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SPECIAL ISSUE ON THE PACIFIC MARINE ENVIRONMENTAL LABORATORY:
50 YEARS OF INNOVATIVE RESEARCH IN OCEANOGRAPHY

GLOBAL SYNTHESIS OF THE STATUS AND TRENDS OF 

OCEAN ACIDIFICATION IMPACTS 
ON SHELLED PTEROPODS

3 3
3

3

3

3

3
3

2

2

2 2

1

1
1

1

INTERMEDIATE 
SHELL DISSOLUTION

2
NO EVIDENCE OF 

SHELL DISSOLUTION

1
SEVERE 

SHELL DISSOLUTION

3

By Nina Bednaršek, Richard A. Feely, Greg Pelletier, and Flora Desmet

Oceanography | Vol. 36, No. 2–3130



October 2023 | Oceanography 131

INTRODUCTION
Accumulations of anthropogenic CO2 

in Earth’s atmosphere and ocean pose a 
major threat to global climate and soci-
ety (Friedlingstein et  al., 2020, 2022). 
The crucial role of the ocean in attenu-
ating the increase in atmospheric CO2, 
and thus global warming, is related 
to the excess atmospheric CO2 that is 
absorbed by the ocean as dissolved CO2, 
which alters the seawater carbonate sys-
tem (Zeebe and Wolf-Gladrow, 2001). 
Increased CO2 uptake causes a decline 
in pH, shoaling of the CaCO3 saturation 
state horizon (Ω), and reduced carbonate 
ion concentration in a process known as 
ocean acidification (OA; Feely et al., 2004, 
and 2023, in this issue). Among global 
ocean change processes, OA represents 
one of the greatest threats to ocean eco-
systems, marine-related socioeconomic 
activities (IPCC, 2022), and biogeochem-
ical processes, with significant repercus-
sions for the ocean carbon sink, because 
it alters transfer of carbon from the sur-
face to the ocean depths (Feely et  al., 
2002; Lee and Feely, 2021).

The major mechanisms of carbon 
transport in the ocean’s interior include 
the inorganic solubility pump and the 
biological pump, within which the car-
bonate pump is an important transport 
process that leads to enhanced carbon 

sequestration on timescales of several 
centuries to millennia. Pelagic calcifi-
ers, including coccolithophores, foramin-
ifera, and shelled thecosomata (referred 
to as pteropods), are significant climate 
regulators (Milliman, 1993; Sarmiento 

and Gruber, 2006). Through their contri-
butions to CaCO3 export, calcifiers affect 
the rate, magnitude, and strength of the 
ocean as a carbon sink and its potential 
for affecting climate change (Feely et al., 
2004; Gehlen et al., 2007). OA impacts the 
carbonate pump through several major 
pathways (Figure 1). The OA-induced 
decrease in Ω increases CaCO3 dissolu-
tion, reduces calcification, and reduces 
the sinking speed of biogenic aggregates. 
The dissolution of biogenic carbonates at 
depth leads to decreased availability of 
CaCO3 ballast material to accelerate sink-
ing velocities of particulate organic car-
bon (Honjo et  al., 2008). To understand 
the scale of the changes, regional biogeo-
chemical processes should be extrapo-
lated to global scale.

Pteropods are zooplanktonic pelagic 
calcifiers with ubiquitous biogeographic 
distribution across the global ocean; 
their highest biomass occurs in the upper 
200  m (Bednaršek et  al., 2012a) during 
their diel vertical migration. They build 
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shells of aragonite, a metastable form of 
calcium carbonate that is 50% more sol-
uble than calcite (Mucci, 1983), which 
makes them more sensitive to OA than 
calcite-shelled organisms (Fabry et  al., 
2008; Bednaršek et  al., 2014b; Manno 
et al., 2017). Observations and modeling 
suggest that pteropods contribute signifi-
cantly more than previously thought to 
global carbonate export. Bednaršek et al. 
(2012a) estimated that pteropod con-
tributions range between 20% and 42%, 
while a modeling study by Buitenhuis 
et al. (2019) found that pteropods domi-
nate CaCO3 export, ranging between 33% 
and 89% in the upper 200 m.

Apart from their biogeochemical role, 
pteropods are also an important compo-
nent of the food web because they chan-
nel energy through the trophic levels 
and provide essential food resources for 
economically important fish. To date, 
experimental studies have demonstrated 
significant rate changes in biomineraliza-
tion responses to reduced aragonite sat-
uration state (Ωar), showing increased 
shell dissolution and reduced calcifica-
tion (Lischka et al., 2011; Comeau et al., 
2009, 2012; Bednaršek et  al., 2014a, 
2017a). This is further supported by 
expert- consensus selected thresholds 
that delineate the magnitude and dura-
tion of OA exposure involved in nega-
tive responses (Bednaršek et  al., 2019). 
Research on NOAA Pacific Marine Envi-
ron mental Laboratory (PMEL) cruises 
demonstrated that severe shell disso-
lution was already observable in the 
sensitive subpolar, polar, and upwell-
ing regions under current conditions 
(Bednaršek et  al., 2012b, 2014b, 2021; 
Niemi et  al., 2021). This makes ptero-
pods one of the most vulnerable groups 
to OA and a key indicator for OA vul-
nerability assessment and regional mon-
itoring (Bednaršek et  al., 2017b). Such 
rapid changes in biomineralization pro-
cesses can have significant biogeochem-
ical implications for carbon export, 
especially in regions where their bio-
mass is high—the Arctic and Southern 
Oceans, the subpolar North Pacific, the 

equatorial Pacific, and the coastal Eastern 
Boundary Upwelling Systems, particu-
larly the California Current System and 
the Humboldt Current System (Knecht 
et al., 2023; Bednaršek et al., 2012a).

Although pteropods are known to 
be important players in the global car-
bon budget, there are still a number of 
uncertainties regarding the drivers, the 
strength, and the significance of ptero-
pods in the carbonate pump. Our under-
standing of pteropods’ aragonite response 
remains limited, as reflected in the lack 
of their representation in CaCO3 cycle 
assessments and modeling. Refining our 
understanding of these processes means 
developing significantly better parame-
terizations of critical pteropod responses 
to OA and their changes across global 
scales. This paper, which is based on 
research conducted over the last 12 years 
as part of PMEL climate and acidification 
research cruises, summarizes the cur-
rent status and 35-year trends for the best 
understood and most observed process 
of pteropod shell dissolution, which has 
direct consequences for carbon export 
and sequestration. By using the quan-
tified sensitivity of biological responses 
(Bednaršek et  al., 2014a,b; Feely et  al., 
2016), integrated chemical observa-
tions, and model outputs, we align the 
changes in Ωar in the upper 200 m with 
corresponding changes in shell dissolu-
tion and then scale up from regional to 
global scales. We hypothesize that the 
greatest changes in shell dissolution, and 
thus carbon export, will be observed in 
the areas where the highest pteropod 
biomass overlaps with the lowest Ωar. 
Here, we quantify the changes in ptero-
pod shell dissolution, aiming to improve 
our understanding of biogeochemical 
processes across both temporal and spa-
tial scales and to provide insights on how 
they are affected by human-caused cli-
mate change. The biological responses 
to ocean acidification described here 
address one of PMEL’s overarching mis-
sions: to better understand the impacts of 
climate change and ocean acidification on 
marine ecosystems.

METHODOLOGY
We calculated climatologies of observed 
Ωar from published observations in the 
GLODAPv2.2019 observational data set 
of dissolved inorganic carbon (DIC), 
total alkalinity (TA), silicate, phosphate, 
temperature, and salinity. The horizon-
tal resolution is 1°×1°, with 57 depth 
levels (0–1,500 m) and monthly resolu-
tion (12 months). CO2SYS was used in 
MATLAB to calculate Ωar. Input data for 
CO2SYS were obtained from the follow-
ing published climatologies: DIC from 
Broullón et  al. (2020); TA, silicate, and 
phosphate from Broullón et  al. (2019); 
and WOA-2018 climatologies for tem-
perature (Locarnini et  al., 2018) and 
salinity (Zweng et al., 2018). The average 
date for observations of DIC and TA in 
GLODAPv2.2019 used by Broullón et al. 
(2019, 2020) is the year 2005, with a stan-
dard deviation of ± 9 years.

Therefore, our calculated climatolo-
gies of observed Ωar represent a mean 
year of 2005, and the range of years of 
about 1996–2014 based on the inter-
val of the mean ± standard deviation of 
the dates when the observed DIC and 
TA data were collected. The annual aver-
age climatology of observed Ωar is esti-
mated as the mean of the monthly aver-
age climatologies. Multivariate ENSO 
Index Version 2 (MEI.v2) was calcu-
lated based on the sources described in 
https://psl.noaa.gov/enso/mei/.

We use monthly output from a hind-
cast simulation (1984–2019) with a high- 
resolution Regional Ocean Modeling 
System (ROMS) model coupled to a 
biogeochemical/ ecosystem model BEC 
(Marchesiello et  al., 2003; Shchepetkin 
and McWilliams, 2005; Moore et al., 2013; 
Desmet et al., 2022). The model runs on a 
telescopic grid covering the Pacific basin 
and centered on one pole at the US West 
Coast, which allows mesoscale dynam-
ics at the pole to be fully resolved and 
basin-wide oceanic and atmospheric tele-
connection to be captured (Frischknecht 
et al., 2018). Ωar is computed offline using 
the MOCSY 2.0 routine (Orr and Epitalon, 
2015) and the constants recommended by 

https://psl.noaa.gov/enso/mei/
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Dickson et  al. (2007). The model output 
was validated against Ωar observations 
from the NOAA Ocean Acidification 
Program West Coast Cruises and the cli-
matological GLODAPv2 1° × 1° gridded 
product over the latitudinal gradient of 
25°–62°N (Desmet et  al., 2022). We fur-
ther evaluated the skill of hindcast Ωar 
from 0–200 m compared with obser-
vations in GLODAPv2.2022 from 
20°S–65°N and found excellent agreement 
with GLODAPv2.2022 for both the Ωar 
using the climatology of gridded obser-
vations in the global ocean (mean bias 
= 0.099, RMSE = 0.26, R2 = 0.94, Nash-
Sutcliffe Efficiency = 0.93), and the pre-
dicted Ωar using the ROMS-BEC model 
of the northeast Pacific Ocean by Desmet 
et al. (2022) (mean bias = 0.015, RMSE = 
0.33, R2 = 0.91, Nash-Sutcliffe Efficiency 
= 0.90). In addition, the mean rate of 
decrease in surface Ωar predicted by the 
model from 25°S–65°N and 70°–185°W 
from 1984 to 2019 equals the published 
mean rate of decrease in global surface Ωar 
from 1982 to 2020 (i.e., –0.07 per decade; 
Gregor and Gruber, 2021).

Trends in surface Ωar in the global 
ocean from 1982 to 2020 were calcu-
lated from OceanSODA-ETHZ (Gregor 
and Gruber, 2021), a gridded data set 
that was created by extrapolating sur-
face ocean observations of pCO2 from 
SOCAT (Bakker et  al., 2016) and TA 
from GLODAP (Olsen et al., 2019) using 
a Geospatial Random Cluster Ensemble 
Regression (GRaCER) method (Gregor 
and Gruber, 2021). Gregor and Gruber 
(2021) reported near-zero negligible 
biases of calculated carbonate system 
variables compared with the observed 
data in GLODAP.

As pteropod biomass is mostly distrib-
uted in the upper 200 m (Bednaršek al., 
2012a), we have used observational data 
and model outputs for the upper 200 m to 
delineate the changes in shell dissolution 
to Ωar. We relied on previous studies that 
determined pteropod spatial dominance 
(Bednaršek et  al., 2012a; Knecht et  al., 
2023). We used the equation on the per-
cent of pteropod individuals with severe 

shell dissolution = –66.29 × ln (Ωar) + 61.2 
from Feely et al. (2016), which relies on 
two large-scale NOAA-supported West 
Coast cruise observations (2011 and 
2013) of pteropod shell dissolution, pre-
viously evaluated for one cruise (in 2011) 
by Bednaršek et al. (2014b). Shell disso-
lution was described for the mid-stages 
(late juvenile and mid adult), referring to 
the juvenile and adult stages of the ptero-
pod population (Bednaršek et al., 2016).

RESULTS
Status and Trends of 
Aragonite Saturation State 
in the Upper 200 m
Climatologies based on observational 
data over the upper 200 m show a very 
large range of Ωar values across global 
scales (Figure 2). Some of the lowest Ωar 
values, which range from 0.95 to 1.5, are 
observed in the polar regions of the Arctic, 

including the Kara, Laptev, and Beaufort 
Seas, and the Arctic Ocean, as well as in 
the subpolar regions of the North Pacific 
between 45°N and 60°N, particularly the 
Okhotsk Sea, the Bering Sea, and the Gulf 
of Alaska, and in the Southern Ocean 
(Figures 2a and 3a,c). In the upwelling 
systems characterized by lower Ωar, par-
ticularly the California and Humboldt 
Current Systems, the annual Ωar values 
in closest coastal regions drop down to 
1.2 and 1.5, respectively (Figure 1). Other 
locations of lower Ωar are the North and 
South Equatorial Current (NEC and 
SEC) regions between 5°N and 20°N and 
0° and 15°S, where 0–200 m annual Ωar 
values are as low as 1.5–2 Ωar, thus exhib-
iting strong correlation with the tempera-
ture and the ENSO index, particularly in 
the equatorial Pacific, Monterey Bay, and 
Humboldt Current regions (Table 1).

On the global level, the predicted 

FIGURE 2. The panels show (a) aragonite saturation state (Ωar) averaged over the upper 200 m 
based on observed data, and (b) projected percent of pteropods likely to show severe dissolution 
averaged over the 200 m water column.

a
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trends for surface Ωar obtained from 
OceanSODA-ETHZ (Gregor and Gruber, 
2021) for the relevant period show strong 
regional decreases (Figure 4a), which are 
regionally similar but spatially smaller 
in extent over the upper 200 m based on 
the ROMS-BEC model (Desmet et  al., 
2022; Figure 4b), resulting in addi-
tional percent pteropod shell dissolution 
increase (Figure 4c). The trends in sur-
face Ωar for the California and Humboldt 
Current Systems are decreasing at rates 
that are generally more than 0.06 per 
decade (Figure 4a). Comparatively, 
in pteropod-relevant habitat over the 
upper 200  m, the slopes of the decline 
are significant for several regions 
(Table 1, Figure 4c). The tropical and 
subtropical regions from about 30°N to 
30°S show the greatest Ωar decline of just 
over 0.1 Ωar unit per decade. In contrast, 
in the subpolar and polar regions the Ωar 
decline decreases to values <0.06 due, in 
part, to decreasing buffering capacity at 

FIGURE 3. (left) Observation-based aragonite saturation state is shown (Ωar) averaged over the 
upper 200 m in the (a) Arctic Ocean from 50°N to 90°N, and (c) the Southern Ocean from 50°S to 
90°S. (right) Percent of pteropods exhibiting severe dissolution averaged over the 200 m water col-
umn are charted for (b) the Arctic Ocean and (d) the Southern Ocean.

a

c

b

d

the higher northern and southern lati-
tudes. In subsurface waters, the narrow 
band of the equatorial Pacific from about 
5°N to 5°S exhibits a decrease in Ωar of 
<0.05 over time as a result of upwelling of 
older water at deeper depths. 

Pteropod Shell Dissolution: 
Status and Trends
Projections for the current status and 
rate of change in the percent of ptero-
pods affected by severe shell dissolution 
are based on observed climatologies and 
ROMS-BEC model outputs, respectively. 
The extent of pteropod shell dissolution 
strongly overlaps with regions where cur-
rent Ωar reaches its lowest values and 
where buffering capacities are low. In the 
tropical and subtropical Pacific, the disso-
lution rate also coincides with the fastest 
rate of Ωar decline in the NEC (Figure 4). 
As a result of exposure to Ωar in the upper 
200 m, the extent of individuals cur-
rently undergoing severe shell dissolution 

is projected to be as much as 40% in the 
Southern Ocean south of 60°S, 50% in 
the North Pacific at 50°N, and 60% in the 
Arctic. Corresponding to Ωar conditions 
in the upwelling regimes of the California 
and Humboldt Current Systems, the pro-
jections show an offshore-onshore gradi-
ent of biological impacts, with up to 40% 
of individuals affected by dissolution in 
the highly productive coastal regions of 
both systems. It is worth noting that pre-
vious regional dissolution observations 
in the polar regions and the California 
Current System (Bednaršek et al., 2012b, 
2014b, 2021; Niemi et  al., 2021) closely 
align with the projections delineated 
in this study. Projections in the regions 
of the NEC and SEC, Western North 
Atlantic, and Benguela Current show that 
10%–30% of pteropods will be impacted 
by dissolution. The projected increase in 
pteropods impacted by dissolution ranges 
between 1% and 4%, indicating that an 
additional 4% to 14% of the total number 
of pteropods exhibited severe dissolution 
over the 1984–2019 period. Increases in 
dissolution are closely correlated with the 
decline in Ωar recorded over the 36-year 
period investigated; the regression over 
time is significant for most of the regions 
(Table 1) and explains from 24% to 53% 
of the variability in Ωar.

DISCUSSION
Global projections show strong agree-
ment between Ωar and the extent of ptero-
pods impacted by severe shell dissolution 
under current conditions. This suggests 
that some inferences can be made about 
how increasing OA has impacted disso-
lution, noting the importance of current 
Ωar conditions, the rate of change of these 
conditions, and the corresponding bio-
logical responses. The results show that 
the regions with currently low Ωar are not 
the same as the regions with the greatest 
change; the latter actually are on the mar-
gins of the low Ωar regions, for example, 
in the offshore-onshore transition waters 
of the eastern North Pacific (Figure 4b,c), 
where large gradients in the buffer capac-
ity occur (Jiang et  al., 2019, 2023). This 
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indicates an expansion of the regions 
with low Ωar over time, and thus greater 
reduction of suitable pteropod habitat. 

Polar/subpolar regions and eastern 
boundary upwelling systems are char-
acterized by high pteropod biomass 
(Knecht et  al., 2023). Rapid change in 
Ωar is evident near the frontal boundar-
ies of both, so we may expect to see sig-
nificant increases in dissolution in these 
areas over space and time. It is import-
ant to note that our projections concern 
the globally dominant pteropod species 
Limacina helicina. The few studies con-
ducted so far that investigate the decline 
of CaCO3 calcification at lower Ωar sup-
port the findings either across different 
regions (Lischka et  al., 2011; Comeau 
et al., 2012; Bednaršek et al., 2014a) or in 
different species (Moya et al., 2016; Maas 
et al., 2018; Mekkes et al., 2021), indicat-
ing that dissolution estimates could be 
extrapolated among different pteropod 

species and regions. The rate of shell 
increase per decade might not seem sub-
stantial, but it is important to understand 
that this represents an additional per-
centage of the total number of pteropods 
that will exhibit severe shell dissolution. 
For example, a 4% increase per decade 
in polar regions indicates that an addi-
tional 12% of the total number of ptero-
pods will exhibit severe shell dissolution 
by 2050, a surge from 50% to 62% of indi-
viduals affected, which could be substan-
tial in population terms, especially in 
combination with reduced calcification. 
Shell dissolution projections are made for 
the early and mid-stages of the popula-
tion, the demographics of which are crit-
ical to population dynamics (Bednaršek 
et al., 2016). However, current estimates 
of the relationship between shell disso-
lution and mortality are fairly uncertain 
given only one study on this (Bednaršek 
et  al., 2017b). To date, no quantitative 

evaluation exists for a shell repair process 
(Peck et al., 2018; Niemi et al., 2021) that 
would offset extensive shell dissolution. 

There is a much greater certainty that 
the population changes would acceler-
ate in time in regions with overlapping 
OA and warming and marine heatwaves. 
Such stressor co-occurrence conditions 
may prove to be the most detrimental 
to pteropod populations (Lischka et  al., 
2011; Manno et al., 2017; Bednaršek et al., 
2022; Elizondo and Vogt, 2022; Knecht at 
al., 2023). Co-linear deoxygenation and 
OA impacts (Feely et  al., 2023, in this 
issue) could also have a relevant impact, 
but further study on this is needed. 

Both acute subsurface shell dissolu-
tion and long-term population decline, 
which could have regionally import-
ant implications for the carbon system, 
are detectable through modulation in 
the subsurface ocean carbonate system, 
TA perturbations, and carbonate export 

TABLE 1. Annual averages for various locations in the North and South Pacific Oceans for the period 1984–2019 from Desmet et  al. (2022), with 
Ωar ± stdev included over the upper 200 m, rate change of Ωar per decade, % of pteropods affected with dissolution ± stdev, and rate change of disso-
lution per decade. R2 values indicate goodness of fit, and p values indicate significance. Light gray values are p >0.05.

Location
Ωar Ωar vs decade Ωar vs ENSO Ωar vs 

temperature Dissolution (%) Dissolution % vs ΔΩar

mean ± stdev ΔΩar dec–1 p R2 p R2 p R2 mean ± stdev Δ% yr–1 Δ% dec–1 p R2

Gulf of Alaska 
53.00°N, 153.00°W 1.15 ± 0.07 –0.047 3E-06 0.478 3E-02 0.135 2E-03 0.258 52.3 ± 4.1 0.27 2.7 2E-06 0.487

Western North Pacific
51.53°N, 196.16°W 0.96 ± 0.03 –0.017 1E-05 0.439 5E-01 0.014 2E-04 0.341 64.4 ± 1.9 0.12 1.2 1E-05 0.440

NE Pacific Offshore
48.28°N,139.03°W 1.51 ± 0.07 –0.044 1E-06 0.505 2E-02 0.147 9E-02 0.084 33.8 ± 2.9 0.19 1.9 1E-06 0.503

La Push Coastal
47.91°N, 125.73°W 1.32 ± 0.06 –0.039 1E-05 0.430 7E-04 0.291 2E-02 0.142 42.9 ± 3.1 0.20 2.0 1E-05 0.434

Astoria
46.21°N, 125.11°W 1.37 ± 0.06 –0.043 4E-07 0.533 3E-04 0.323 8E-02 0.085 40.6 ± 3.0 0.21 2.1 4E-07 0.536

Eureka
40.18°N, 125.29°W 1.29 ± 0.07 –0.045 3E-06 0.475 3E-02 0.134 6E-02 0.101 44.9 ± 3.6 0.24 2.4 3E-06 0.482

Monterey Bay
36.83°N, 122.45°W 1.25 ± 0.09 –0.048 3E-04 0.317 4E-08 0.593 1E-05 0.432 46.8 ± 4.7 0.25 2.5 3E-04 0.319

NEC 1
12.00°N, 120.00°W 1.91 ± 0.17 –0.089 6E-04 0.295 2E-04 0.347 3E-19 0.908 19.3 ± 6.1 0.31 3.1 7E-04 0.293

NEC 2
7.00°N, 105.00°W 1.81 ± 0.09 –0.041 6E-03 0.204 2E-04 0.332 3E-17 0.881 22.5 ± 3.5 0.15 1.5 5E-03 0.210

Equator
 0.00°, 105.00°W 2.15 ± 0.11 –0.039 2E-02 0.154 6E-10 0.682 9E-14 0.809 10.6 ± 3.0 0.12 1.2 1E-02 0.165

SEC
9.00°S, 100.00°W, 2.33 ± 0.09 –0.051 3E-04 0.320 9E-05 0.366 9E-13 0.781 5.6 ± 2.4 0.13 1.3 2E-04 0.338

North Humboldt 1
11.50°S, 80.30°W 1.67 ± 0.10 –0.055 2E-04 0.332 3E-05 0.409 2E-12 0.771 27.4 ± 4.0 0.22 2.2 2E-04 0.344

North Humboldt 2
11.50°S, 77.30°W 1.29 ± 0.10 –0.005 7E-01 0.003 1E-05 0.435 3E-14 0.822 45.1 ± 4.7 0.03 0.3 7E-01 0.005

North Humboldt 3
11.60°S, 82.42°W 1.77 ± 0.10 –0.058 1E-04 0.358 9E-05 0.367 5E-13 0.788 23.7 ± 3.9 0.22 2.2 9E-05 0.367

South Humboldt
21.63°S, 71.70°W 1.69 ± 0.10 –0.049 2E-03 0.242 2E-05 0.422 9E-10 0.674 26.8 ± 4.1 0.19 1.9 2E-03 0.244
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(Feely et al., 2004; Sarmiento and Gruber, 
2006; Bednaršek et  al., 2012a; 2014a). 
Synthesizing observational data, biomass 
distribution, and dissolution, we predict 
substantial declines in carbon export and 
sequestration in the polar and subpolar 
regions of the North Pacific between 
50° and 60°N, in the California and 
Humboldt Current Systems, and in the 
NEC and SEC regions, and strongly sug-
gest targeted monitoring of carbon and 
sinking fluxes in these regions. Insights 
from this study are directly relevant for 
carbon sequestration and marine CO2 
removal strategies. 
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