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SPECIAL ISSUE ON THE GULF OF MEXICO RESEARCH INITIATIVE: TEN YEARS OF OIL SPILL AND ECOSYSTEM SCIENCE

GoMRI Insights into Microbial Genomics 
and Hydrocarbon Bioremediation Response 

in Marine Ecosystems
By Shannon Weiman, Samantha B. Joye, Joel E. Kostka, Kenneth M. Halanych, and Rita R. Colwell

Light microscope image (10×) of oil 
droplets (large round shapes) with 

bacteria visible inside and outside of 
the oil. A pure culture of “Candidatus 

Macondimonas diazotrophica,” a novel, 
nitrogen-​fixing crude oil degrader taxon, 

was recovered from Florida beach 
sands contaminated with Macondo oil 

from the Deepwater Horizon discharge. 
Image credit: Smruthi Karthikeyan, 

Georgia Institute of Technology
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INTRODUCTION
One of the most damaging environmen-
tal catastrophes of our generation, the 
Deepwater Horizon (DWH) oil spill dis-
charged 4.9 million barrels of oil and 
250,000 metric tonnes of natural gas into 
the Gulf of Mexico and contaminated vast 
areas of the open ocean, the deep sea, and 
the shoreline. Its disruption of ecosystems 
carries residual and long-lasting impacts. 

At the core of all ecosystems are 
microbial communities that constitute 
the foundation for all life by perform-
ing essential services such as carbon and 
nutrient cycling, as well as other core 
biogeochemical processes. Microbes are 
Earth’s first responders, and by rapidly 
reacting and adapting to changing con-
ditions, they restore balance and stabil-
ity to the entire ecosystem. In the context 
of oil spills, microbes serve as emergency 
cleanup crews by feeding on hydro-
carbons and contributing other funda-
mental remediation services.

Despite their importance, relatively 
little was known about hydrocarbon- 
degrading marine microbes resident in 
the Gulf of Mexico prior to the DWH 
spill or about the effects of hydrocar-
bons on the microbiology of the Gulf 
region. The Gulf of Mexico Research 
Initiative (GoMRI) was established to 

provide resources for advancing under-
standing of marine hydrocarbon micro-
biology among other Gulf biological, 
physical, and chemical components. The 
microbiology research included devel-
opment and application of genomic and 
bioinformatics tools that enabled scien-
tists to examine hydrocarbon-​degrading 
microbes in the context of complex micro-
bial communities and in unprecedented 
detail. With an array of transformational 
“omics” tools, scientists gained valuable 
insight into how microbes respond to 
hydrocarbon infusions and restore eco-
system health. This research discovered 
novel species, genes, metabolic pathways, 
and community dynamics that are instru-
mental to hydrocarbon degradation and 
related ecosystem functions. In combina-
tion, the findings revealed an extensive 
and intricate natural capacity of microbes 
in the Gulf of Mexico to catalyze bioreme-
diation of petroleum hydrocarbons. This 
new information will guide future mitiga-
tion and restoration strategies to harness 
the natural bioremediation capabilities of 
microorganisms without further disturb-
ing sensitive ecosystems.

Broadly, the GoMRI researchers have 
provided an outline of core ecological 
and evolutionary principles regarding 
microbial response and ecosystem func-

tions that is widely translatable to other 
systems. Lessons learned from GoMRI 
research form a foundation for under-
standing how microbes in various ecosys-
tems around the globe respond to diverse 
environmental disturbances. From the 
Arctic to the equator and the deep sea to 
coastal shores, these principles apply to 
describing how microbes maintain and 
restore ecosystem balance. These insights 
will help scientists better understand and 
prepare for future catastrophes, from a 
tanker spill to the long-term disruptions 
of climate change.

In summary, the research carried out 
by GoMRI investigators led to new meth-
ods for monitoring and assessing ecosys-
tem health using microbial populations 
as ecosystem indicators in marine and 
coastal environments. Scientists can now 
deploy omics tools to take the pulses of 
microbial communities, identify distur-
bances, and guide mitigation strategies—
notably at early stages before widespread 
damage occurs. Although much work 
is still needed to fully understand and 
engage microbially mediated biogeo-
chemical processes that underpin ocean 
systems and their resilience, GoMRI 
research has prepared future generations 
to better protect and restore invaluable 
habitats by guiding disaster preparedness 
and response in the face of diverse envi-
ronmental stressors and natural disasters 
around the globe.

OMICS TECHNOLOGIES 
ENABLE NEW BIOGEOCHEMICAL 
DISCOVERIES
Discovery of New Oil-​Degrading 
Microbial Species, Genes, 
and Enzymes
A powerful toolbox of omics technologies 
and bioinformatic methods, including 
genomics, transcriptomics, proteomics, 
metabolomics, and metagenomics, is now 
available that allows scientists to probe 
the structures and functions of microbial 
communities that form the foundation of 
marine ecosystems (Grossart et al., 2020). 
These technologies provide research-
ers with the tools to comprehensively 
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examine microbial dynamics in real-
world situations (Mason et  al., 2014a,b; 
Rodriguez-R et al., 2015). The advanced 
techniques and bioinformatics methods 
used generated discoveries and impacts 
far beyond what was previously thought 
possible (Karthikeyan et al., 2019).

GoMRI researchers discovered many 
new microbial taxa that thrive in oil-​
contaminated marine environments, 
along with novel genes and metabolic 
pathways they use for hydrocarbon deg-
radation (see image on opening page of 
this article; Hazen et  al., 2010; Kostka 
et al., 2011; Mason et al., 2014a; Crespo-
Medina et  al., 2014; Rodriguez-R et  al., 
2015; Kleindienst et al., 2015a; Yang et al., 
2016; Karthikeyan et al., 2019). In addi-
tion, major known classes of microbes, 
for example, Bacteroidetes, were found to 
harbor a previously unrecognized poten-
tial for hydrocarbon biodegradation (Liu 
and Liu, 2013). However, the many major 
players and ecotypes discovered repre-
sent only a fraction of all the microbes 
involved in hydrocarbon degradation 
(Gutierrez et al., 2018). 

Oil-Degrading Microbial 
Collaboration and Community 
Dynamics
Oil-degrading microbes are ubiquitous 
in marine and estuarine environments 
around the world, but their abundance is 
low when oil is absent. As part of the “rare 
biosphere,” they harbor metabolic poten-
tial of ecological significance; they act as 
first responders in the event of an oil spill, 
providing critical ecosystem cleanup 
and stabilization functions that impact 
the fate and environmental distribution 
of hydrocarbons. 

When oil spills occur, microorganisms 

sense and respond to the oil, using innate 
mobility to pursue oil via flagella-based 
motility and chemotaxis. They are stim-
ulated to express hydrocarbon degrada-
tion genes that enable metabolism of var-
ious hydrocarbon compounds as energy 
sources. These hydrocarbon utilizers 
reproduce rapidly in the presence of oil to 
dominate the microbial ecosystem in con-
taminated waters and sediments, creat-
ing a microbial bloom (Kostka et al., 2011; 
Doyle et al., 2018, 2020; Karthikeyan et al., 
2019). Many oil-degrading microbes pos-
sess multiple pathways for hydrocarbon 
degradation, and which metabolic path-
way is induced may depend on environ-
mental conditions and type of exposure 
(Karthikeyan et al., 2020a).

Microbes often exhibit cooperative 
metabolism by partitioning metabolic 
pathways among community members 
(Zengler and Zaramela, 2018). These 
microbial partnerships or collaborations 
are critical to microbial community func-
tions and processes, including hydro-
carbon degradation (Joye et  al., 2016). 
Microbes can also create new catabolic 
pathways by shuffling hydrocarbon deg-
radation genes between and among com-
munity members via lateral gene trans-
fer, generating novel combinations of 
enzymes and metabolic capabilities 
in new hosts.

GoMRI research led to the discovery 
of metabolic partnerships for oil degra-
dation. Metagenomic analysis revealed 
that genes within a single metabolic path-
way may be distributed throughout the 
community, rather than contained within 
a single microbial species or strain. In 
some cases, different bacterial species 
were found to specialize in specific met-
abolic steps, but because they shuttled 

metabolites among species, collabora-
tive networks were created that together 
completed the oil degradation process. 
In other cases, researchers determined 
that certain species specialize in breaking 
down the byproducts that are generated 
by other species. Together, these microbial 
networks can accomplish far more, with 
greater efficiency, than any single species 
could. Taking such a holistic approach, 
the research done by the GoMRI scien-
tists has illuminated collective metabolic 
pathways and ecosystem functions that 
would have been overlooked by examin-
ing only individual species (Mason et al., 
2012; Doyle et al., 2020).

In short order, the DWH spill caused 
major shifts in microbial ecosystem 
structure and function. Rare biosphere 
species capable of degrading hydrocar-
bons rapidly outgrew neighbors, ulti-
mately accounting for up to 90% of the 
community (Kleindienst et  al., 2015a; 
Karthikeyan et  al., 2019, 2020a). At the 
same time, microbes that typically dom-
inate healthy environmental systems, 
such as ammonia oxidizers and other 
autotrophs and heterotrophs, declined 
in relative abundance. Coastal nitrifier 
populations in offshore pelagic waters 
underwent alteration in species com-
position for at least a year, returning to 
normal only after the oil had dissipated. 
(Newell et al., 2014; Huettel et al., 2018)

Community composition shifted over 
time as hydrocarbon oxidizing bacterial 
blooms consumed available hydrocar-
bons, and then declined, being replaced 
by microbial species capable of degrad-
ing the residual metabolic byproducts 
(Figure 1; Kostka et al., 2011; Rodriguez-R 
et  al., 2015; Kamalanathan et  al., 2020). 
Such microbial succession patterns have 

FIGURE 1 (NEXT PAGE). Microbial community functional shifts in coastal sediments in response to oil from the Deepwater Horizon discharge. Genes 
coding for selected molecular functions related to hydrocarbon degradation, nutrient scavenging and response, photosynthesis, and housekeeping 
genes are listed (left), with mean genome equivalents per group of samples (middle), and log2 of pre-oil/oiled and oiled/recovered (recov.) fold changes 
(right). Gene abundance was assessed as the average genome equivalents (mean copies per bacterial cell) at each sampling period. The log2 fold 
change was estimated as the log2 of the ratio of normalized counts between pre-oiled samples (S1 to S4) and oiled samples (A to G) and between 
oiled samples and recovered samples (I600, I606, J598, and J604). P values were estimated using a negative binomial test. Interesting patterns were 
the succession of genes related to easily degradable, light-hydrocarbon fractions, followed by genes specializing in polycyclic aromatic hydrocarbons 
(PAHs) and complex aromatics, and an increase in nitrogen fixation genes that denote nitrogen limitation for the microbial communities during crude oil 
biodegradation. CoA = coenzyme A. Figure from Rodriguez-R et al. (2015)
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been documented across many different 
ecosystems, each with unique species and 
dynamics, driven by abundance of dif-
ferent hydrocarbon fractions and related 
environmental factors and at different 
time points. Thus, conclusions can be 
drawn from integrating data across time 
and localities but must be contextual-
ized when making broader observations 
(Crespo-Medina et al., 2014).

In the deep-sea plume, methane, and 
potentially propane, butane, and ethane, 
fueled the early microbial response 
(Valentine et  al., 2010; Joye et  al., 
2011; Crespo-Medina et  al., 2014). 
Methane was a major driver in the 
DWH spill, spawning the emergence of 
Methylomonas species with methane oxi-
dation capabilities (Figure 2; Crespo-
Medina et  al., 2014). Although Archaea 

are known generally to play import-
ant roles in anaerobic methane oxida-
tion and anaerobic hydrocarbon (oil) 
degradation, they were not major play-
ers in pelagic or benthic oil or gas deg-
radation during DWH. Immediately 
after the spill, when n-alkanes and 
cycloalkanes were more abundant, 
Oceanospirillaceae and Pseudomonas spp. 
were dominant (Figure 3; Hazen et  al., 
2010). These species were later sup-
planted mainly by Colwellia spp. and, 
to a lesser degree, Cycloclasticus and 
Pseudoalteromonas  spp., which peaked 
when linear and simple aromatic hydro-
carbons were abundant (Dubinsky 
et  al., 2013; Kleindienst et  al., 2015a). 
Employing metagenomics, scientists 
confirmed that the different hydrocarbon 
degradation genes and pathways present 
at different time points corresponded 
with abundances of different substrates 
within the plume (Mason et  al., 2012; 
Redmond and Valentine, 2012). 

Meanwhile, in beach sands, succes-
sion of microbial populations also par-
alleled the chemical evolution of petro-
leum hydrocarbons (Rodriguez-R et  al., 
2015). Early responders were mostly 
Gammaproteobacteria (Alcanivorax and 
Marinobacter spp.), microbes known 
to degrade aliphatic hydrocarbons, and 

FIGURE 2. Abundance of pmoA genes following the Deepwater Horizon discharge. (a) Abundance 
of methanotrophic bacterial pmoA genes. Data are binned by time period. (b) Abundance of pmoA 
gene copies over time (pre-spill samples are magenta). Stars = OPU1. Diamonds = OPU3. Squares = 
New phenotype. Data in the two time periods marked with asterisks in panel (a) are different from 
those collected at other times, with a statistical significance of a P value of <0.05. Plus signs denote 
extreme data outliers. Figure from Crespo-Medina et al. (2014)
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FIGURE 3. Microbial community structure and function change drastically in response to hydrocarbons. 
Community structure, function, and succession patterns varied depending on location and time of sampling. 
Figure modified from Mason et al. (2012)
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their bloom coincided with a drastic 
decline in community diversity (Kostka 
et  al., 2011). These were replaced after 
three months by Alphaproteobacteria 
(Hyphomonas and Parvibaculum spp.), 
capable of aromatic hydrocarbon decom-
position. This shift coincided with the dis-
appearance of alkanes and persistence of 
aromatics in field samples (Huettel et al., 
2018). Nearly all of the oil on Pensacola 
Beach was degraded after one year, and 
microbial communities returned to a 
state that resembled the pre-oil condi-
tion, with nearly all known hydrocarbon 
degraders and genes coding for degra-
dation functions exhibiting only low or 
undetectable levels (Rodriguez-R et  al., 
2015). However, significant differences 
were observed between the pre-oiled 
and recovered communities. Taxonomic 
diversity remained elevated in recovered 
communities, above that of the pre-oiled 
community, while functional diversity 
was lower in the recovered compared to 
the pre-oiled. Such differences could be 
due to unrecognized long-term effects 
of disturbance, such as the emergence 
of new taxa, and stochastic environmen-
tal events such as changes in nutrient or 
carbon input (Kostka et  al., 2020). This 
return to a “baseline” state remains an 
open question that is actively being pur-
sued as a legacy DWH issue.

In salt marshes, the microbial diver-
sity of aerobic and anaerobic sediments 
decreased, favoring microbes capable 
of degrading alkanes and aromatics as 
weathered oil and residues accumulated 
(Atlas et al., 2015). In anoxic sediments, 
sulfate-reducing bacteria, for example, 
Desulfococcus spp., increased in paral-
lel with oil contamination. Interestingly, 
marsh sediments maintained a high per-
centage of hydrocarbon degraders whose 
growth was driven periodically by storm 
surges that redistributed weathered oil 
from the anoxic sediment. These lin-
gering shifts in microbial community 
diversity and function have the poten-
tial to impact the overall marsh eco-
system, particularly marsh vegetation 
and fishery health.

In anoxic environments (e.g., the sea-
floor and salt marsh sediments), biodeg-
radation occurs much more slowly so that 
most of the oil persists. (Liu et al., 2012; 
Chanton et al., 2015). Yet, seafloor sedi-
ments near the DWH wellhead showed 
some enrichment, notably in anaerobic 
respiration and anaerobic hydrocarbon 
degradation genes and associated species 
such as Deltaproteobacteria (Mason et al., 
2014b). Novel anaerobic polycyclic aro-
matic hydrocarbon (PAH) degradation 
pathways were also discovered (Shin et al., 
2019b), potentially mediated by yet undis-
covered sulfate-reducing bacteria along 
with their fermentative syntrophic part-
ners. Hexadecane-degrading microbes, 
closely related to the Desulfobacteraceae, 
and phenanthrene-degrading microbes 
related to Desulfatiglans spp. were 
also discovered.

Biogeochemical Processes
Microbes play fundamental roles in basic 
biogeochemical cycles of marine and 
coastal ecosystems, including intercon-
nected carbon, nitrogen, and phosphorus 
cycling—and also in hydrocarbon degra-
dation. Omics analyses of these pathways 
revealed how these ecosystem functions 
were impacted by the DWH spill.

Nitrogen Fixation
Like all microbes, oil degraders require 
substantial amounts of nitrogen for 
growth, but nitrogen is present only in 
limited amounts in marine environments. 
Although nitrogen fertilizers have been 
added to accelerate microbial growth and 
biodegradation following some oil spills, 
such as the Exxon Valdez spill in Prince 
William Sound, Alaska (Pritchard et  al., 
1992), microbes can generate their own 
fixed nitrogen through biochemical fix-
ation of dinitrogen gas (Foght, 2010). 
Nitrogen fixation pathways are well 
known in soil microbes that support crop 
growth and in oceanic microbes such as 
Trichodesmium cyanobacteria (Bergman 
et al., 2013), but nitrogen fixation by oil 
degraders in response to raw oil exposure 
is a new discovery (Quigg et al., 2016).

Researchers studying the DWH spill 
discovered that nitrogen fixation is a key 
ecosystem function of microbial com-
munities in response to oil (Rodriguez-R 
et  al., 2015; Fernández-Carrera et  al., 
2016). In the offshore and coastal ocean 
ecosystems where nitrogen is limit-
ing, nitrogen fixation function increases 
in response to oil contamination (Scott 
et  al., 2014; Rodriguez-R et  al., 2015; 
Gaby et al., 2018; Shin et al., 2019a), and 
then dissipates once the hydrocarbons are 
significantly reduced (Shin et al., 2019a).

Fixing nitrogen provides a strong selec-
tive advantage for those species capable 
of fixation in the presence of oil, allow-
ing them to utilize hydrocarbon energy 
sources without restriction. Although 
species with such dual capabilities are 
uncommon under pristine conditions, 
they thrive in oil-contaminated envi-
ronments. This explains the niche dom-
inance of keystone oil-degrading organ-
isms such as Candidatus Macondimonas 
diazotrophica (Karthikeyan et al., 2019).

Microbial genes involved in car-
bon, nitrogen, phosphorus, sulfur, and 
iron cycling were also enriched in oil-​
contaminated ecosystems (for additional 
information, see Mason et  al., 2012; 
Rodriguez-R et al., 2015). Understanding 
these biogeochemical interdependencies 
could inform fertilization strategies to 
enhance natural biodegradation.

Marine Oil Snow (MOS)
Phytoplankton and hydrocarbon-​degrad-
ing microbes that assemble around oil 
droplets in large communities produce 
transparent exopolymers (TEPs) that 
entrap oil. These dense macroscopic 
assemblages of carbohydrates and bio-
mass behave like “snow” as they sink to 
the seafloor. Marine oil snow (MOS) 
effectively transfers hydrocarbons from 
the water column to the seafloor as sed-
iment (Vonk et al., 2015). Although MOS 
formation was observed during previ-
ous oil spills, including the 1977 Baltic 
Sea Tsesis spill (Johansson et  al., 1980) 
and the 1979 Ixtoc I spill in the south-
ern Gulf of Mexico (Patton et al., 1981), 
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it was first thoroughly studied after the 
DWH spill, which triggered MOS for-
mation in unprecedented quantities 
(Joye et al., 2014). 

Oil degradation and deposition that 
takes places in MOS impacts the fate of 
spilled oil (Figure 4). MOS particles are 
hot spots for oil degradation, exhibiting 
high levels of lipase activity (Gutierrez 
et  al., 2018) and distinct microbial 
communities that specialize in break-
ing down oil. In particular, Colwellia, 
Marinobacter spp., and Alteromonas spp. 
are prevalent because they have the 
unique capacity to degrade oil relatively 
rapidly in cold, deep marine environ-
ments (Gutierrez et al., 2018). 

MOS particles sink quickly, reaching 
the seafloor within ~10 days (Passow, 
2016). MOS formation is triggered by 
water column elements that include detri-

tus, fecal matter, minerals, and chemical 
dispersants, as well as such living cells as 
diatoms, microalgae, and bacteria, and 
the polymers they secrete.

The question remains, however, 
whether MOS is good or bad as an oil 
spill bioremediation mechanism. MOS 
could have negative consequences for 
the water column as well as the seafloor 
where it is ultimately deposited. These 
larger particles can trap and remove 
planktonic animals from the water col-
umn. MOS particles can also effectively 
seal off the sediment surface, poten-
tially suffocating fauna, while addition 
of organic content to the benthos could 
stimulate respiration, with negative 
consequences for filter-feeding fauna. 
Understanding the consequences of MOS 
in the water column and the benthos 
requires further investigation.

SIGNIFICANCE AND 
APPLICATIONS OF GoMRI 
RESEARCH
Ultimately, scientific and technological 
advances derived from GoMRI research 
provide a foundation for new research 
that will improve strategies for predict-
ing and mitigating ecosystem perturba-
tions and have impacts across broad sci-
entific disciplines and far beyond the 
Gulf of Mexico.

Broad Lessons in Microbial 
Hydrocarbon Response
As the examples cited above show, 
GoMRI research has revealed ecological, 
evolutionary, and biogeochemical princi-
ples that underlie microbial community 
composition and response to disturbance 
across diverse environments and contexts. 

The hydrocarbon-degrading microbes 
and genes that code for hydrocarbon 
degradation and utilization discovered 
by GoMRI scientists are present in oil- 
contaminated waters and coastal regions 
around the world, and thus are available 
everywhere as first responders. However, 
while oil-degrading microbes are globally 
distributed, regional variables can signifi-
cantly influence microbial community 
composition and metabolic capabilities 
prior to and during a spill. 

Physical, chemical, and biological envi-
ronmental conditions, including tem-
perature, salinity, hydrostatic pressure, 
oxygen supply, nutrient availability (par-
ticularly N and P), water currents and 
stratification, MOS presence, and sea 
ice can influence microbial species com-
position and rates of hydrocarbon deg-
radation, activity, and dispersal from 
the deep sea to intertidal marsh ecosys-
tems (Head et  al., 2006; Edwards et  al., 
2011; Redmond and Valentine, 2012; 
Rodriguez-R et  al., 2015; Fernández-
Carrera et al., 2016; Huettel et al., 2018; 
Sun and Kostka, 2019). Furthermore, the 
type of oil spilled, how it weathers, and 
the extent of sunlight exposure can alter 
the chemical composition of oil and/or 
induce MOS formation, all of which act 
to drive different microbial responses 

PHYSICAL COAGULATION
of phytoplankton, detritus,
and minerals, including oil

BIOLOGICAL SNOW PRODUCTION
bacterial mucus production, 
zooplankton feces, 
and feeding webs with oil

FRAGMENTATION

Zooplankton interaction
—grazing and repackaging

SEDIMENTATION

Microbial modi�cation 
and degradation

DEPOSITION, 
ACCUMULATION

RESUSPENSION
Benthic fauna

Oil layer and droplets

Incorporation of 
lithogenic material

FIGURE 4. The formation, sinking and loss of marine oil snow, which consists of exudates, biotic, 
and abiotic particles. Marine oil snow is a common food source that removes hydrocarbons 
from the water column as it sinks to the seafloor. Image credit: Uta Passow, Memorial University 
of Newfoundland
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(Bacosa et  al., 2015; Shin et  al., 2019a). 
The DWH spill provided a unique oppor-
tunity to study many of these environ-
mental factors because it affected a wide 
variety of open-water and coastal ecosys-
tems with large variations in physical and 
chemical conditions.

Microbial communities in the Gulf 
of Mexico are considered to have been 
uniquely primed for rapid response to 
oil spills due to the prevalence of natu-
ral hydrocarbon seeps and drilling oper-
ations that constantly discharge oil into 
the Gulf. The background levels of hydro-
carbons sustain a higher proportion of 
oil-degrading microbes that are also typ-
ical of many other regions with natu-
ral seepage and/or hydrothermal vent-
ing, for example, the Gulf of California, 
the Bay of Bengal, the Black Sea, and the 
Arctic Ocean. In addition, shipping lanes 
in open waters and ports are primed for 
oil response because of long-term indus-
trial and human activities. In some cases, 
hydrocarbons produced by phytoplank-
ton or cyanobacteria can prime microbes 
for hydrocarbon degradation through 
low level exposure (Guiterrez et al., 2014; 
Love et al., 2021).

Oil spills are particularly threatening 
to Arctic regions where climate change 
is already wreaking havoc. It is there-
fore critical to understand the environ-
mental risks and develop mitigation 
strategies before a major spill occurs in 
these delicate ecosystems. Interestingly, 
GoMRI research has proven pertinent to 
this region; preliminary results of these 
studies reveal microbial responses and 
community succession similar to those 
reported for the Arctic marine environ-
ment (Sun and Kostka, 2019). However, 
sea ice and extremely low temperatures 
can alter degradation properties of both 
oil and microbial communities, which 
may significantly impact biodegradation 
and need to be considered. The Canadian 
government is actively engaged with the 
GoMRI community to build on GoMRI 
discoveries, methodology, and technol-
ogy in efforts to prepare for a spill in the 
Canadian Arctic.

Informing Oil Spill Response
GoMRI research provides a foundation of 
knowledge and tools that will enable sci-
entists to play key roles in guiding future 
oil spill response and mitigation planning 
using data-driven strategies. Evidence-
based interventions informed by evalu-
ating ecosystem responses and recovery 
status will improve the success of future 
emergency responses by replacing previ-
ous trial-and-error approaches. 

Specifically, by examining the pres-
ence of oil-degrading species, genes, and 
biogeochemical pathways, scientists can 
assess the natural bioremediation poten-
tial of a community, providing insight 
into whether and how its metabolic capa-
bilities can be augmented. One exam-
ple is addition of nitrogen fertilizers, 
which has been proposed by GoMRI and 
other investigators to accelerate micro-
bial bioremediation (Edwards et al., 2011; 
Kleindienst et  al., 2015b; Fernández-
Carrera et  al., 2016). Additionally, 
enhancement of microbes that produce 
exopolymeric substances, which emul-
sify oil and act like dispersants, could 
preclude addition of man-made disper-
sants such as Corexit (Ziervogel et  al., 
2019). Strategies to promote growth of 
native microbial species or utilization of 
genetically engineered microbes for nat-
ural surfactant production would provide 
responders with biodegradable, nontoxic 
surfactant alternatives. Natural micro-
bial surfactants may also prove effective 
as nontoxic dispersants with fewer envi-
ronmental concerns (Bacosa et al., 2018).

Mounting an effective microbial oil  
spill response will require analysis of 
microbial communities not only during a 
spill but also before and after. Document-
ing the “normal” or “baseline” state of an 
ecosystem prior to a crisis is essential for 
planning intelligent mitigation strategies 
aimed at restoring native microbial com-
munities and their ecosystem functions 
(Joye, 2015). In addition, it can indicate 
whether an ecosystem is compromised by 
previous environmental stress and there-
fore in need of additional protections, for 
example, limiting oil drilling or tanker 

traffic (Sun and Kostka, 2019). After a 
spill, monitoring mitigation and resto-
ration efforts should be undertaken to 
assess whether response actions work as 
predicted or if alternative plans should 
be implemented. 

In summary, with application of omics 
tools, scientists can assist first responders 
in determining potential environmental 
impacts of a spill, as well as actions to be 
taken, on what time frames, and in which 
locations to minimize risks and damage. 

Assessing Ecosystem Health in 
the Context of Environmental 
Disturbance
By developing basic principles of micro-
bial ecosystem function and response 
along with techniques to study them, 
GoMRI scientists have provided a basis 
for understanding diverse marine and 
terrestrial ecosystems in order to address 
natural and man-made disasters, from 
chemical spills to algal blooms, and even 
gradual and long-term stressors, includ-
ing climate change. Understanding 
microbial ecosystem dynamics and 
function in response to climate pertur-
bations will be essential for predicting 
long-term impacts and for preparing 
mitigation plans.

Documentation of indigenous micro-
bial communities in diverse marine 
and terrestrial ecosystems around the 
world is necessary for assessing ecosys-
tem changes and restoration goals in the 
context of any perturbation. Baseline 
metagenomic analyses require sampling 
over vast timescales to account for daily, 
monthly, and seasonal community vari-
ations, as well as interannual and even 
decadal shifts. Such studies are under-
way to catalogue Earth’s microbiome 
(Gilbert et  al., 2018). From deepwater 
benthic regions to coral reefs, beach 
sands, marshes, and associated terres-
trial ecosystems (Magnuson, 1990, 1995), 
different ecosystems each have unique 
microbial baselines that require individ-
ual documentation so that significant 
or problematic changes can be detected 
and measured.
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Microbial Indicators of Ecosystem 
Health and Disturbance
GoMRI researchers identified micro-
bial indicators of ecosystem disturbance 
in the context of the DWH spill that will 
help scientists assess ecosystem health 
across various contexts.

Low microbial diversity can be a red 

flag, signaling ecosystem disruption and 

declining ocean health. A healthy micro-
bial ecosystem is composed of a variety 
of species that provide diverse ecosys-
tem functions and maintain system sta-
bility. Environmental disturbances such 
as the DWH spill disrupt the balance, 
favoring a limited number of species that 
is able to adapt to new conditions. These 
few species thrive over the others, often 
reflected in low overall species diversity. 
A community with low diversity may be 
more sensitive and less resilient to further 
disturbances. 

The presence of a single species or 

genus in very high numbers indicates 

a recent ecosystem disruption, even if 
the original composition of the commu-
nity is unknown. For example, during 
the DWH spill, rare species with hydro-
carbon degradation potential and/
or nitrogen fixation capabilities were 
poised to take advantage of new energy 
sources. Under novel conditions, these 
species outcompete their neighbors 
and can grow to one-third or more of  
the population.

The emergence of different and novel 

genes, metabolic pathways, and eco-

system functions within microbial com-
munities reflects adaptation to environ-
mental change. When microbes respond 
to environmental disturbance, organ-
isms may express different genes and 
metabolic pathways as they adapt to new 
sources of energy (hydrocarbons), nutri-
ents, physical/chemical limitations, and 
other factors in order to take on novel 
and adaptive ecosystem functions.

These genetic and metabolic indicators 
of ecosystem disruption can also provide 
critical clues as to how the environment 
has changed, and therefore how it might 
be restored. 

THE FUTURE OF GENOMICS IN 
THE STUDY AND MANAGEMENT 
OF ECOSYSTEM HEALTH
In the future, scientists hope to identify 
microbial “biomarkers” of ocean health, 
as detectors of ecosystem disruption 
and risk predictors in the face of diverse 
threats, including man-made and natu-
ral disasters as well as climate change. For 
example, how might microbiologists help 
fisheries or oyster farms recover after an 
oil spill or hurricane? Similar to ways that 
medical biomarkers help doctors diagnose 
diseases and identify appropriate treat-
ments, researchers could “take the pulse” 
of the ecosystem with microbial biomark-
ers to identify atypical functioning and 
direct strategies to correct these problems. 

Biomarkers might be used in vari-
ous ways to assess and support ecosys-
tem health:

Predictive biomarkers. Disruptions in 
microbial communities can often be per-
ceived before ecological consequences 
or impacts are apparent. Thus, microbes 
can serve as the “canary in the coal mine” 
to warn of impending consequences of 
a disturbance. For example, microbial 
community restructuring or functional 
changes might indicate a slow oil leak or 
gradual warming due to climate change. 
This can trigger early action to better pre-
vent or mitigate potential damages from 
natural and man-made disasters in the 
ocean, as well as other ecosystems, by 
alerting scientists to changes before they 
are irreversible, and/or identifying areas 
that need extra protections.

Diagnostic biomarkers. The presence of 
specific indicator species and genes might 
be used to “diagnose” certain distur-
bances, which could indicate what has 
gone awry within an ecosystem. For 
example, overgrowth of a species and 

emergence of novel genes, metabolic 
pathways, and ecosystem function can 
all assist scientists in identifying biogeo-
chemical disruptions.

Therapeutic biomarkers. Indicator spe-
cies and genes might also point scientists 
and managers toward solutions by pro-
viding information about how an envi-
ronment has changed and, therefore, 
how its ecosystem might be restored. 
Therefore, in addition to informing mit-
igation and restoration strategies, these 
indicators can help to identify action 
plans during a crisis event. For example, 
the emergence of a nitrogen-fixing spe-
cies might indicate nitrogen as a limiting 
factor in bioremediation, suggesting that 
the addition of nitrogen fertilizers would 
accelerate recovery.

To assemble a complete picture of eco-
system health will require the use of multi-
ple, diverse biomarkers, each of which will 
provide a piece of the puzzle. For exam-
ple, genomic biomarkers may provide 
insight into hydrocarbon degradation, 
toxin accumulation, hypoxic conditions, 
or other environmental disturbances. 
Meanwhile, metatranscriptomics might 
reveal immediate adaptations, whereas 
meta-community restructuring suggests 
long-term consequences.

Ideally, such biomarkers will be able to 
inform scientists and first responders on 
site and in real time as an essential com-
ponent of an environmental emergency 
response toolkit. This will require robust, 
portable (i.e.,  hand-held devices), cost- 
effective, and integrative analytic instru-
ments, such as the small mobile DNA 
sequencers designed for the rigors of 
field research.

Predicting Environmental Impacts 
with Biomarkers and Models
Biomarkers can be paired with biogeo-
chemical models to predict import-
ant outcomes, including when oil will 
be removed from a system, how long 
would it take for an ecosystem to recover, 
whether responders should intervene 
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to speed ecosystem recovery, and other 
aspects of biogeochemical responses and 
timelines. Models can also reveal which 
factors may have the greatest impact on 
damage or recovery, enabling responders 
to tailor mitigation strategies rather than 
relying on one-size-fits-all approaches 
that may or may not work. 

Biogeochemical models can help sci-
entists answer questions, including: 
•	Should oil spills be seeded with 

microbes with hydrocarbon degrada-
tion capabilities? If so, which ones and 
in what quantity?

•	Should dispersants and/or fertilizers 
be added? If so, in what quantity? How 
will such interventions impact ability of 
indigenous microbes to degrade oil?

•	What environmental impact can be 
avoided with an intervention? What 
are potential unintended consequences 
of intervention?

•	Will leveraging natural microbial pro-
cesses be more successful than alter-
native approaches such as burning or 
vacuuming the oil?

Current biogeochemical models are 
limited and, in general, unable to answer 
such complex questions. To achieve 
more realistic models will require signif-
icant advances in understanding phys-
ical, chemical, and biological processes 
and their interactions in the ocean, as 
well as active and effective collaborations 
among oceanographers, microbiologists, 
computational scientists, and many 
other disciplines.

The greatest hurdle in developing pre-
dictive biogeochemical models is trans-

lating omics data to metabolic func-
tions. While metagenomics informs 
metabolic potential, it may not always 
reflect microbial activity. There are many 
novel microbial species, genes, and pro-
teins to be discovered and identified, and 
their biogeochemical functions charac-
terized, most probably with inferences 
from taxonomic and sequence similari-
ties to reference species and their meta-
bolic profiles. In reality, metabolic capa-
bilities can differ dramatically from 
predicted activities and currently must be 
defined through cultivation, biochemi-
cal assays, or gene knockout experiments. 
Machine learning/artificial intelligence 
is likely to be of great value in over- 
coming this obstacle. 

To better link omics data with func-
tional rates of activity at the enzymatic 
and cellular levels will require new strate-
gies, such as stable isotope probing (SIP) 
and biorthogonal noncanonical amino 
acid tagging (BONCAT). These tools 
track metabolic activity of individual 
microbes and consortia within their nat-

ural environments. They can assign spe-
cific paths to specific microbes, elucidate 
cross-feeding partnerships, and identify 
novel metabolic steps and pathways.

Facilitating Advances Through 
Open-Access Resources and 
Multidisciplinary Collaboration
The omics and environmental data sets 
collected by GoMRI investigators are 
accessible via the open-access platform 
https://data.gulfresearchinitiative.org/. 
In the event of a new spill or disaster, this 

resource can be mined to predict conse-
quences and inform response. 

Specifically, GoMRI researchers created 
the Genome Repository of Oil Systems 
(Karthikeyan et al., 2020b), a comprehen-
sive, searchable database that documents 
microbial populations in natural oil eco-
systems and oil spills, along with avail-
able underlying physicochemical data, 
geocoded via the geographic information 
system to reveal their distribution pat-
terns. Provided as an independent proj-
ect through the Microbial Genomes Atlas 
(MiGA) web server (http://microbial-​
genomes.org/), the repository contains 
over ~2,000 genomes, more than 95% of 
which represent novel taxa, though rep-
resentation of cultured organisms from 
oil-contaminated and oil reservoir eco-
systems in this database is limited. The 
database allows researchers to classify 
unknown genomes by reference to known 
genomes, thereby facilitating the pre-
dictive understanding of microbial taxa 
and activities that can control the fate 
of oil spills.

CONCLUSIONS
Microbiology and omics tools have proven 
instrumental in providing an under-
standing of the impacts of the Deepwater 
Horizon oil spill on marine and coastal 
ecosystems. The new omics-​based tech-
nologies and strategies enabled a compre-
hensive investigation of Gulf microbial 
communities and their biogeochemical 
functions in unprecedented detail.

Using the powerful and constantly 
evolving tools of genomics, GoMRI 
researchers discovered novel genes, path-

“Using the powerful and constantly evolving tools of genomics, 
GoMRI researchers discovered novel [microbial] genes, 

pathways, organisms, communities, and partnerships associated 
with oil decomposition and spill remediation.” 

https://data.gulfresearchinitiative.org/
http://microbial-genomes.org/
http://microbial-genomes.org/
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ways, organisms, communities, and part-
nerships associated with oil decomposi-
tion and spill remediation. Key shifts in 
community structures that dictate essen-
tial ecosystem functions and bioreme-
diation services were documented. 
Altogether, GoMRI studies have revealed 
new insights and core lessons about 
microbial community responses to envi-
ronmental disturbances, as well as their 
roles in maintenance and restoration of 
ecosystem stability during and after an 
oil spill. The lessons learned inform a sci-
entific understanding of how oil spills 
impact various ecosystems, from deep 
waters to beach sands to tidal marshes, 
and will allow improved prediction 
and mitigation of damage in the event 
of future spills. 

RESOURCES
• http://www.taraoceans-dataportal.org/
• https://data.gulfresearchinitiative.org/
• http://www.mg-rast.org/
• http://enve-omics.ce.gatech.edu/
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