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A REVIEW OF ARCTIC SEA ICE 
CLIMATE PREDICTABILITY

IN LARGE-SCALE EARTH SYSTEM MODELS
By Marika M. Holland and Elizabeth C. Hunke

SPECIAL ISSUE ON THE NEW ARCTIC OCEAN

INTRODUCTION
On average, 25 million square kilome-
ters of sea ice float on the world’s high-​

latitude oceans. Sea ice is frozen ocean—a 
complicated, dynamic, semisolid mixture 
of ice, water, salt, and gases. Although 
sea ice is found primarily in the polar 
regions, it strongly influences the weather 
and climate of the entire Earth and has 
a profound impact on the industries, 
wildlife, and people who contend with 
it year-round.

Sea ice forms as seawater freezes, 
becoming a floating barrier between the 
air and ocean that reflects solar radiation 
and impedes transfers of heat and mass. 
The Arctic climate is changing quickly 
with September Arctic ice extent declin-
ing by over 13% per decade since 1979 

(e.g., Serreze and Stroeve, 2015). Climate 
models predict that September Arctic ice-
free conditions are likely by mid-century 
(e.g., Jahn, 2018). The ice volume is criti-
cal for the resiliency of the ice pack under 
changing environmental conditions; pre-
dictions of future sea ice change depend 
in part on the simulated late twentieth 
century ice thickness (Massonnet et  al., 
2018). Ice thickness determines the sen-
sitivity of the ice to melting and freez-
ing, and the area covered by ice increases 
planetary albedo, the reflection of radia-
tion back to space.

Because of large-scale ice loss, there 
is growing interest in safe Arctic marine 
access and a need for reliable predictions 
on seasonal to interannual timescales. 
Predictions on multi-decadal scales are 

also needed for infrastructure planning 
and to inform climate mitigation and 
adaptation measures. Earth system model 
studies have provided new insights on sea 
ice predictability across timescales. A bet-
ter understanding of predictability, or the 
characteristics that enable prediction, 
provides useful information for building 
more skillful forecast systems. 

Predictability arises from two dis-
tinct factors. On shorter timescales, the 
initial state of the system and dynam-
ics that retain some “memory” of that 
initial state are sources of predictabil-
ity. For atmospheric weather forecasts, 
this “initial-value predictability” enables 
skillful operational forecasts for about a 
week (e.g.,  Krishnamurthy, 2019). For 
slower evolving components of the sys-
tem, including the ocean and sea ice, 
it can enable forecasts on seasonal to 
interannual timescales (e.g.,  Blanchard-
Wrigglesworth et  al., 2011a). Another 
source of predictability resides in cli-
mate drivers, such as rising green-
house gas concentrations, which elicit 
a predictable response in the Earth sys-
tem (e.g.,  Manabe and Stouffer, 1980). 
This “boundary forced predictability” 
enables projections of Arctic sea ice loss 
on decadal timescales (e.g.,  Blanchard-
Wrigglesworth et  al., 2011b) and the 
predictable transition to ice-free Arctic 
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summers (e.g.,  Jahn et  al., 2016) in 
response to future scenarios of rising 
greenhouse gases. 

Modeling coupled interactions of sea 
ice with the atmosphere, the ocean, and 
nearshore topography are critical for 
reliable predictions across timescales. 
Predictions of sea ice properties, such as 
landfast ice and wave-ice interactions, 
have required new ice model develop-
ments. During the last decade, such devel-
opments have led to improved representa-
tion of coupled interactions and enhanced 
realism of the simulated sea ice itself.

In the next section we discuss sea ice 
models used for climate applications 
and then advances that have been made 
with those models for understanding 
and predicting Arctic sea ice variability 
and change. In the last section, we out-
line new developments that are coming 
online and their implications for sea ice 
predictive capabilities.

SEA ICE MODELS USED FOR 
CLIMATE APPLICATIONS
Sea ice is a mixture of open water, thin 
first-year ice, thicker multiyear ice, and 
thick pressure ridges. A complex combi-
nation of thermal, radiative, kinematic, 
and mechanical processes determines 
the composition, structure, and volume 
of sea ice. Climate simulations require a 
conservative, consistent, physically accu-
rate representation of sea ice’s inter-
actions with the ocean and atmosphere. 
For models in the recent Coupled Model 
Intercomparison Project (CMIP; Eyring 
et al., 2016), the sea ice component con-
sists of a momentum and rheology model 
for ice motion, a transport model that 
conserves ice volume and other quan-
tities as the ice deforms and moves, and 
vertical physics including mechanical and 
thermodynamic models to compute ice 
thickness evolution. Keen et  al. (2021) 
summarize the sea ice options used within 
CMIP6. Newer sea ice models incorporate 
biology, chemistry, landfast ice, wave-ice 
interactions, and advanced snow proper-
ties, although these developments are not 
yet routinely used in climate simulations.

Arguably, the most critical sea ice role 
in the climate system is thermodynamic: 
snow-covered ice is among the most 
reflective natural materials, and ice and its 
overlying snow cover effectively insulate 
the atmosphere from the ocean. Heat con-
duction through the ice and snow affects 
the surface heat flux and determines phase 
changes throughout the ice (e.g., Maykut 
and Untersteiner, 1971). Heat tends 
to flow upward, from the warm ocean 
toward the colder atmosphere, so sea 
ice thermodynamics can be represented 
within a vertical column. Total freezing or 
melting is computed based on ice-ocean 
and ice-atmosphere heat exchange, verti-
cally resolved temperatures, and resulting 
vertical heat conduction.

Representing hydrologic properties, 
such as liquid water on top of and within 
the ice, is critical for accurately simulat-
ing ice pack evolution. Most CMIP6 sea 
ice model components employ a basic 
heat conduction model for the snow, 
incorporating melt and associated albedo 
changes along with more complex pro-
cesses such as snow-ice formation due to 
flooding and snow infiltration by melt-
water, which may form melt ponds. New 
snow model developments such as wind-
driven compaction and drifting of snow 
into the ocean are now being adopted in 
climate models (e.g., Lecomte et al., 2013).

For climate-scale simulations, which 
have spatial resolutions of tens to hun-
dreds of kilometers, many processes 
require sub-gridscale resolution for 
improved fidelity. This is captured via an 
ice thickness distribution (ITD), which 
computes the horizontal area covered 
by a given range of ice thickness within 
a grid cell (e.g.,  Thorndike et  al., 1975). 
Thermodynamic quantities, including 
ice growth/melt rates and surface fluxes, 
are computed for each thickness category. 
Dynamic properties are also a function of 
the ITD; for example, ice strength can be 
modeled as a simple function of ice thick-
ness and concentration (Hibler, 1979), 
or through an energy-based description 
tied to the ITD (Thorndike et  al., 1975). 
Inclusion of an ITD influences coupled 

climate feedbacks (Holland et  al., 2006) 
with implications for climate prediction.

Sea ice surface albedo is computed 
based on the surface fractions of snow, 
melt ponds, and bare ice. Because reflec-
tivity differs considerably for these sur-
faces (Perovich et  al., 2002), the relative 
fractional surface types and how they 
vary over time affects the surface albedo 
feedback (Holland and Landrum, 2015). 
Ice-atmosphere fluxes change the sur-
face characteristics (e.g.,  melting snow 
pools into ponds), which then alter the 
albedo and fluxes. Hydrologic changes 
also occur. While some models use an 
empirical relationship between sea ice 
albedo and ice thickness and surface tem-
peratures, other models apply inherent 
optical properties to calculate the com-
plex scattering of light within the ice and 
snow, and the resulting albedos (Briegleb 
and Light, 2007). Absorbed radiation also 
induces hydrologic changes, and “mushy” 
thermodynamic approaches treating sea 
ice as a two-phase material of brine and 
ice have been introduced into models 
(e.g.,  Vancoppenolle et  al., 2009; Turner 
and Hunke, 2015).

The simplest parameterization of melt 
ponds empirically adjusts the surface 
albedo based on the modeled surface 
temperature and snow depth. More com-
plex, explicit parameterizations (Flocco 
et al., 2012; Hunke et al., 2013) carry vol-
ume and area of meltwater pools on the 
ice, sourced from ice melt, snow melt, 
and rainfall. Snow may shield a pond 
from solar radiation, resulting in radia-
tively “effective” pond properties used for 
the shortwave radiation calculation.

Ice velocity is determined by wind, 
ocean currents, sea surface slope, Coriolis 
force, contact with land surfaces, and a 
constitutive model that represents ice 
strength and rheology. Cracks and ridges 
in the ice form due to velocity-derived 
deformation, allowing the direct flux of 
moisture and heat between the ocean 
and the atmosphere. Many CMIP6 mod-
els use the elastic-viscous-plastic (EVP) 
rheology (Hunke and Dukowicz, 1997), 
which introduced an elastic term into 
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the viscous-plastic (VP; Hibler, 1979) ice 
constitutive equation for computational 
efficiency. Efficient, monotone, and accu-
rate schemes advect multiple tracers with 
the ice (Lipscomb and Hunke, 2004).

Neither the model capabilities out-
lined in this section nor their references 
are exhaustive here. Newer model devel-
opments likely to be incorporated in 
future climate modeling studies (see later 
section on Sea Ice Model Advances) are 
partly driven by the need to better under-
stand the predictability properties of sea 
ice in climate-scale simulations.

USING MODELS TO PREDICT 
ARCTIC SEA ICE
Sea ice components have been coupled 
within Earth system models to enable cli-
mate studies. These models freely evolve 
based on internal dynamics and coupled 
interactions and prescribe climate drivers 
such as changes in greenhouse gas concen-
trations (GHGs) or volcanic emissions. 
Coordinated experiments (e.g.,  Eyring 
et  al., 2016), and large ensembles from 
individual models (e.g., Deser et al., 2020) 
have resulted in a deeper understand-
ing of sea ice predictability and change. 
Although structural model uncertainty 
remains important, many findings are 
robust across models. In this section we 
discuss how Earth system models have 
enhanced our understanding of sea ice 
and its predictability. We explore some 
of these factors using results from the 
multi-model large ensemble (MMLE; 
Deser et al., 2020; Table 1).

Historical Sea Ice Loss
Climate variations result from external 
climate drivers (“forced change”) aris-
ing from both natural and anthropo-
genic factors, and from internal dynam-
ics (“internal variability”) associated with 
the chaotic system. Simulations that pre-
scribe specific time-varying climate driv-
ers, for example, only GHGs or only 
natural drivers such as volcanic emis-
sions, indicate that anthropogenic GHGs 
have played a significant role in histori-
cal Arctic ice loss (e.g., Min et al., 2008), 
with cooling from anthropogenic aero-
sols offsetting the ice decline by about 
23% (Mueller et al., 2018). 

In large ensembles of simulations 
with individual CMIP-class models, dif-
ferences between ensemble members 
reflect simulated internal variability. 
These ensembles have clarified the siz-
able role of internal variability in many 
climate properties. For Arctic sea ice, 
internal variability has a large influence 
on multi-decadal trends (e.g., Swart et al., 
2015), a consistent result across models. 
Studies suggest that internal variability 
has reinforced anthropogenic September 
Arctic ice loss since 1979. For exam-
ple, by assuming that the mean change 
from a single model ensemble is a real-
istic forced response, Kay et  al. (2011) 
found that internal variability accounted 
for ~50% of the observed 1979–2005 
September ice loss.

A robust quantification of the role of 
internal variability in observed trends 
is difficult given potential model biases. 

Comparing large ensembles from mul-
tiple models illustrates this challenge. 
In Figure 1, the fraction of observed ice 
loss associated with internal variability 
in the MMLE assumes that an individ-
ual model’s ensemble mean realistically 
simulates the externally forced trend. 
Five of six models suggest that summer 
ice loss has been enhanced by internal 
variability, although the magnitude var-
ies. For the remainder of the year, most 
models also suggest that internal variabil-
ity has reinforced sea ice loss, although 
two models (CanESM2 and GFDL-CM3) 
consistently suggest that internal vari-
ability has counteracted forced loss for 
these months. Notably, for GFDL-CM3 
in all months except June–August and 
CSIRO-Mk3-6-0 for July–October, the 
ensemble distribution of ice loss is not 
consistent with observations. 

These attribution disparities are 
related to differences in mean ice area 
and thickness, which could allow for 
some observational constraints on the 
attribution. Alternatively, assessing sim-
ulated mechanisms of internal variabil-
ity and comparing these to observations 
provides a mechanistic approach. For 
example, Ding et  al. (2019) diagnosed 
“fingerprints” of internal historical ice 
loss variability and found enhanced loss 
in simulations with increasing Arctic 
atmospheric pressure. The atmospheric 
circulation variability strongly corre-
sponds with observed changes, estimated 
to contribute 40%–50% of the observed 
1979–2015 summer ice loss. A similar 
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FIGURE 1. The fraction of 
1979–2018 observed ice area 
loss attributed to internal vari-
ability from multi-model large 
ensemble (MMLE) results. 
Diamonds indicate months 
when the envelope of the 
model ensemble spread in 
1979–2018 trends encompass 
the observed trend. Assuming 
enough members to charac-
terize internal variability, this 
is a minimum requirement 
that simulated trends are con-
sistent with observations.

TABLE 1. The models used in the multi-model 
large ensemble (MMLE).

MODEL
NUMBER 

OF 
MEMBERS

REFERENCE

CanESM2 50 Kirchmeier-Young et al., 2017

CESM1-CAM5 40 Kay et al., 2015

CSIRO-Mk3-6-0 30 S. Jeffrey et al., 2013

GFDL-CM3 20 Sun et al., 2018

GFDL-ESM2M 30 Rodgers et al., 2015

MPI-ESM 100 Maher et al., 2019
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relationship between Beaufort Sea atmo-
spheric pressure and Arctic ice cover 
emerged from a perturbed-​parameter cli-
mate model ensemble (Urrego-Blanco 
et  al., 2019). Roach and Blanchard-
Wrigglesworth (2022), using experiments 
in which winds were nudged to obser-
vations, also found that observed wind 
variations reinforced summer ice loss, 
but played little role in historical winter/
spring sea ice trends.

Initial-Value Sea Ice Prediction
Because of sea ice loss, there is grow-
ing interest in safe Arctic marine access, 
and this has spurred interest in predict-
ing sea ice across timescales from sea-
sonal to multi-decadal (e.g., Eicken, 2013; 
Melia et al., 2017). Earth system models 
have provided insights on sea ice predict-
ability associated with initial conditions 
(“initial-value predictability”), includ-
ing analysis of diagnostic predictability 
from the correlation structure of simu-
lated conditions, inherent predictability 
from “perfect model” studies that assess 
the ability of the model to predict itself, 
and studies with forecasting systems ini-
tialized with observed conditions. There 
is strong evidence of the potential for 

skillful seasonal ice predictions and con-
sistency on the fundamental sources of 
that predictability. These insights are 
informing the development of improved 
prediction systems.

Blanchard-Wrigglesworth et al. (2011a) 
assessed the autocorrelation of Arctic ice 
extent from a large ensemble and pro-
vided a metric for diagnostic predict-
ability. They found that ice anomalies 
exhibit a persistence of several months 
and a “reemergence” of memory for some 
times of year. This includes (1) a summer-​
to-​summer reemergence associated with 
long-​lived ice thickness anomalies, and 
(2) a melt-​to-​freeze season reemergence 
associated with long-lived ocean heat con-
tent anomalies. These sources of memory 
have been confirmed in additional stud-
ies (e.g.,  see Guemas et  al., 2016, for a 
review). They should enable predictive 
skill on these timescales, while pointing 
to aspects of the system that need to be 
well-initialized to realize that skill.

In the MMLE (Figure 2), we find 
that all models exhibit these predictabil-
ity features, with a two- to three-month 
“persistence timescale” over which the 
autocorrelation declines. For ice area in 
February through May (y-axis), relatively 

low correlations after two to three 
months are followed by an increase 
in correlation during the ice growth 
season (approximately January–March, 
x-axis), indicating the melt-to-freeze sea-
son reemergence. Correlations for sum-
mer months (August–October) exhibit 
a summer-to-summer reemergence with 
enhanced correlations at a one-year lag. 
While the consistency across the models 
in these and other properties has been 
highlighted in several studies, the mod-
els differ in the magnitude and timing 
of predictable signals, which are related 
in part to different climate state prop-
erties (e.g.,  Day et  al., 2014b), pro-
viding optimization opportunities for 
sea ice prediction.

Comparisons across models indi-
cate that climate properties can affect ice 
predictability—not surprising since the 
mean ice state influences sea ice feed-
backs (e.g., Massonnet et al. 2018)—and 
suggest that initial-value predictabil-
ity might change in a warming climate. 
Indeed, Holland et al. (2019) found that 
summer ice predictability changes as 
the climate warms, because the growth 
of ice thickness initialization errors and 
their role in summer melt-out depend 
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FIGURE 2. Autocorrelation 
of Northern Hemisphere ice 
area anomalies from MMLE 
models using data from 
1960–2000 and all ensem-
ble members. Ice anomalies 
on the y-axis month are cor-
related with future anoma-
lies shown on the x-axis. To 
isolate anomalies from inter-
nal variability, the ensem-
ble mean is removed from 
each model.
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on the mean sea ice state. These factors 
can help explain across-model differences 
in predictability.

Idealized studies indicate that skillful 
seasonal predictions of ice area should be 
possible for both pan-Arctic and regional 
domains. Forecasting systems initialized 
with observations have been developed 
to realize this predictability (e.g., Hunke 
et al., 2020) and exhibit skill in retrospec-
tive, seasonal predictions (e.g.,  Guemas 
et al. 2016). These systems are also being 
used to inform data assimilation needs. 
For example, Bushuk et al. (2019) assessed 
the importance of different initial condi-
tions for Barents Sea ice predictions by 
removing certain assimilated observa-
tions. They found that sea surface tem-
peratures were important for predictions 
on interannual timescales, and deeper 
ocean temperatures played an important 
role in predicted trends. Additional work 
has elucidated the benefit of assimilating 
ice thickness information for Arctic sum-
mer ice extent and ice-edge location pre-
dictions (e.g., Day et al., 2014a; Blockley 
and Peterson, 2018).

Boundary Forced Predictability 
and Projections of Sea Ice
On longer timescales, sea ice predictabil-
ity arises from changes in climate drivers 
(“boundary forced predictability”). In the 
next decades, Arctic sea ice is projected 
to decline due to rising GHGs (e.g., Notz 

et al., 2020). However, internal variability 
remains an important source of uncer-
tainty in the rate of future ice loss. Using 
numerous models, Bonan et  al. (2021) 
found that internal variability accounts 
for 40%–60% of the summer ice loss 
uncertainty in the next decade, model 
structure uncertainty dominates in mid-​
century, and future emissions uncertainty 
dominates at the end of the twenty-​first 
century. For winter sea ice, uncertainty 
associated with internal variability plays 
a role for longer lead times.

The continued influence of internal 
variability could mask the emergence of 
anthropogenically forced signals in the 
changing Arctic climate. A number of 
studies have used Earth system models 
to quantify when a forced signal emerges 
from the sizable internally generated 
Arctic climate variability. Even with this 
large noise, studies indicate that multi-
ple aspects of forced Arctic change have 
emerged or will do so soon, including 
fall-winter surface warming (Hawkins 
and Sutton, 2012), an Arctic amplified 
signal of warming (e.g.,  England et  al., 
2021), and sea ice extent changes in 
both summer and winter (Landrum and 
Holland, 2020). 

Internal variability also impacts the 
predictability of the timing of climate 
signals. For example, Jahn et al (2016) 
found an approximately 20-year range 
in the first occurrence of September ice-

free Arctic conditions. An analysis of 
MMLE models confirms this important 
role of internal variability. In the ensem-
ble mean, these models differ consid-
erably in the timing of September ice-
free conditions (Figure 3a), related in 
part to differences in their early twenty-​
first century state: the mean timing of 
ice-free conditions across the models 
is correlated to the annual cycle ampli-
tude of 2000–2009 Arctic mean ice thick-
ness at R = 0.95. Regardless of the mean 
timing of ice-free conditions, however, 
the uncertainty across all the models is 
sizable (Figure 3b).

SEA ICE MODEL ADVANCES 
SINCE CMIP6 AND IMPLICATIONS 
FOR IMPROVED PREDICTION
Many advances are underway to improve 
the simulation of sea ice within Earth 
system models. While this discussion 
focuses on sea ice model developments, 
their most significant climate impacts 
will be through their influence on feed-
backs between the ice, atmosphere, and 
ocean. Better simulation of climate feed-
backs will influence sea ice prediction. 
New ice model capabilities also allow 
for predictions of additional sea ice fea-
tures (e.g., landfast ice) relevant to stake-
holders. Although not a comprehensive 
list, here we describe some developments 
under consideration for the next class of 
coupled earth system models. 
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While plastic deformation produced 
by the (E)VP model approximates ice 
deformation (e.g.,  Mehlmann et al., 
2021), recent improvements include 
Elastic Anisotropic Plastic (EAP) dynam-
ics (Wilchinsky and Feltham, 2006; 
Tsamados et  al., 2013), which accounts 
for subgrid regions of weakness in the ice 
cover that allow the ice to fracture in pre-
ferred directions. Brittle rheologies that 
incorporate damage are also being imple-
mented in large-scale models.

Landfast ice—ice fastened to the coast-
line or seabed and lacking motion—is 
used by coastal communities for travel 
and hunting. As a solid barrier between 
the ocean and atmosphere, it limits direct 
fluxes of moisture and heat and can block 
a river’s flow and cause flooding. A stress 
term added to the momentum equa-
tion better characterizes the interactions 
between grounded ridges and the seabed, 
improving the simulation of landfast ice 
in shallow water (Lemieux et  al., 2016). 
To better simulate landfast ice in deeper 
water, the tensile strength of fixed, con-
solidated ice was also modified.

Areas covered by floes of different hor-
izontal sizes have been represented using 
a floe size distribution analogous to the 
ice thickness distribution (Roach et  al., 
2018). Floe sizes change through five pro-
cesses: new ice formation, welding of floes 
in freezing conditions, lateral growth, 
melt, and fracture of floes by surface 
waves. Fragmentation by waves makes 
ice more susceptible to summer melt and 
determines whether ice forms as pan-
cakes or larger floes during freeze-up; this 
also influences ocean-atmosphere inter-
actions. In the future, ice floe size charac-
teristics will be used to influence waves in 
ocean models. Floe size can also influence 
drag by wind and currents on the ice sur-
face. Most climate models use constant 
drag coefficients, but new developments 
allow the drag coefficients to depend on 
the ridges and keels of deformed ice and 
on ice edges (Tsamados et al., 2014).

New developments in modeling also 
focus on biogeochemistry and ecosys-
tem dynamics (e.g.,  Duarte et  al., 2017; 

N. Jeffrey et  al., 2020) by tightly cou-
pling ice physics and the chemistry 
and biology within the brine network. 
When ice forms, the crystalline struc-
ture extrudes brine, some of which is cap-
tured in pockets within the ice. These 
brine pockets expand and contract with 
changing temperature, becoming con-
duits for meltwater and nutrient-​laden 
seawater. Organisms such as algae that 
live within the brine network, seed oce-
anic algal blooms in winter and early 
spring, thus serving as a fundamental 
source for primary production in polar 
waters. Incorporation of sea ice biogeo-
chemistry into Earth system models will 
enable better prediction of marine eco-
systems. It will also influence coupled 
feedbacks as ice algal production affects 
the flux of dimethyl sulfide (DMS), 
which is important in forming cloud  
condensation nuclei.

While sea ice predictions hinge cru-
cially on interactions with the atmo-
sphere and ocean, some developments 
target internal sea ice model represen-
tations for improved short-term or fine 
spatial scale predictions. These new 
approaches have the potential to revo-
lutionize the representation of sea ice 
in climate simulations. For instance, the 
neXtSIM model (Rampal et al., 2016) uses 
a Lagrangian advection scheme in which 
the mesh moves with the ice, employ-
ing a brittle rheology to simulate prop-
erties of ice drift and deformation. New 
efforts to capture both Lagrangian and 
anisotropic sea ice behavior include dis-
crete element modeling (Herman, 2016) 
in which aggregates of ice floes form the 
numerical elements. 

Such advances will enable more real-
istic interactions with the atmosphere 
and ocean models and provide the capa-
bility to simulate more complex sea ice 
features. This will ultimately allow for 
enhanced prediction of stakeholder-rele-
vant aspects of the changing Arctic. Note 
however that predictions of sea ice are 
also strongly influenced by the simulated 
atmosphere and ocean, and so improve-
ments in ice model processes alone are 

not a panacea. Thus, developments are 
also needed within atmospheric and oce-
anic models to better simulate winds, 
radiation fields, and ocean heat transport, 
among other properties.

CONCLUSIONS
Here we have provided a high-level 
review of sea ice models used for climate 
simulations and recent advances made 
with these models to understand seasonal 
to multi-decadal sea ice predictability. 
This has been enhanced with new anal-
ysis from the MMLE (Deser et al., 2020), 
which indicates that while many findings 
are robust across models, there remain 
model structural uncertainty that affects 
the magnitude of predictive signals and 
attribution of the factors responsible for 
historical ice loss. Comparison across 
models of simulated sea ice predictability/​
variability mechanisms and their simi-
larity to observations is needed to fur-
ther elucidate factors of ice predictabil-
ity and change.

Because sea ice plays a critical role 
in the climate system through its influ-
ence on the surface heat budget and the 
hydrological cycle, models need to ade-
quately represent processes that affect 
these climate interactions. The sea ice 
components used in current Earth sys-
tem models have advanced considerably 
in the last decade, allowing for more real-
istic treatment of ice dynamics, thermo-
dynamics, and spatial heterogeneity and 
thus improving the simulation of climate 
feedbacks. New advances are continu-
ing to improve the realism of sea ice and 
its interactions with the atmosphere and 
ocean. For example, models that simulate 
a floe size distribution allow for wave-ice 
coupling, and the incorporation of sea ice 
biogeochemistry enables new feedbacks 
for the marine ecosystem and polar cloud 
properties. While these elements have 
not yet been included in CMIP studies, 
they provide new avenues for research 
and Earth system prediction.

These advances will build on a body 
of research that uses Earth system mod-
els to query the predictability of Arctic 
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sea ice. This work has shown that sea 
ice area is predictable on seasonal time
scales and has highlighted predictability 
mechanisms, thus informing ice forecast-
ing systems for more skillful predictions. 
Recent research has also elucidated the 
critical role of internal variability in the 
climate system and the influence this 
internal variability has on multi-decadal 
ice trends. Evidence suggests that inter-
nal variability has reinforced anthropo-
genically driven summer ice loss in the 
Arctic by as much as 50%, with atmo-
spheric circulation variability playing a 
key role. While internal variability is a 
sizable source of uncertainty in longer 
timescale predictions, anthropogenically 
driven changes in the Arctic are also 
large, and many anthropogenic Arctic cli-
mate changes have already emerged from 
the internal climate noise. 
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