated Modeling Project (ACLIM), 
are available on the PMEL web server.

Integration of Modeling 
and Observations
Integration of modeling and observations 
is critical to modeling success. All ocean 
models have finite spatial and temporal 
resolution and contain multiple sources of 
uncertainty and imperfectly constrained 
parameters. Hence, validation and tun-
ing (and/or formal data assimilation) 
using in situ and remotely sensed data 
are essential parts of the modeling pro-
cess (Figure 4). Beginning with our use of 
SPEM, data from dedicated moorings in 
Shelikof Strait were used to confirm that 
our hydrodynamic model was capturing 
the essential spatial patterns of the Alaska 
Coastal Current. Numerous repeat tran-
sects and less common broad surveys in 
the GOA and the Bering Sea helped to 
confirm temperature, salinity, nutrients, 
and chlorophyll patterns were sufficiently 
realistic for the models to be used in pro-
cess studies. Over the years, a wide array 
of pioneering measurements conducted 

by PMEL and the AFSC EcoFOCI group 
have been fundamental to the validation 
of our regional models. These data assets 
have included cruise-based transects of 
temperature and salinity, trawl surveys 
of bottom temperature, satellite-tracked 
drifters, and gliders. More recently, this 
family of instruments has expanded to 
use sensors onboard uncrewed saildrones 
(Stabeno et  al., 2023, in this issue). The 
gold standard for model validation is, 
however, long-term time series (e.g., tem-
perature, salinity, currents, chlorophyll 
fluorescence) at fixed locations through-
out the water columns. These moorings 
are capable of capturing both short-term 
dynamics and long-term trends. Within 
EcoFOCI, the long-term moorings 
along the 70 m isobath in the Bering Sea 
(Stabeno et  al., 2023, in this issue) have 
been fundamental to our success in mod-
eling the Bering Sea shelf. 

SERVING OUTPUT TO THE 
WIDER COMMUNITY
Visualization of Output
Over many years, our capabilities at 
PMEL to visualize model output have 
grown more sophisticated. Initially, we 

displayed model results using simple 
contour plots—the standard currency 
of the oceanographic community at that 
time. In the 1990s, shaded plots (many 
generated via PMEL’s Ferret software) 
gradually became the new standard. In 
addition, at PMEL we began offering ani-
mated float tracks from the models on 
our web pages. As web capabilities grew, 
we expanded into three-dimensional dis-
plays of float tracks, which could reveal 
motions not easily grasped on a flat page. 
Several projects advanced our capabilities 
for low-cost immersive display of float 
tracks, surfaces, and volumes (immer-
sive as in “virtual reality,” where binoc-
ular vision is a key element). Setups that 
ranged from displays with red-blue and 
polarizing glasses to active headgear were 
subsequently taken on the road to con-
ferences and used for local scientific out-
reach at schools and science fairs. These 
low-cost efforts were possible due to mar-
ket demands as the computer gaming 
community sought more lifelike expe-
riences. Augmented reality glasses may 
be the next level in this evolution of 
scientific visualization.

Public Access and Partnerships
A key element of NOAA’s mission is to 
serve oceanic data to the public. In ear-
lier decades, we posted animated con-
tour plots of sea surface height, sur-
face temperatures, and salinity from 
SPEM on public web pages. Ultimately, 
the Live Access Server (LAS), devel-
oped by the PMEL IT group, was used to 
host full three-dimensional output from 
model runs. The LAS provides inter-
active selection of data by region and 
time, as well as interactive downloading 
of the selected set. Most recently, the full 
runs of ACLIM and hindcast model out-
put, spanning multiple decades, are being 
hosted on LAS and the OpenDAP service 
on the PMEL web server. The latter pro-
vides a means for any user to access sub-
sets of the data from local analysis soft-
ware (e.g.,  Ferret, MATLAB, Python, R) 
without needing to download the entire 
(terabyte-sized) set.

FIGURE 3. Flowchart illustrating Regional Ocean Modeling System (ROMS)-based downscaling 
of global climate projections to regional scale in the Bering Sea for use in Management Strategy 
Evaluation. From ACLIM program, Holsman et al. (2020)
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CHALLENGES AND 
FUTURE DIRECTIONS 
Many challenges remain for success-
ful modeling at high latitudes, especially 
when both physical and biological ele-
ments are contained in the same sys-
tem. Continued advancements in com-
puting and storage capacity will permit 
us to refine our spatial focus, enhance 
our trophic resolution, and expand our 
ensembles, yielding more statistically 
sound forecasts and projections despite 
unavoidable uncertainty. 

At seasonal scales, limited capacity 
to predict large-scale atmospheric driv-
ers of ocean dynamics, such as the inten-
sity and direction of subarctic winds, 
hampers our ability to predict hydro-
dynamics of the regional ocean (e.g., tem-
perature, currents, and sea ice) more than 
a few months in advance. Within fish-
eries, uncertainty in spawning patterns 
and predation, coupled with the physical 
uncertainty, has limited our ability to pre-
dict at the seasonal level, yet significant 
progress has been made (Tomassi et  al., 
2017). On multidecadal timescales, the 
largest hydrodynamic uncertainty stems 
from human behavior itself, that is, soci-
ety’s willingness and ability to limit fur-
ther emission of greenhouse gases. On 
top of this, future ocean ecosystems will 

likely be dominated by markedly different 
species assemblages—making any future 
biological patterns difficult to predict in 
detail. We can, however, make spatially 
and temporally averaged projections that 
are useful in management strategy evalu-
ations. Increased computing power, ded-
icated field observations, and new tech-
niques for data assimilation continue to 
expand our abilities to predict the regional 
ocean on seasonal timescales and to proj-
ect a wide ensemble of possible futures. 

The intermittent presence of sea ice and 
limited human and computer power have 
restricted our use of data assimilation in 
the past. Nonetheless, we anticipate that 
increasing observations at PMEL will 
lead to better validated, bias-corrected 
hindcasts, and that formal data assimila-
tion of these assets will ultimately become 
common for hindcasts at PMEL. 

We expect to continue strong collab-
oration across NOAA, which will bene-
fit fisheries management. Although their 
end goals may differ, the work of physi-
cal, biological, and sociological research 
units focused on high latitudes are all 
enhanced by more accurate and refined 
estimates of the ocean states—past, pres-
ent, and future. Sustained support, such 
as that provided by the NOAA Climate 
Ecosystems and Fisheries Initiative, will 

accelerate these efforts, serving as a cat-
alyst for cross-laboratory collaboration. 
Under this banner, we expect these 
research efforts will be increasingly oper-
ationalized in order to provide regularly 
updated hindcasts, seasonal predictions, 
and long-term projections of the bio-
physical states of the Northeast Pacific, 
the Bering Sea, and the Pacific Arctic. 

FLIPBOOK EDITION
The flipbook edition of this issue contains anima-
tions associated with Figure 2b. Go to https://doi.org/​
10.5670/oceanog.2023.226 to access the flipbook.
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