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Giant kelp (Macrocystis pyrifera), Channel Islands National 
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SPECIES ARCHETYPE MODELS 
OF KELP FOREST COMMUNITIES 

REVEAL DIVERSE RESPONSES TO 
ENVIRONMENTAL GRADIENTS

SPECIAL ISSUE ON THE MARINE BIODIVERSITY OBSERVATION NETWORK: AN OBSERVING SYSTEM FOR LIFE IN THE SEA

ABSTRACT. Assessing ecosystem integrity by monitoring populations and 
communities is an important management tool, but is often limited by the 
immense variety of species and the rarity of many of them. Grouping species 
by their responses to variation in the environment is one approach to choos-
ing species to serve as effective indicators of community change. Moreover, 
identifying species that are characterized by similar archetypical responses to 
the environment increases the power to predict their occurrence and simpli-
fies management of diverse species assemblages by focusing on a much smaller 
number of archetypes. To this end, we used the species archetype model 
(SAM) to fit generalized linear models of environmental covariates to spe-
cies distribution data in order to identify environmentally correlated groups of 
kelp forest species in the Santa Barbara Channel region. Eighty-two species of 
macroalgae, invertebrates, and fish monitored in kelp forests across the chan-
nel were grouped into one of 10 archetypes based on their similar responses 
to environmental parameters, with water temperature emerging as one of the 
strongest drivers of archetype differences. Predictive maps of the distribu-
tion of species archetypes identified sites where multiple archetypes are com-
mon, indicating high diversity, as well as sites where rare species are more 
likely to occur. Potential indicator species were identified for each archetype. 
New monitoring efforts across the growing Marine Biodiversity Observation 
Network could use modeling approaches like SAM to guide their designs, 
optimizing the cost-to- benefit ratio of monitoring whole communities.

By Rhiannon L. Rognstad, Andrew Rassweiler, Daniel C. Reed, Li Kui, and Robert J. Miller

Oceanography |  Vol.34, No.292



Oceanography  |  June 2021 93

INTRODUCTION
The idea that environmental manage-
ment should consider the ecosystem or 
landscape as a whole is decades old and 
has spawned entire branches of ecology 
(Slocombe, 1993; Grumbine, 1994). In 
practice, however, ecosystem-based man-
agement is often stymied by a combina-
tion of sociopolitical obstacles and prac-
tical difficulties in connecting ecological 
principles with concrete goals and ways to 
measure progress towards them (Arkema 
et al., 2006; Levin et al., 2009). The chal-
lenges to implementing ecosystem-based 
management are particularly problem-
atic in marine systems, where this man-
agement approach may offer a way to 
reverse widespread declines in coastal 
and oceanic ecosystems and in the func-
tions and services they provide (Leslie and 
McLeod, 2007). Despite this potential, 
marine ecosystem-based management 
lags behind its terrestrial counterpart in 
implementation (Townsend et  al., 2018). 
Largely focused on fisheries, marine man-
agement instead relies heavily on single- 
species population dynamics or habitat 
suitability models, despite the wealth of 
ecological research showing the impor-
tance of entire communities and biodiver-
sity on ecosystem structure and function 
(Thrush et al., 2016). An important excep-
tion to this has been marine protected 
areas, which aim for ecosystem-based 
management by protecting all compo-
nents of the ecosystem rather than by 
explicit consideration of multispecies 
dynamics. More sophisticated approaches 
to marine ecosystem-based management, 
such as adaptive management of sites 
over time, have been limited by the diffi-
culty of predicting and detecting ecologi-
cal change in diverse ecosystems that are 
inherently difficult to access and observe 
(Barbier et al., 2008; Ellingsen et al., 2017).

Addressing the challenge of imple-
menting ecosystem-based management 
in marine habitats would be more tracta-
ble if entire communities could be mon-
itored and modeled. While improved 
survey techniques could help with this, 
another route to ecosystem-based man-

agement is to focus on strategically cho-
sen indicator species that yield infor-
mation about larger segments of the 
ecological community. Yet, ecologists still 
debate to what extent communities are 
conglomerations of species reacting indi-
vidually according to their environmen-
tal preferences or to random processes 
(Gleason, 1926; Hubbell, 2005) versus 
tightly interacting groups of species that 
replace each other across environmen-
tal gradients (Clements, 1916; Whittaker, 
1975; Shipley and Keddy, 1987). In the 
latter case, cohesive groups of species 
would be expected to respond to gradi-
ents of environmental parameters in sim-
ilar ways (Leaper et al., 2014). Identifying 
such groups of closely associated species 
could greatly facilitate modeling of multi-
species dynamics and ecosystem man-
agement by reducing the number of vari-
ables, and would provide insight into the 
identity and composition of natural com-
munities. If indicator or surrogate species 
representing groups could be identified, 
then they could be used to track the status 
of the whole group, reducing the cost and 
difficulty of community-level monitoring 
(Carignan and Vilard, 2002; Caro, 2010; 
Siddig et al., 2016). These factors are par-
ticularly advantageous for rare species, 
which represent the majority of species 
in most communities (Magurran and 
Henderson, 2003; Gaston and Blackburn, 
2008) and require much more effort to 
observe and effectively sample (Ricklefs, 
2000; MacKenzie et al., 2005; Thompson, 
2013). Ideally, indicator species for such 
archetypes would be more common and 
easier to monitor, but monitoring a few 
key rare species is still easier than moni-
toring all of them.

Indicator species have a long history of 
use for monitoring ecosystem or environ-
mental health and integrity, habitat resto-
ration, and assessing the effects of human 
impacts such as pollution and contam-
ination. A review by Siddig et al. (2016) 
found that indicators were generally cho-
sen based on a posteriori information 
from the literature, local abundance, eco-
logical significance, or conservation sta-

tus. Indicator species, moreover, are often 
chosen purely to increase the efficiency of 
monitoring rather than to improve spe-
cific management decisions (Bal et  al., 
2018). If management interest centers on 
biodiversity and communities, selecting 
indicator species that track those com-
munities would be desirable.

Species archetype models (SAM; 
Dunstan et  al., 2011) have been used 
successfully to identify environmentally 
correlated groups of species by fitting a 
mixture of generalized linear models of 
environmental covariates to species distri-
bution data (Woolley et al., 2013; Murillo 
et al., 2018, Contreras 2019). Identifying 
species that are characterized by a lim-
ited number of archetypical responses 
to the environment increases the predic-
tive power of the SAM across species and 
simplifies management considerations 
for diverse species assemblages to a much 
smaller number of archetypes or species 
groups (Dunstan et  al., 2011; Hui et  al., 
2013). Additional advantages of the SAM 
include its ease of use for predicting com-
munity responses to the environment and 
the information it provides about com-
munity assembly based on the degree of 
overlap or separation of the archetypes 
and the number of species in each arche-
type (Leaper et  al., 2014). Identifying 
archetypes makes it possible to identify 
surrogate species (Lindenmayer et  al., 
2015; Tulloch et al., 2016) that are com-
mon or easy to identify and can be used as 
proxies for archetypical units as a whole, 
particularly when they can give informa-
tion about the status of co-occurring rare 
species. SAMs can also be used to predict 
how communities respond to environ-
mental change based on species-specific 
information (Hui et al., 2013). Such pre-
dictions are typically challenging using 
traditional correlational approaches due 
to a lack of information for many species, 
particularly those that are uncommon or 
rare. By pooling information from spe-
cies within an archetype, the SAM can 
overcome these challenges and gener-
ate more accurate predictions of species 
occurrence than individual species distri-
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bution models (Hui et al., 2013). 
The northern Channel Islands in the 

Southern California Bight are located at 
the boundary between the Oregonian 
and Californian marine provinces, where 
strong environmental gradients have long 
been considered to affect regional bio-
diversity (Hewatt, 1946). Complex cir-
culation patterns around the islands are 
driven by the collision of the California 
Current, which produces seasonal 
upwelling, with the warmer Southern 
California Countercurrent (Hickey, 
1992; Hendershott and Winant, 1996; 
Harms and Winant, 1998). Giant kelp 
(Macrocystis pyrifera) is abundant on shal-
low coastal reefs surrounding the islands, 
forming forests that harbor diverse sub-
tidal communities that are influenced by a 
multitude of physical and biological pro-
cesses (see Schiel and Foster, 2015, for a 
review). Broad appreciation of and inter-
est in the ecological importance and eco-
nomic value of the Channel Islands kelp 
forests led to the establishment of a net-
work of marine protected areas (MPAs) 
there. Ongoing research and monitoring 
programs established by the US National 
Park Service (NPS), the Partnership 
for Interdisciplinary Studies of Coastal 
Oceans (PISCO), and the Santa Barbara 
Coastal Long Term Ecological Research 
program (SBC LTER) provide more than 
three decades of data on the community 
structure and dynamics of these systems 
and the physical and biological processes 
that structure them (Kushner et al., 2013; 
Lamy et al., 2018; Menge et al., 2019). 

Here, we apply species archetype mod-
eling to a spatially and temporally exten-
sive data set that shows the occurrence 
of kelp forest species at the Channel 
Islands to: (1) identify groups of species 
with similar responses to environmen-
tal covariates, as well as indicator species 
that could potentially serve as surrogates 
for entire archetypes, to inform manage-
ment; (2) evaluate the utility of the model 
for predicting the species composition 
of kelp forest communities; and (3) pre-
dict patterns of species occurrence at 
unsampled sites in the region. To test the 

TABLE 1. Species list with archetype assignment and species-level AUC ROC (area under the 
receiver operating characteristic curve). Functional groups are understory algae (UA), sessile 
invertebrates (SI), mobile invertebrates (MI), and fish. Transect Frequency represents the percent 
of transects in which the species occurred, across all sites and years. Potential indicator species 
for each archetype are highlighted with blue shading and represent the top 1–3 conspicuous spe-
cies predicted by the model. The probability column shows the archetype membership probabil-
ity for each species. 
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ARCHETYPE 1
Muricea californica Cnidaria SI Planktivore 49% 0.8272 1
Centrostephanus coronatus Echinodermata MI Grazer 44% 0.8172 1
Muricea fruticosa Cnidaria SI Planktivore 29% 0.7849 1
Ophiothrix spiculata Echinodermata MI Planktivore 35% 0.7739 1

ARCHETYPE 2
Hypsypops rubicundus Chordata Fish Carnivore 66% 0.9342 1
Megastraea undosa Mollusca MI Grazer 60% 0.8432 1
Leptogorgia chilensis Cnidaria SI Planktivore 71% 0.8210 1
Paralabrax clathratus Chordata Fish Carnivore 67% 0.8110 1
Aplysia californica Mollusca MI Grazer 64% 0.7373 1
Girella nigricans Chordata Fish Grazer 61% 0.7298 1

ARCHETYPE 3
Halichoeres semicinctus Chordata Fish Carnivore 45% 0.8396 1
Alloclinus holderi Chordata Fish Carnivore 35% 0.8235 1
Panulirus interruptus Arthropoda MI Carnivore 41% 0.7612 1
Lytechinus pictus Echinodermata MI Grazer 48% 0.7555 1
Medialuna californiensis Chordata Fish Grazer 37% 0.7434 1
Diaperoforma californica Bryozoa SI Planktivore 52% 0.6271 1

ARCHETYPE 4
Lythrypnus dalli Chordata Fish Carnivore 10% 0.8332 1
Rhacochilus toxotes Chordata Fish Carnivore 31% 0.7818 1
Pachythyone rubra Echinodermata SI Planktivore 11% 0.7713 1
Sebastes carnatus Chordata Fish Carnivore 24% 0.7545 1
Lythrypnus zebra Chordata Fish Carnivore 17% 0.7459 1
Caulolatilus princeps Chordata Fish Carnivore 21% 0.7156 1

ARCHETYPE 5
Chromis punctipinnis Chordata Fish Carnivore 91% 0.8450 1
Crassadoma gigantea Mollusca SI Planktivore 98% 0.8015 1
Semicossyphus pulcher Chordata Fish Carnivore 96% 0.7471 1
Mesocentrotus franciscanus Echinodermata MI Grazer 99% 0.7419 1
Rhinogobiops nicholsii Chordata Fish Carnivore 93% 0.7205 1
Strongylocentrotus purpuratus Echinodermata MI Grazer 97% 0.7192 1
Megathura crenulata Mollusca MI Grazer 93% 0.6645 1
Oxylebius pictus Chordata Fish Carnivore 99% 0.6549 1
Oxyjulis californica Chordata Fish Carnivore 86% 0.6352 1
Patiria miniata Echinodermata MI Carnivore 92% 0.5746 1
Corynactis californica Cnidaria SI Planktivore 84% 0.5587 1
Apostichopus parvimensis Echinodermata MI Grazer 87% 0.5460 1
Tethya aurantium Porifera SI Planktivore 94% 0.5171 1

ARCHETYPE 6
Embiotoca jacksoni Chordata Fish Carnivore 84% 0.8418 1
Rhacochilus vacca Chordata Fish Carnivore 68% 0.7853 1
Sebastes atrovirens Chordata Fish Carnivore 73% 0.7738 1
Kelletia kelletii Mollusca MI Carnivore 70% 0.7402 1
Diopatra ornata Annelida SI Planktivore 69% 0.7397 1
Pisaster giganteus Echinodermata MI Carnivore 74% 0.7006 1
Sebastes serriceps Chordata Fish Carnivore 64% 0.6636 1
Astrangia haimei Cnidaria SI Planktivore 81% 0.6478 1
Neobernaya spadicea Mollusca MI Grazer 77% 0.5902 1

Table continued on the next page…
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robustness of our approach, we compared 
our model predictions of species occur-
rence based on data collected by the NPS 
to occurrence patterns observed in a sep-
arate data set collected by PISCO.

METHODS
Biological Data
KELP FOREST MONITORING PROGRAM. 
The NPS surveys subtidal rocky reef com-
munities to measure abundances of mac-
roalgae, invertebrates, and fish at 33 sites 
across five of the northern Channel 
Islands for the Kelp Forest Monitoring 
Program (KFMP; Kushner et  al., 2013). 
Surveys include visual counts of larger 
algae, invertebrates, and fish, as well as 
point contact assessments of sessile ben-
thic flora and fauna. Though KFMP sur-
veys began in the early 1980s, we used 
data from 2004 to 2014 to retain consis-
tency of sampling protocols and availabil-
ity of data on environmental covariates. 
We constrained our analyses to 82 spe-
cies (Table 1) that were identified to the 
species level and were present in at least 
5% of the KFMP surveys. These data were 
used to parameterize the SAMs and for 
initial model assessment.

PISCO KELP FOREST MONITORING PRO-
GRAM. Kelp forest community data col-
lected by PISCO from 2004 to 2014 were 
used to test the robustness of SAMs 
derived from the KFMP data set. We 
used PISCO data for the same 82 species 
retained from the KFMP data set col-
lected from 45 sites. Data were collected 
using methods similar to those used by 
KFMP, with some differences in size and 
spatial distribution of replicates (Carr 
et  al., 2020; Malone et  al., in press). 
The PISCO sites used in this analy-
sis are distributed across a geographic 
area that encompasses four of the north-
ern Channel Islands as well as main-
land California sites, and so includes the 
region surveyed by the KFMP as well as 
a nearby stretch of the mainland coast 
of the Santa Barbara Channel (Figure 1). 
All data are publicly available (Carr et al., 
2020; SCB MBON 2021a,b,c,d).

Environmental Covariates
We selected environmental variables 
known or hypothesized to affect kelp for-
est community structure (reviewed in 
Schiel and Foster, 2015) as SAM covari-
ates (Table S1). At the transect level, 
mean water depth and coverage of rock 
substrate were measured by KFMP and 
PISCO divers using a point contact 
method. Sea surface temperature (SST) 

values were estimated using the Group for 
High Resolution Sea Surface Temperature 
(GHRSST) Level 4 Global Foundation 
Sea Surface Temperature Analysis data 
set (JPL MUR MEaSUREs Project, 2015, 
version 4.1). This data set combines the 
SST measurements from multiple instru-
ments into a gridded data set with a 
0.01° spatial resolution (approximately 
1 km) and one-day temporal resolution. 
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ARCHETYPE 7
Orthonopias triacis Chordata Fish Carnivore 25% 0.6884 1
Stephanocystis osmundacea Ochrophyta UA O-Producer 37% 0.6649 1
Brachyistius frenatus Chordata Fish Carnivore 42% 0.6582 1
Thylacodes squamigerus Mollusca SI Planktivore 31% 0.6152 1
Eisenia arborea Ochrophyta UA O-Producer 45% 0.6020 1
Laminaria farlowii Ochrophyta UA O-Producer 30% 0.5575 1

ARCHETYPE 8
Sebastes rastrelliger Chordata Fish Carnivore 5% 0.8309 1
Citharichthys stigmaeus Chordata Fish Carnivore 7% 0.7775 1
Sebastes miniatus Chordata Fish Carnivore 18% 0.7533 1
Sebastes melanops Chordata Fish Carnivore 10% 0.7364 1
Gelidium Rhodophyta UA O-Producer 11% 0.6956 1
Haliotis corrugata Mollusca MI Grazer 6% 0.6769 1
Artedius corallinus Chordata Fish Carnivore 13% 0.6412 1
Sebastes paucispinis Chordata Fish Carnivore 13% 0.6275 1
Heterostichus rostratus Chordata Fish Carnivore 14% 0.5882 1
Atherinops affinis Chordata Fish Planktivore 14% 0.5398 1
Myliobatis californica Chordata Fish Carnivore 7% 0.5341 1
Trachurus symmetricus Chordata Fish Planktivore 7% 0.5258 1
Scorpaena guttata Chordata Fish Carnivore 6% 0.4221 1

ARCHETYPE 9
Sebastes mystinus Chordata Fish Carnivore 71% 0.8963 1
Pycnopodia helianthoides Echinodermata MI Carnivore 51% 0.8099 1
Sebastes serranoides Chordata Fish Carnivore 60% 0.7954 1
Balanophyllia elegans Cnidaria SI Planktivore 60% 0.7740 1
Sebastes chrysomelas Chordata Fish Carnivore 59% 0.7446 1
Macrocystis pyrifera Ochrophyta UA O-Producer 59% 0.7106 1

ARCHETYPE 10
Urticina lofotensis Cnidaria SI Carnivore 34% 0.9363 1
Styela montereyensis Chordata SI Planktivore 26% 0.9352 1
Haliotis rufescens Mollusca MI Grazer 24% 0.9155 1
Embiotoca lateralis Chordata Fish Carnivore 41% 0.8773 1
Aulorhynchus flavidus Chordata Fish Carnivore 17% 0.8590 1
Ophiodon elongatus Chordata Fish Carnivore 23% 0.8466 1
Pterygophora californica Ochrophyta UA O-Producer 31% 0.8439 1
Hypsurus caryi Chordata Fish Carnivore 15% 0.7975 1
Chondracanthus Rhodophyta UA O-Producer 32% 0.7968 1
Phragmatopoma californica Annelida SI Planktivore 31% 0.7661 1

Scorpaenichthys mamoratus Chordata Fish Carnivore 24% 0.7367 0.9999

Desmarestia ligulata Ochrophyta UA O-Producer 27% 0.7351 0.9998
Sebastes caurinus Chordata Fish Carnivore 23% 0.6914 0.9932

TABLE 1. Continued…
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We interpolated a two-dimensional sur-
face using the R package akima (Akima 
et al., 2016) and extracted daily tempera-
ture values for each of the sites. To match 
the annual sampling scale of the biologi-
cal survey data, we generated annual SST 
summary statistics, specifically seasonal 
means and the mean temperature in the 
hottest and coldest months. Year was also 
used as a continuous covariate. 

Sea surface chlorophyll a concentration 
(Chl-a) was estimated using the Kahru 
et  al. (2012, 2015) merged California 
Current 1 km data set, available at http://
www.wimsoft.com/CAL/. This data set 
incorporates ocean color data from mul-
tiple satellite sources and can outper-
form estimates derived from single sat-
ellites in the region when compared to 
in situ Chl-a measurements (Kahru 
et al., 2012). Significant wave height data 
were estimated using the Coastal Data 
Information Program (CDIP, http://cdip.
ucsd.edu) MOnitoring and Prediction 
(MOP) model (v1.1) for Southern and 
Central California (O’Reilly et al., 2016). 
Briefly, the model uses directional wave 
data from CDIP’s network of sensor buoys 
to initialize a spectral wave propagation 
model. The outputs are high resolution 
(hourly 100 m × 100 m) estimates of sig-
nificant wave height and wave period. We 
used both mean and maximum signifi-
cant wave height variables. Turbidity was 
estimated using the NOAA diffuse atten-
uation (K490) data set available from 

https://coastwatch.pfeg.noaa.gov/erddap/
griddap/erdMWk490mday.html. 

At the regional scale, we incorporated 
annual mean values of three regional cli-
matic indices: the Multivariate El Niño 
Index (MEI, https://psl.noaa.gov/enso/
mei/), the North Pacific Gyre Oscillation 
(NPGO, http://www.o3d.org/npgo/npgo.
php), and the Pacific Decadal Oscillation 
(PDO, http://research.jisao.washington.
edu/ pdo/PDO.latest.txt). 

To avoid effects of multicollinearity, 
we examined the environmental covari-
ates using Spearman’s correlations and 
Variance Inflation Factors (VIF). In cases 
where covariates had Spearman’s cor-
relation coefficients >0.7, we built single 
covariate SAMs with each of them and 
retained the covariate with the lowest 
model Bayesian Information Criterion 
(BIC) to reduce the VIF below an a priori 
threshold of 3. All environmental covari-
ates were scaled (mean = 0, standard 
deviation = 1) to avoid effects from dif-
ferences in dimensions. 

Model Fitting and Evaluation
Species archetype models were generated 
using the mixture model method devel-
oped by Dunstan et al. (2011) and imple-
mented in the SpeciesMix (Dunstan et al., 
2016) package. Fitting the SAM is a two-
step process. First, we chose the num-
ber of archetypes by fitting the full model 
(including all covariates) with a vary-
ing number of archetypes, ranging from 

a model where all species were assigned 
to a single archetype up to a model 
with 20 archetypes. The final number of 
best-fitting archetypes was selected using 
the Bayesian Information Criteria (BIC; 
Dunstan et al., 2011). 

Once the best number of arche-
types had been selected in a model that 
included all environmental variables, 
more parsimonious SAMs were con-
structed through stepwise removal of 
environmental covariates. The BIC for 
each model was used to identify which 
variables should be removed, and ulti-
mately to determine the best combina-
tion of covariates.

We calculated the area under the 
receiver operating characteristic curve 
(AUC ROC) using the R package 
modEvA (v. 1.3.2; Barbosa et  al., 2016) 
and used this metric to evaluate the dis-
criminatory power of the final model. 
Evaluating the model on KFMP data was 
valuable, because it measured the degree 
to which SAMs retain predictive ability 
despite collapsing the species into a lim-
ited number of archetypes, but it had the 
disadvantage of testing performance on 
data that were also used to fit the model. 
A stronger test of its utility is to confront 
the model with new data, testing whether 
it can predict the presence of species at 
new locations based only on environ-
mental data. For this purpose, we com-
pared our predictions to species occur-
rence data from the same region collected 
by PISCO using similar methods. 

Regional Predictions
We used the final SAM to predict the 
probability of the presence of each arche-
type throughout the Santa Barbara 
Channel using environmental condi-
tions in 2014. Environmental covariates 
were estimated as described above, except 
for depth and rock coverage, which were 
measured directly within the sampled 
plots surveyed by divers, but had to be 
derived from other sources for the contin-
uous regional predictions. Depth was esti-
mated throughout the region using the 
NOAA National Geophysical Data Center 
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1/3 arcsecond digital elevation models 
for the Santa Barbara and Santa Monica 
regions (https://catalog.data.gov/ dataset/ 
santa- barbara- california- coastal- digital- 
elevation- model). There are no compre-
hensive maps of substrate cover for the 
region, so we used presence of giant kelp 
(Macrocystis pyrifera) canopy as a proxy 
for presence of hard substrate (Rassweiler 
et al., 2012). Data on kelp canopy presence 
at 30 m spatial resolution were derived 
from Landsat 5 Thematic Mapper and 
Landsat 7 Enhanced Thematic Mapper+ 
satellite images (Bell et  al., 2020). We 
restricted our predictions to locations 
within the depth range of the kelp for-
est monitoring sites (between 3.5 m and 
27 m) and within 50 m of areas where a 
patch of giant kelp was remotely observed 
between 2005 and 2014 as an indicator of 
sufficient rocky substrate to support the 
kelp forest species used in our analyses. 

RESULTS
Model Description
We initially evaluated model perfor-
mance with numbers of archetypes rang-
ing from 1 to 20. Based on the resulting 
BIC values, we chose to proceed with the 
10-archetype model, beyond which addi-
tional archetypes offer minimal improve-
ments in BIC (Figure S1; Dunstan et al., 
2011). We then removed environmental 
covariates from the 10-archetype model 
in a stepwise fashion and examined 
the change in BIC to identify the best 

combination of environmental covariates. 
Our most likely model included 12 envi-
ronmental parameters as covariates and 
predictors of species presence/absence 
(Figures 2 and S2). The mean and vari-
ation in sea surface temperature (SST, 
CV SST), and to a lesser extent maximum 
wave height, chlorophyll a, and turbid-
ity, were the most influential covariates 
(Figures 2 and S3). Archetypes 1–3 were 
associated with warm water, while arche-
types  9–10 were cold water archetypes 
(Table 1, Figure 2). 

Archetype Composition 
The estimated archetype membership 
probability for all species was high 
(>0.90, Table 1), indicating good agree-
ment between the species response to the 
environmental covariates and predicted 
archetype responses. Most archetypes 
contain diverse groups of organisms with 
no clear patterns with respect to taxo-
nomic group or trophic level (Table 1). 
Some phylogenetic clustering was evident 
in archetype  4, which consists almost 
entirely of fish, and archetype  5, which 
contains four of the nine echinoderm 
species in the data set. Species with sim-
ilar frequency of occurrence in the sur-
veys tended to group within archetypes. 
Archetype 5 contained species that were 
common (i.e.,  occurred in >84% of sur-
veys) across the region, while species in 
archetype  8 were relatively uncommon 
(i.e., occurred in <18% of surveys). 

Model Performance
Model performance was evaluated using 
the area under the receiver operating 
characteristic curve (AUC ROC). The 
overall model had an AUC ROC of 0.87 
(note that 0.50 represents performance if 
presence/absence were assigned at ran-
dom, and 1.0 represents perfect accu-
racy). Individual species AUC ROCs 
were all above 0.5 with one exception 
(Scorpaena guttata; at 0.33), and 68% 
(55 out of 82 species) had AUC values 
>0.7. Thus, the approach produces con-
sistently useful results. 

A strong test of a model of commu-
nity composition is to ask if it can predict 
species occurrence in a new data set, col-
lected with different methods. We found 
the model retained considerable utility 
when used to predict species presence at 
sites sampled by PISCO (Figure 3). Model 
testing with the PISCO data set resulted in 
a similar, though lower, AUC ROC (0.72). 
As expected, model accuracy was some-
what lower on this novel data than on the 
KFMP data set on which it was trained. 
Nevertheless, model predictions were 
informative (i.e.,  AUC > 0.5) for more 
than 73% of species, even in this inde-
pendent data. To examine if the mainland 
sites included in the PISCO data set were 
mainly responsible for the lower AUC, 
we also ran the model on the inland and 
mainland sites separately (Figure S4). The 
mainland model had a slightly lower AUC 
(0.695) than the island sites (0.73). 

FIGURE 2. Model coefficients for environmental variables by archetype 
for most the parsimonious species archetype models (SAMs). Archetypes 
are assigned identification numbers, which are arbitrary but consistent 
throughout the paper.
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Regional Map Predictions
Regional prediction maps, generated for 
2014 environmental conditions, showed 
that three to seven species archetypes were 
likely (>50% probability) to be present at 
each site (Figure 4). There was a non-zero 
probability of occurrence for all arche-
types at all sites considered (Figure 5), but 
some archetypes had low prevalence. For 
example, archetype 8 was <10% likely to 
be present at most (59%) locations. This 
archetype contains species that are consis-
tently rare throughout the region at the site 
scale (Table 1). Conversely, archetype 5 is 
composed of species that occur frequently 
in the region (Table 1) and has a high 
probability (>90%) of presence at 92% 
of the sites (Figure 5). This suggests that 
the species in these two archetypes do not 
have strong responses to the environmen-
tal covariates considered, which is consis-
tent with their generally near-zero model 
coefficients (Figure 2). Archetypes  1–3 
had strong positive responses to tem-
perature (Figure 2), and consequently 
had higher probabilities of occurrence 
at the eastern end of the Santa Barbara 

Channel, where temperatures are warmer 
(Figure 5). Archetypes  9 and 10 exhibit 
the inverse pattern, higher probabil-
ity of occurrence at the western end of 
the region (Figure 5), corresponding to 
their negative correlation with tempera-
ture and positive correlation with wave 
energy (Figure 2). 

DISCUSSION
The 82 species of macroalgae, inverte-
brates, and fish monitored in kelp forests 
across the Santa Barbara Channel fell into 
10 archetypes, each comprising groups of 
species that had similar responses to envi-
ronmental parameters. Half of the arche-
types were strongly driven by water tem-
perature, with three characterized by 
warm conditions and two by cold. The 
utility of the archetypes for providing 
surrogates for monitoring rare species 
was somewhat undermined by the fact 
that many uncommon species grouped 
together. Nevertheless, we could identify 
indicator species for these groups that are 
easy to detect. For example, archetype  8 
was dominated by species occurring in 

≤14% of surveys, but was best character-
ized by the presence of Sebastes rastrelliger, 
the grass rockfish, a conspicuous and eas-
ily counted species. Predictive maps of the 
distribution of species archetypes identi-
fied sites where multiple archetypes are 
likely common, suggesting high diver-
sity, such as the zone between Santa Cruz 
and Santa Rosa Islands (Figure 4), as well 
as sites where rare species are more likely 
to occur (Figure 5). These results could 
be used to guide future monitoring and 
predictive efforts in the region, as well as 
management. Even the best marine mon-
itoring programs have gaps between sam-
pling locations, so managers are regu-
larly forced to make decisions for such 
unmonitored locations; model predic-
tions would provide useful information in 
such circumstances.

Although the mosaic of species 
responses was dominated by the strong 
SST gradient in the region, wave height, 
chlorophyll a, and turbidity were also 
important predictors, and the additional 
covariates substantially improved the pre-
dictive power of the model. The observed 

FIGURE 4. Regional estimates of the number of archetypes present at each location based on 2014 conditions. 
Species archetypes greater than 50% probability of presence are included in this map. The range of species 
archetypes at each location is between three and seven (shown in legend). 

importance of temperature 
agrees with previous work 
in the region identifying 
SST as a dominant environ-
mental gradient that struc-
tures subtidal communities 
(Lamy et al., 2018), and with 
a global analysis showing the 
primacy of SST as a predic-
tor of marine biodiversity 
(Tittensor et  al., 2010). The 
importance of wave height 
was also expected, particu-
larly because it is known to 
influence giant kelp (Reed, 
2011; Bell et  al., 2015), a 
foundation species with 
cascading effects on rocky 
reef ecosystems (Miller 
et  al., 2018; Lamy et  al., 
2020; Detmer et  al., 2021). 
Although we could have 
included giant kelp abun-
dance itself in the model, 
we opted to use kelp as one 
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of the response variables rather than as 
a predictor because preliminary analyses 
suggested it would not have been a strong 
predictor. Chlorophyll a is in an indica-
tor of phytoplankton, which support zoo-
plankton and reef suspension feeders that 
in turn are prey for mobile invertebrates 
and fishes (Page et  al., 2013). Turbidity 
may affect benthic communities by reduc-
ing light, a vital resource for benthic mac-
rophytes (Miller et  al., 2011). Climate 
change is predicted to affect all of these 
variables. Transient warming effects asso-
ciated with El Niño and the warm “blob” 
event in 2013–2015 were observed in the 
region (Cavole et  al., 2016; Reed et  al., 
2016), and such events may increase in 
frequency and intensity in the future 
(Di Lorenzo et al., 2016). Climate change 
is also predicted to alter the frequency 
and intensity of storms and waves in the 
Pacific, with increases in intense cyclones 
in the North Pacific (Graham and Diaz, 
2001; Ulbrich et  al., 2009). Interestingly, 
archetypes  1–3, characterized by warm 
water, tended to be negatively affected 
by maximum wave height, and the cold- 
water archetypes, 9 and 10, were posi-
tively associated with maximum wave 
height, suggesting conflicting effects of 
climate change on archetype dominance. 
Nevertheless, the temperature coefficients 
were much larger, and we predict that 
archetypes 1–3 will become more preva-
lent to the extent that the Santa Barbara 
Channel is increasingly impacted by 

marine heatwaves in the future.
Predictive performance varied across 

species, but SAMs were generally use-
ful for predicting species presence. 
Strikingly, the model developed using 
data from KFMP had considerable abil-
ity to predict species occurrence at dif-
ferent locations in the region monitored 
by PISCO. Although accuracy was lower 
when the model was confronted with 
PISCO data, it is still impressive given 
differences in sampling methodology 
between the two programs. For exam-
ple, KFMP samples fish in timed swims 
where a diver roves over a 2,000 m2 area, 
while PISCO samples in more traditional 
60 m2 transects, yielding significantly dif-
ferent estimates of fish species diversity 
(Rassweiler et  al., 2020). Furthermore, 
the PISCO data set includes mainland 
sites outside the area where training data 
were collected (Figure 1), although the 
similar AUC scores for separate main-
land and island models (Figure S4) sug-
gest that the survey methods made more 
of a difference that the geographic distri-
bution of sites.

Although the approach offered useful 
predictions for most species, there were 
several species for which predictions of 
distributions were less reliable. Several 
explanations may apply to these cases. 
First, the SAM approach relies on gener-
alized linear models (GLMs) to describe 
the relationship between species distribu-
tions and environmental covariates. For 

some species, this relationship may be 
nonlinear, and thus difficult to fit with a 
GLM. A second potential cause of poor 
performance is the lack of inclusion of 
key covariates. Though an extensive suite 
of covariates were considered here, other 
environmental factors, including varia-
tion in larval delivery and habitat stability, 
have been shown to affect distributions 
of some species; for example, Storlazzi 
et al. (2013) found higher abundances of 
the sea star Patiria minata in more sta-
ble environments. The mechanism by 
which covariates affect species distribu-
tions also likely varies by species, and the 
way a specific covariate is included may 
not encompass species-specific mecha-
nisms. For example, average SST in the 
coldest month preceding the biological 
survey, was selected from multiple SST 
summary variables (e.g., seasonal means, 
annual mean) as the best-performing SST 
variable for the full model. However, for 
individual species, the mechanism could 
involve a specific SST threshold that may 
not be well represented by SST in the 
coldest month, leading to poor predic-
tive performance. Key covariates could 
also include biological interactions or 
food availability. Finally, like most mod-
els based on presence-absence data, the 
SAM implicitly assumes perfect detection 
(true absence), which is always an issue 
for survey data and may contribute to 
poor or inaccurate model fit, particularly 
for rare species (Wilkinson et al., 2019).

FIGURE 5. Maps of predicted occurrence of each of the 10 modeled species archetypes across the Santa Barbara Channel, based on 2014 con-
ditions. The scale corresponds to the probability of occurrence.
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CONCLUSION
Unlike distance-based approaches for 
grouping species (Legendre and Legendre, 
2012), the SAM uses a predictive 
approach to quantify and group multi-
ple species’ responses to environmen-
tal gradients. In this case, the coefficients 
of scaled predictor variables (Figure 2) 
identify water temperature as the dom-
inant environmental covariate driving 
species distributions in the region, but 
other covariates, particularly significant 
wave height, also frequently contrib-
ute. SAMs can easily be used to gener-
ate prediction maps (Figures 4 and 5) for 
regions that have not been sampled, pro-
viding valuable information about likely 
species distributions to guide spatial 
management and monitoring. Similarly, 
SAMs could be used to forecast future 
species distributions based on predicted 
environmental conditions and to identify 
the species most likely to be affected by 
different types of environmental change. 
Given that intact communities and eco-
systems are needed to ensure their con-
tinued functioning and provisioning 
of goods and services, such forecasts 
should be of wide interest to managers 
and policymakers. 

SUPPLEMENTARY MATERIALS
Table S1 and Figures S1–S4 are available online at 
https://doi.org/10.5670/oceanog.2021.217.
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