
Oceanography | Early Online Release

THE OCEANOGRAPHY CLASSROOM

The Soft Approach to Software
By Simon Boxall

As COVID restrictions fade, though
not the pathogen itself, universities are
returning to a more normal way of life:
live lectures, laboratory exercises, and
face-to-face meetings with colleagues.
Shortly before Christmas, we had our
first post-COVID ocean physics teach-
ing group meeting, a work/social event,
in a local pub. Such gatherings in the past
would have started late afternoon and
lasted well into the early hours. Less so
now, as members of the group are either
getting too old (like myself) to keep up
with the pace or now have young children,
so the option of staying out late would, at
best, be unpopular on the home front.

The work discussion drifted into com-
puting and software, and how we teach
the use of software for data processing and
modeling to our undergraduates. This is
a perennial issue and one that divides us
very much along the discipline lines of
marine science. In physical oceanogra-
phy there is a strong push for MATLAB,
the marine biologists support R, and the
marine geologists go more for GIS pack-
ages such as ArcInfo. Each software tool
has its own strengths and weaknesses, and
each is suited to specific disciplines. The
statistical packages for marine biology
are well served in R, MATLAB has great
large database and time series crunch-
ing ability, and ArcInfo is good for merg-
ing multivariate data sets. There are then
questions about more fundamental pro-
gramming, higher level languages, such
as Basic, Fortran, and Python (and to an
extent MATLAB), which allow interfac-
ing with equipment and bespoke appli-
cations. There are simple graphics and
data processing programs such as Excel,

Sigmaplot, and Numbers, to name but a
few. Finally, there is imaging processing
software such as ENVI and PCI, and there
are modeling programs like MIKE-21.
This list, of course, is far from exhaustive.

None of these software packages offers
a clear single front runner that will ready
our students for the world of work. One
key issue that came out of our very sober
meeting was that, individually, we all use
different packages and could not our-
selves hope to teach more than one or two
of them. It also seems the more senior
you are, the less you use these packages
on a regular basis—we all tend to send
students with queries on software pro-
gramming to our respective postgraduate
students who use them on a daily basis.

As a postgrad, I learned Fortran on a
mainframe computer, and I have to say I
was pretty good (and so modest). I worked
with it on a regular basis to process CTD
data; there was nothing else available. As
I progressed onto my first postdoc posi-
tion, the use of personal computers came
in and the languages grew to include Basic
and COBOL. To say there were no off-
the-shelf programs would be an under-
statement. When we wanted to interface
a CTD with a computer, we had to write
a program that would speak through the
computer’s comms port to the CTD and
control data handling, storage, and dis-
play. Once data had been secured on
the computer, producing graphs was yet
another issue. Marine instrumentation
rarely came with software back in the
1980s. The key elements and processes
were similar whatever the programming
language, and it never took long to switch
between languages. As time progressed,

Microsoft Windows came along, as did
scientific equipment complete with inter-
face and display software. The need to
program diminished for everyday work,
and while modelers were at one with
their software, we observational ocean-
ographers were happy with the packages
provided. We moved onto higher level
programs—​in my case, image processing
software and coastal modeling packages.

Early days of satellite and airborne
data meant dealing with a very differ-
ent data set—raster data (we just call
them images or photos now). These once
needed powerful computers with spe-
cialist and expensive software—the sort
that was copyright protected by computer
dongles so you could only run it on one
machine for each license. I became com-
petent (modesty kicks in here) at juggling
image data, geo-correcting raw data, cal-
ibrating, overlaying multichannel data,
and even exporting to GIS packages to
merge with none-raster data sets. Today,
dealing with image data is easy, soft-
ware is available on most laptops, and
the primary databases such as NASA and
ESA provide all of the data in real time
pre-processed to a high level—just look
at the SOTO pages on the PODAAC site
https://podaac.jpl.nasa.gov. The level and
sophistication of data access available
in minutes now would have required
months in the past, to say nothing of the
processing expertise once needed.

So, do we lose these skills with time?
I don’t think we do, but it does take a bit
of a refresher to get back to where we
were, and unfortunately it is not like the
proverbial “riding a bike.” An example I
encountered recently was when a student

https://podaac.jpl.nasa.gov

Early Online Release | Oceanography

needed to use the coastal modeling pro-
gram MIKE-21. Some years ago, I used
this program extensively for a particu-
lar project, and the department did run
a teaching license. We duly purchased a
new teaching license for the student’s dis-
sertation and set it up on their computer.
Some days later they came to see me as
they couldn’t work out where to start. In
a rush of bravado and self-​confidence, I
rolled up my sleeves, smiled, and started
to type—nothing. After about an hour of
getting nowhere, I read the manual (had
I been of a different gender, that would
have happened 50 minutes earlier…).
Even less the wiser having read it, I called
up the support of my colleague who had
taught the course dealing with it a cou-
ple of years earlier. She did resort to the
manual after five minutes (it is a gen-
der thing), but an hour later we still
hadn’t got off the launchpad. Hanging
our heads, we went to the software pro-
vider, who quickly got us going. The diffi-
culty was the result of a simple, but well-​
hidden, change in the most recent version
that neither of us knew about. (Well,
we thought it was well hidden.)

I liken it to our new departmental car
that I drove for the first time a few months
ago. I know how to drive (despite what
my wife thinks). I know how to enter and
start cars—or thought I did. But when
you jump in a hybrid-keyless-electronic-
hand-brake car, you find that starting is
different—there is no “key” as such. I sat
there having entered the car, looking for
the place for the ignition key before real-
izing there was no key as such. Having
found a start button by the cup holders
I pushed it—waited while the car spent
some time checking itself over and then
waited again while the car waited for me
to put my foot on the brake. It was a bat-
tle of wits, but safe to say the car won and
I resorted to the manual. With no engine
noises, I surmised the car was in electric
mode and engaged reverse. I searched
high and low for a handbrake and even-
tually realized that the car had decided
it was time to go, and it didn’t need me
or a handbrake that I controlled. Once

we were off, the car drove like a nor-
mal car, and it did need me. Software is
a bit like that.

So, what software packages should we
teach our students? If I speak to first-year
students, I am pleasantly surprised when
they can cope with Excel—not all can
at first. As they progress to year two, by
which time they will have sat introduc-
tory courses in R and MATLAB, they are
confident in Excel as it seen as the eas-
ier option compared to its more complex
counterparts. When asked if they use
the more advanced packages, a look of
horror and fear comes across their faces.
Year three brings a new level with need
to process more complex data sets. Some
will now use MATLAB or R (never both)
very successfully in their work. Some
will thrive to take on Python without
our help and are quick to convert their
contemporaries. A few will discover the
delights of Sigmaplot for plotting, as long
as they have a Windows-​​based environ-
ment. The majority? Excel.

There was one student this year who
didn’t even get to these heady levels of
technical achievement. They inquired
whether they could submit hand-written
reports—it appeared that they didn’t like
computers and preferred pen and paper. I
asked whether they had a computer and
if it was a Mac or PC. The reply was yes,
they weren’t sure, but it was silver. I then
asked how they could manage calculating
even the simplest of tasks like averages
and standard deviations—the answer
was on paper, even with many hundreds
of data points, and that is why work was
always submitted late. The other end of
the spectrum are students who use soft-
ware such as R to produce nonsense sta-
tistics without thinking through cause
and effect. In work I marked last month,
this included someone getting excited
by the statistical relationship between
pressure and depth from CTD data, and
someone else who proved there was no
correlation between the day of the week
and plankton populations. Just because a
button in the software lets you do it, you
don’t have to push it!

So, we concluded after our pre-​
Christmas get-together that academic
staff themselves could do with software
refresher courses before doing anything
else. There is a need to encourage stu-
dents to engage with programming in
order to do more with the data they need
to process, but many of the packages we
use are very specific to research or cer-
tain applications. When they graduate
and enter industry or academia, the pro-
grams used will be different, and they will
receive training in those packages. What
we need is the ability for a student to think
a bit like a computer (in a positive way),
but also to keep thinking as a scientist.
Complex and expensive packages are not
much use when a student graduates and
has access to neither the support from an
able postgraduate or access to the educa-
tional license. Software packages often fall
into redundancy or are modified beyond
recognition within a few years, so it is
the basics of programming they need to
grasp. Our conclusion was that we need to
teach them Python, something we haven’t
done to date, and to learn it ourselves. We
will have difficulty persuading our marine
biology colleagues to move away from R,
and we will all still use our various pack-
ages in our research, but if you ask the
majority of undergraduates what they use
today—number one is Excel, number two
is Python. We now need to get them to
teach us all Python. They do say the best
way to learn is to teach.

AUTHOR
Simon Boxall (srb2@noc.soton.ac.uk) is Associate
Professor, Ocean and Earth Science, University
of Southampton, National Oceanography Centre,
Southampton, UK.

ARTICLE CITATION
Boxall, S. 2023. The soft approach to software.
Oceanography 36(1):76–77, https://doi.org/10.5670/
oceanog.2023.114.

COPYRIGHT & USAGE
This is an open access article made available under
the terms of the Creative Commons Attribution 4.0
International License (https://creativecommons.org/
licenses/by/4.0/), which permits use, sharing, adapta-
tion, distribution, and reproduction in any medium or
format as long as users cite the materials appropri-
ately, provide a link to the Creative Commons license,
and indicate the changes that were made to the
original content.

mailto:srb2%40noc.soton.ac.uk?subject=
https://doi.org/10.5670/oceanog.2023.114
https://doi.org/10.5670/oceanog.2023.114

