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INTERACTIONS BETWEEN THE 
ARCTIC MEDITERRANEAN AND 

THE ATLANTIC MERIDIONAL 
OVERTURNING CIRCULATION

A REVIEW
By Wilbert Weĳer, Thomas W.N. Haine, Ali H. Siddiqui, Wei Cheng, 

Milena Veneziani, and Prajvala Kurtakoti

SPECIAL ISSUE ON THE NEW ARCTIC OCEAN

Warm waters of Atlantic origin enter the Barents Sea 
through the Barents Sea Opening, and the Arctic 
Ocean through the West Spitsbergen Current, while 
cold waters exit the Arctic via the East Greenland 
Current. These currents have a significant impact 
on sea ice cover (translucid shading) and the over-
lying atmosphere (not shown) in this simulation of 
E3SM-Arctic. E3SM-Arctic is a configuration of the 
Energy Exascale Earth System Model (E3SM) that 
covers the entire globe but has spatial refinement of 
its grid (down to 10 km) in the Arctic Mediterranean 
and subpolar North Atlantic (Veneziani et al., 2022). 
Courtesy of Francesca Samsel and Greg Abram, 
Texas Advanced Computing Center
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INTRODUCTION
The Atlantic Meridional Overturning 
Circulation (AMOC) is one of the most 
important circulation components in 
Earth’s climate system. It transports 
buoyant waters northward in the upper 
1,000  m of the Atlantic Ocean to the 
high-latitude North Atlantic and the sub-
arctic seas, where these waters are trans-
formed by strong heat loss and by sev-
eral processes that affect their salinity, 
such as meltwater input and brine rejec-
tion. The resulting dense waters are then 
transported southward throughout the 
Atlantic at depths between 1 km and 3 km 
and subsequently dispersed throughout 
the Southern Ocean and the Indo-Pacific 
Ocean (see Buckley and Marshall, 2016, 
for a review).

By transporting heat and salt north-
ward throughout the Atlantic Ocean, the 
AMOC plays a key role in sequestration of 
anthropogenic heat and carbon (Fontela 
et al., 2016), thus mitigating global warm-
ing. Outside of the tropics, the contribu-
tion of the ocean to total meridional heat 
transport is relatively small (<20%) com-
pared to that of the atmosphere (Trenberth 
et al., 2019); however, it has significant cli-
mate implications due to the AMOC’s 
long-term memory, which manifests itself 
as variability on decadal and multidecadal 
timescales (R. Zhang et  al., 2019) and a 
delayed response to anthropogenic forcing 
(Weĳer et al., 2020). In fact, changes in the 
operation of the AMOC have been impli-
cated in the well-documented climate 
swings during the last ice age—known as 
Dansgaard/Oeschger cycles and Heinrich 

events—and the rapid transitions between 
the Bølling–Allerød and Younger Dryas 
events at the end of the last glacial period 
(Broecker et  al., 1985; Lynch-Stieglitz, 
2017). Uncertainties about the fate of the 
AMOC in a warming climate (Weĳer 
et al., 2020), and even the possibility of a 
collapse (Weĳer et al., 2019), make a thor-
ough understanding of the AMOC and its 
drivers imperative for our ability to antici-
pate future changes in our climate system.

In recent decades, the role of the 
Arctic Mediterranean1 as the north-
ernmost terminus of the AMOC and 
the two-way interactions between the 
AMOC and the northern seas have come 
into focus. Several long-term monitor-
ing programs have improved our esti-
mates of the AMOC and the associ-
ated exchanges of water, heat, and salt. 
The Rapid Climate Change/Meridional 
Overturning Circulation and Heatflux 
Array (RAPID/MOCHA) has been 
monitoring the strength of the AMOC 
at 26.5°N since 2004 (Cunningham 
et  al., 2007), while the Overturning in 
the Subpolar North Atlantic Program 
(OSNAP) array has been measuring the 
AMOC in the subpolar North Atlantic 
(SPNA) since 2014 (Lozier et  al., 2019; 
Li et  al., 2021). Other monitoring pro-
grams measure transports across several 
sections of the Greenland-Scotland Ridge 
(GSR; Østerhus et  al., 2019), through 
Fram Strait (Karpouzoglou et  al., 2022) 
and the Barents Sea Opening (Skagseth 
et  al., 2008), and in the Nansen and 
Amundsen Basins of the Arctic Ocean 
(Pnyushkov and Polyakov, 2022, in this 

issue). At the same time, the number of 
autonomous drifting Argo floats, which 
observe the temperature and salinity of 
the upper 2 km, has been increasing since 
1999 (Jayne et  al., 2017). Other import-
ant progress has been made in the devel-
opment of better ocean models (Fox-
Kemper et  al., 2019) that can be quite 
realistic (Haine et al., 2021).

In this paper, we review some recent 
advances in our understanding of these 
linkages, particularly in the last decade. 
We conclude by outlining prominent 
challenges and opportunities. 

LINKING THE AMOC AND THE 
ARCTIC MEDITERRANEAN
The surface branch of the AMOC is 
most focused in the Gulf Stream, the fast 
western boundary current that moves 
northward along the east coast of North 
America (Figure 1). Separating at Cape 
Hatteras, it continues northeastward, 
rounds the corner at the Grand Banks, 
and continues to the northeast as the 
North Atlantic Current (NAC). In the 
eastern North Atlantic Ocean (ENA), 
the NAC bifurcates: a significant frac-
tion recirculates southward and then 
westward to feed the Gulf Stream in the 
subtropical gyre, while roughly 15 Sv 
(1 Sv = 106 m3 s–1) escapes northward 
and skirts the eastern boundary of the 
subpolar gyre. Some of this water joins 
the subpolar gyre and flows west as the 
Irminger Current. About 8  Sv cross the 
GSR, the undersea ridge system that 
connects Greenland, Iceland, the Faroe 
Islands, and Scotland (Østerhus et  al., 
2019; Figure 2).

Although how much of the water that 
flows into the Nordic Seas is derived from 
the subtropics is not known in detail, 
nor are the mechanisms that control it, 
a picture has emerged of the ENA as a 
“switchyard” (region of changing currents) 
for the waters flowing into the Nordic Seas 
(Figure 3). Hátún et al. (2005) argue that 
the strength and the extent of the sub-
polar gyre influence the waters flowing 

ABSTRACT. The Atlantic Meridional Overturning Circulation (AMOC) plays a sig-
nificant role in the global climate system, and its behavior in a warming climate is a 
matter of significant concern. The AMOC is thought to be driven largely by ocean heat 
loss in the subpolar North Atlantic Ocean, but recent research increasingly emphasizes 
the importance of the Arctic Mediterranean for the AMOC. In turn, the AMOC may 
influence the Arctic heat budget through its impact on poleward heat transport. Hence, 
understanding the processes that link the AMOC and the Arctic is critical for our abil-
ity to project how both may evolve in a warming climate. In this paper we review some 
of the recent research that is shaping our thinking about the AMOC and its two-way 
interactions with the Arctic.

1 In this paper we use the “Arctic Mediterranean” or “Arctic” to refer to the combined Arctic Ocean proper, the Nordic Seas, the Canadian Arctic 
Archipelago, and Baffin Bay.
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over the GSR. Cool and fresh subpolar 
waters dominate the ENA when the sub-
polar gyre is strong and expansive, usu-
ally during periods of persistent positive 
North Atlantic Oscillation (NAO, a prom-
inent pattern of atmospheric variability in 
the westerly winds and storm track over 
the North Atlantic Ocean). When the sub-
polar gyre is weak and contracted (during 
negative phases of the NAO), warm and 
salty subtropical waters flood the ENA, 
increasing temperature and salinity in 
the Atlantic Water (AW) flowing into the 
Nordic Seas. Koul et  al. (2020) confirm 
this picture by using a Lagrangian parti-
cle tracking method to study the sources 
of the waters in the ENA, concluding that 
between 50% and 70% are derived from 
the subtropics, depending on the state of 
the subpolar gyre. Other patterns of vari-
ability have been identified as important 
controls on the transport across the GSR, 
in particular, the East Atlantic Pattern 
(Heuzé and Årthun, 2019).

Once in the Norwegian Sea, AW is 
transported northward with the Nor-
wegian Current. Part of this flow recir-
culates in the Nordic Seas while the rest 
flows into the Arctic Ocean through the 
Barents Sea Opening (2.3 Sv) and Fram 
Strait (2.6 Sv; estimated from Figure  4 
in Tsubouchi et  al., 2018). What con-
trols the transport of AW into the Barents 
Sea, and into the Arctic Ocean through 
Fram Strait is imperfectly known, but the 
role of regional wind stress patterns has 
emerged as a leading driver (Lien et  al., 
2013; Chafik et al., 2015).

In the Nordic Seas and the Arctic 
Ocean, AW is subjected to intense sur-
face cooling and freshening that trans-
forms it into other forms (Figure 2). In 
the Greenland Sea, the recirculating salty 
AW is cooled by the atmosphere, lead-
ing to deep overturning that can cool the 
water column down to several kilometers’ 
depth. How much this process contrib-
utes to the overflow waters is still a matter 
of debate (R. Zhang and Thomas, 2021). 
The water mass transformations in the 
Arctic Ocean are often described in the 
context of the double-estuarine model of 
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Arctic overturning (Rudels, 2010; Eldevik 
and Nilsen, 2013; Haine, 2021; see also 
Rudels and Carmack, 2022, in this issue). 
According to this model, part of the 
AW inflow is cooled by heat loss to the 
atmosphere and freshened by fresh water 
inflow through Bering Strait, sea ice melt, 
precipitation, and runoff, generating a 
relatively buoyant water mass called Polar 
Water. This water flows towards the SPNA 
through Fram Strait and Denmark Strait 
as the East Greenland Current, and also 
through the Canadian Arctic Archipelago 
(CAA) and Davis Strait. Another fraction 
of AW is cooled and mixed with dense 
and salty waters from the extensive and 
shallow shelf regions, where sea ice for-
mation leads to brine rejection and salini-
fication (Rudels and Quadfasel, 1991). 
A third transformation product of AW 
interacting with the atmosphere is sea 
ice, which is exported to the SPNA with 
the Polar Water.

The dense water masses formed in the 
Arctic Ocean flow southward through 
Fram Strait, which is the only deep con-
nection between the Arctic Ocean and 
the Nordic Seas. There they mix with 
water masses formed in the Greenland 
Sea and cross the GSR into the SPNA as 
distinctive overflows known as Denmark 
Strait Overflow (DSOW) and Iceland 
Strait Overflow Water (ISOW; Østerhus 

et  al., 2019). Upon entering the SPNA, 
these overflow waters mix with ambient 
waters to form lower North Atlantic Deep 
Water (NADW), which flows southward 
as the deepest branch of the AMOC. 
The slightly-less-dense ambient waters, 
called upper NADW, are formed in the 
Labrador and Irminger Seas by deep con-
vection and are also exported south in the 
deep branch of the AMOC (Figure 2).

Although the pathways and trans-
port estimates are reasonably well con-
strained based on data from the moni-
toring efforts, details of the processes that 
lead to water mass transformations, over-
flows, and entrainment are still poorly 
understood. They depend on small-scale 
and often episodic processes that are 
extremely difficult to observe, especially 
given their propensity to occur during 
the harsh conditions of polar winter. They 
are also challenging to capture in numer-
ical models because the small spatial 
scales noted defy explicit representation, 
necessitating the use of parameterizations 
(Hewitt et al., 2022).

IMPACTS OF THE AMOC 
ON THE ARCTIC
The RAPID/MOCHA and OSNAP arrays 
have shown that the AMOC varies on 
timescales from seasonal to at least 
decadal. On interannual timescales, most 

spectacularly, RAPID recorded a signifi-
cant weakening of the AMOC at 26.5°N 
in the winter of 2009/2010. On decadal 
timescales, the AMOC at this latitude 
appears to have undergone a weakening 
of its mean strength by about 2.5 Sv after 
the first four years of monitoring and 
appears to have been steady since then 
(Smeed et al., 2018; Moat et al., 2020). It 
is unclear, however, whether this weak-
ening is part of a multidecadal variation 
or signifies a gradual decline. Indeed, cli-
mate models almost unanimously project 
a weakening of the AMOC in the twenty- 
first century in response to anthropogenic 
forcing (Cheng et al., 2013; Weĳer et al., 
2020), and some studies claim that such a 
weakening is already in progress (Caesar 
et  al., 2018, 2021; but see Kilbourne 
et  al., 2022, for an alternate view). On 
the other hand, the weakening could be 
part of multidecadal variability, as cli-
mate models clearly demonstrate that the 
AMOC can display internal variability 
on multidecadal timescales. This could 
be due to a slow (“reddening”) response 
to atmospheric variability, most notably 
that associated with the NAO (Delworth 
et  al., 2017). Other studies point to the 
possibility of the resonant excitation 
of an internal mode of ocean dynam-
ics (Dĳkstra et al., 2006). Unfortunately, 
models simulate a wide range of AMOC 

FIGURE 3. Interannual variations in the eastern North Atlantic Ocean (ENA) modulated by the North Atlantic Current flow into the Nordic Seas. Colors 
show annual-average surface salinity (from EN4; Good et al., 2013) for 2008 and 2016, which correspond to saline and fresh years in the ENA. Contours 
show the average absolute dynamic topography (from AVISO) for the preceding two years (2006–2007 and 2014–2015), which correspond to con-
tracted and expanded subpolar gyre states. The contours are from –0.8 to 0.8 m with a spacing of 0.1 m and are smoothed with a Gaussian filter with 
scale 400 km. The red contours (–0.3, –0.2, and –0.1 m) depict the path of the North Atlantic Current.
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variability on these timescales and no 
consensus has yet emerged (Muir and 
Fedorov, 2017).

Given that changes in AMOC strength 
directly impact northward heat transport, 
both in the subtropical (Johns et al., 2011) 
and subpolar regions (Lozier et al., 2019), 
how does AMOC variability and trends 
at lower latitudes impact heat transport 
toward the Arctic? Several studies have 
tried to address this question, using dif-
ferent approaches. Bryden et  al. (2020), 
for instance, analyzed the consequences 
of the AMOC slowdown after 2009 and 
concluded that its weakened state has 
indeed led to a reduction in meridional 
heat transport of 0.17 PW (about 15%) in 
northward heat transport across 26.5°N. 
They demonstrate that this has led to sig-
nificant cooling of the eastern subpo-
lar gyre, extending all the way to Iceland. 
However, whether this has led to reduced 
heat flux into the Nordic Seas is still a 
matter of debate. Rossby et al. (2020) ana-
lyzed a century’s worth of hydrographic 
observations and although they found 
no evidence for a long-term trend, they 

did find that northward volume and heat 
transport across the GSR indeed started 
to decline around 2010. On the other 
hand, Tsubouchi et  al. (2021) conclude 
that heat transport into the Nordic Seas is 
decoupled from the mid-latitude AMOC. 
They estimate ocean heat transport across 
the GSR for the period 1993–2016 using a 
box inverse method and argue that a sud-
den increase in poleward heat transport 
after 2001 is inconsistent with the appar-
ent weakening of the AMOC at 26.5°N 
since 2004. Longer time series of AMOC 
strength and heat transport are needed to 
settle this debate.

Inflow of warm waters of Atlantic ori-
gin strongly influence climate conditions, 
especially in the Barents and Kara Seas 
(e.g.,  Smedsrud et  al., 2013; Asbjørnsen 
et  al., 2019). Indeed, the well-publicized 
“Atlantification” of the Arctic (Polyakov 
et  al., 2017), which describes increased 
presence and shoaling of AW in the 
Eurasian Basin, appears to be consistent 
with this process. Atlantification is asso-
ciated with weakening upper-ocean strat-
ification, increased upper-ocean current 

speeds and ocean heat loss, and less sea 
ice in the Eurasian Basin (Polyakov et al., 
2020b,c). Atlantification may also cause 
biogeochemical changes in this area 
(Polyakov et  al., 2020a). Still, it remains 
unclear how anomalies in the northern 
Nordic Seas connect to AMOC variability 
at lower latitudes. Temperature anomalies 
have been traced back from Svalbard to 
the SPNA in both satellite data (Chepurin 
and Carton 2012) and reanalysis prod-
ucts (Figure 4; Årthun et  al., 2017), as 
well as in climate models (Årthun and 
Eldevik, 2016). The propagation of sea 
surface temperature (SST) anomalies 
from the Grand Banks off Newfoundland 
to Svalbard takes about a decade, while 
sea ice response lags SST anomalies in the 
Norwegian Sea by roughly three years. 
Årthun and Eldevik (2016) conclude that 
the heat content anomalies coming from 
the SPNA mainly involve changes in cir-
culation rather than temperature, and also 
point to a decadal timescale for anom-
alies to reach the Arctic from the sub-
polar North Atlantic. Based on an anal-
ysis of high-resolution climate models, 
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FIGURE 4. Coherent propagation of sea surface temperature (SST) anomalies from the subpolar North Atlantic (SPNA) to the Barents Sea. Shading 
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Docquier et al. (2019) confirm the importance of oceanic heat transport 
(OHT) by AW for sea ice conditions in the Arctic, but caution that the 
OHT-sea ice relationship is weaker for OHT at lower latitudes.

It also seems that the direct link between AMOC strength and heat sup-
ply to the Arctic breaks down under increased greenhouse forcing. In par-
ticular, climate models simulating future scenarios almost unanimously 
project a decrease in the strength of the AMOC (Figure 5), but often an 
increase in OHT into the Arctic (e.g., Hwang et al., 2011). Models agree 
that this is a consequence of a reduction in ocean heat loss in the Nordic 
Seas that allows warmer waters to reach the Arctic, in spite of a reduced 
heat supply from lower latitudes (Nummelin et al., 2017; Oldenburg et al., 
2018); in other words, a trade-off between reduced supply of warmer 
waters is won—at least at Arctic latitudes—by ocean warming (Liu et al., 
2020). Some studies also point to a strengthening of the gyre circulation in 
the Nordic Seas (Lique and Thomas, 2018).

However, modeling studies suggest other mechanisms may be import-
ant. Most of these studies explore the connections between the AMOC and 
Arctic sea ice using correlation analysis and conclude that mid-latitude 
AMOC leads Arctic sea ice by just a few years (Mahajan et al., 2011; Day 
et  al., 2012). In addition, several modeling studies report stronger cor-
relations between Arctic sea ice and the Atlantic Multidecadal Oscillation 
(AMO) than with AMOC (e.g., Day et al., 2012). The AMO is a mode of 
SST variability in the North Atlantic that is thought to be strongly linked 
to the AMOC as periods of stronger AMOC are associated with positive 
SST anomalies in the North Atlantic Ocean and Nordic Seas (Knight et al., 
2005; R. Zhang et al., 2019; Fraser and Cunningham, 2021). This suggests 
that an alternative mode of AMOC influence on the Arctic may be through 
atmospheric teleconnections, in particular, in response to the AMO.

IMPACTS OF THE ARCTIC ON THE AMOC
As discussed in the previous sections, water mass transformations in the 
Nordic Seas and the Arctic Ocean are key processes that feed the dense 
lower limb of the AMOC. Consequently, interruptions in these processes 
can have far-reaching consequences. One intriguing possibility is a poten-
tial heat crisis in the Arctic that would shut down the shallow estuarine cell. 
Based on simple budget calculations of the Arctic double-estuarine model, 
Haine (2021) argues that under certain conditions the double-estuarine 
model can no longer satisfy the heat budget of the Arctic Ocean. Both 
increased heat input from AW and increased stratification from enhanced 
precipitation could push the Arctic toward such a heat crisis. This scenario 
may be consistent with Atlantification. Similarly, the idea that the AMOC in 
a warming climate reaches further into the Arctic Ocean was already noted 
by Bitz et al. (2006), and a northward shift of the regions of deep convection 
was anticipated by Lique and Thomas (2018). How this transition would 
affect the volume and properties of the deep overflow waters that feed into 
the deep branch of the AMOC at lower latitudes is not known at present.

Observational studies (Moore et al., 2015; Våge et al. 2018) have hinted 
that a retreating marginal ice zone in the Greenland and Iceland Seas may 
have consequences for deep water formation in the Nordic Seas. However, 
the water mass patterns that feed into the DSOW from the Nordic Seas 
and the processes behind them are complex. Indeed, a recent modeling 
study by Wu et al. (2021) paints a complicated picture in which the effects 
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of internal variability in sea ice coverage 
are teased out from the effects of changes 
in sea ice, atmospheric-ocean fluxes, and 
ocean stratification due to anthropogenic 
forcing. The study shows that, in a warm-
ing climate, deep convection is reduced 
in the Greenland Sea gyre because of 
a decreased temperature difference 
between the ocean surface and the atmo-
sphere above it, and because of increased 
ocean stratification. On the other hand, 
convection is enhanced within the 
East Greenland Current because of the 
retreating sea ice edge, with a possible 
impact on Denmark Strait waters directly 
downstream. Therefore, a shift in where 
deep water is created in the Nordic Seas 
under changing climate conditions may 
impact the AMOC in subtle but critical 
ways that require additional investigation 
in future studies.

Several sources and reservoirs of 
Arctic freshwater that are releasing more 
freshwater in a warming climate can 
affect the AMOC by freshening surface 
waters in the SPNA, Nordic Seas, and 
Arctic Ocean and thereby weakening 
deep convection and upper NADW for-
mation (Figure 2; Carmack et  al., 2016; 
see Figure 5 for key freshwater gateway 
fluxes from climate models and obser-
vations). First is the source of freshwater 
from the atmosphere, via precipitation 
and runoff, which is projected to increase 
in the twenty-first century as the hydro-
logical cycle accelerates (Haine et  al., 
2015). Second is the freshwater flux to 
the Arctic Ocean through Bering Strait, 
which has been increasing in recent years 
(Woodgate, 2018; Figure 5).

Third is the Beaufort Gyre, which 
switches between a cyclonic and anti-
cyclonic circulation state on a decadal 
timescale, thereby releasing and accu-
mulating freshwater (Proshutinsky et al., 
2015). The Beaufort Gyre has been in a 
persistent anticyclonic state since 1997, 
resulting in an accumulation of 6,400 km3 
of liquid freshwater from 2003 to 2018 
alone (the period of high- quality oceano-
graphic observations; Proshutinsky et al., 
2019). There has been an associated 

increase in Beaufort Gyre stratification, 
contrasting with the decrease in Eurasian 
Basin stratification due to Atlantification 
(Hordoir et  al., 2022). J. Zhang et  al. 
(2021) studied the potential impacts of 
releasing this freshwater by looking at 
past analogs of freshwater accumula-
tion and release episodes by the Beaufort 
Gyre. By comparing previous periods of 
rapid freshwater release (1983–1995) and 
accumulation (1997–2008), they found 
that the Beaufort Gyre freshwater release, 
equivalent to about 0.02 Sv, compara-
ble to current input from the Greenland 
Ice Sheet (GrIS; Böning et al., 2016), has 
the potential to lower salinities in the 
Labrador Sea by as much as 0.4. Indeed, 
climate models project increasing fresh-
water liquid fluxes through Fram and 
Davis Straits (Figure 5).

Fourth is the GrIS, which contains 
almost 3 million cubic kilometers of 
freshwater (Frajka-Williams et  al., 2016; 
see also Wouters and Sasgen, 2022, in 
this issue, and Briner, 2022, in this issue). 
A recent assessment indicates that by 
2016 the Greenland Ice Sheet and sur-
rounding land ice had lost roughly 
6,300 km3 of ice, and that the annual 
rate of freshwater discharge is equivalent 
to 0.04 Sv (Bamber et al., 2018), provid-
ing an important source of freshwater to 
the ocean. Large uncertainty exists about 
how the GrIS freshwater leaves the fjords 
and coastal ocean. Nevertheless, when 
Böning et al. (2016) studied the potential 
impacts of GrIS freshwater release in an 
eddy- resolving ocean model, they con-
cluded that it had not yet significantly 
impacted the AMOC, but that a slow-
down is inevitable as GrIS melting con-
tinues to accelerate.

One intriguing process through which 
the Arctic may influence the AMOC 
is through a reduction in sea ice cover 
(seen in Figure 5 as a decrease in Fram 
Strait solid freshwater flux). In partic-
ular, Sévellec et  al. (2017) argue that a 
reduction in sea ice exposes more ocean 
to radiative warming (an effect known as 
the ice-albedo feedback) that increases 
the buoyancy of the Arctic surface waters. 

Once these warmer waters reach the 
SPNA, they may lead to a suppression of 
deep convection and a weakening of the 
AMOC. Similarly, changes in the sea-
sonal cycle of sea ice might also have an 
effect on the buoyancy of the Arctic sur-
face waters that are exported to the SPNA 
or Nordic Seas (Liu et al., 2019; Liu and 
Fedorov, 2021).

CHALLENGES AND 
OPPORTUNITIES
In the past decade, significant progress 
has been made in understanding Arctic-
AMOC interactions. This understanding 
has been driven by observing and mod-
eling advances such as the OSNAP array 
(Lozier et  al., 2019), the Argo network 
(Jayne et  al., 2017), new generations of 
coupled climate models (Fox-Kemper 
et  al., 2019), very high-resolution ocean 
circulation models (Wang et  al., 2018; 
Haine et  al., 2021), and improved con-
ceptual models that only include essen-
tial components of the Arctic and AMOC 
(Haine, 2021). The maturation of these 
capabilities and technologies are carry-
ing us toward another phase of discovery.

For example, ocean models that are 
referred to as “eddy-resolving” (often 
using a spatial resolution of about 10 km) 
do not resolve the Arctic Ocean Rossby 
radius of deformation (1–15 km; Nurser 
and Bacon, 2014). Continuing improve-
ments in computational capabilities 
(supercomputers), approaches (architec-
tures), and algorithms (machine learn-
ing) are inevitably moving us toward 
ocean and climate models that will be 
able to resolve these critical scales in the 
next decade (Haine et al., 2021). This will 
allow us to resolve more of the small-
scale processes critical for the large-scale 
Arctic Ocean and sea ice system and its 
connection to lower latitudes. It is hoped 
that the gradual move toward explicitly 
resolving more and more critical pro-
cesses will reduce dependency on param-
eterizations as well as the biases that 
still plague representation of the Arctic 
in climate models. Important processes 
include exchanges between the extensive 
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Arctic shelves and the deep interior of the 
Arctic Ocean (as originally suggested by 
Aagaard et  al., 1981), flow through nar-
row gateways like the CAA, and over-
flows (Fox-Kemper et  al., 2019; Hewitt 
et  al., 2022). Other processes will con-
tinue to require parameterizations into 
the foreseeable future, for instance, mix-
ing (Fine et al., 2021) and brine rejection 
(Nguyen et al., 2009). Still, the agreement 
between freshwater fluxes modeled by the 
current generation of climate models and 
observations in Figure 5 is encouraging.

Another promising direction is the 
combination of models and observations. 
Data-assimilation approaches are being 
developed that allow ocean models to be 
initialized from states that more faith-
fully represent the real system, reducing 
biases. These approaches yield state esti-
mates that use model dynamics to fill in 
data gaps to provide a consistent repre-
sentation of the historical and current 
ocean and sea ice state (Schweiger et al., 
2011; Nguyen et al., 2021).

Longer time series collected by exist-
ing monitoring arrays (Figure 5) will 
help us improve our understanding in 
the course of time, while observational 
methodologies are becoming more 
mature (Lee et  al., 2019). Examples are 
Ice- Tethered Profilers, which are “upside-
down” moorings that hang below the sea 
ice (Toole et  al., 2011), and Argo floats 
that can avoid sea ice (see Lee et al., 2022, 
in this issue for a discussion of emerg-
ing technologies for ocean observing in 
the Arctic). All these developments are 
geared toward gaining a better under-
standing of the Arctic system and its inter-
actions with the AMOC. Understanding 
these relationships and accurately mod-
eling them are critical for predicting the 
future of the Arctic, the AMOC, and the 
rest of the climate system. 
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