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ABSTRACT. Rapid assessment and enhanced knowledge of plankton communi-
ties and their structures in the productive upper water column is of crucial impor-
tance if we are to understand the impact of the changing climate on upper ocean pro-
cesses. Enabling persistent and systematic ecosystem surveillance by coupling the 
revolution in robotics and automation with artificial intelligence (AI) methods will 
improve accuracy of predictions, reduce measurement uncertainty, and accelerate 
methodological sampling with high spatial and temporal resolution. Further, prog-
ress in real-time robotic visual sensing and machine learning have enabled high- 
resolution space-time imaging, analysis, and interpretation. We describe a novel 
mobile robotic tool that characterizes upper water column biota by employing intel-
ligent onboard sampling to target specific mesoplankton taxa. Although we focus on 
machine learning techniques, we also outline the processing pipeline that combines 
imaging, supervised machine learning, hydrodynamics, and AI planning. The tool 
we describe will accelerate the time- consuming task of analyzing “who is there” and 
thus advance oceanographic observation.
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Advancing Ocean Observation with an 
AI-Driven Mobile Robotic Explorer

BREAKING WAVES

A light autonomous underwater vehi-
cle is shown following phytoplankton 

hotspots in the coastal waters near 
Munkholmen in Trondheimsfjorden. 

In the AILARON project, the vehi-
cle uses a CTD, an onboard camera, 
and an acoustic Doppler current pro-
filer along with adequate computing 
power. Photo credit: Annette Stahl/

Norwegian University of Science and 
Technology, Trondheim, Norway
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INTRODUCTION
Studying planktonic standing stocks and 
community structure, including their 
spatial and temporal variability, provides 
significant insight into upper water col-
umn processes (Wasmund et  al., 1998; 
Bojanić et  al., 2005; Cornils et  al., 2005; 
Bils et  al., 2019). Collecting persistent 
and systematic observations of the upper 
water column is essential to biogeochem-
ical research. Marine phytoplankton pro-
duce about 50% of the oxygen on our 
planet. Their biodiversity is critical to 
ecosystem stability, and they are respon-
sible for primary productivity that sup-
ports higher trophic level consumers 
(Field et  al., 1998; Malzahn et  al., 2010; 
Boyce et  al., 2015). Understanding the 
impact of global change and how key 
environmental variables (e.g., light, tem-
perature, and salinity) affect plankton 
community structure is therefore criti-
cally important to our understanding of 
the future ocean (Johnsen et  al., 2018; 
Fragoso et  al., 2019). Previously, stud-
ies of plankton abundance and commu-
nity structure have typically required 
expensive and time-consuming analyses 
of samples collected using ship-based or 
long-term monitoring approaches at dis-
crete locations that often lack high spatio-
temporal resolution.

Recent advances in artificial intelli-
gence (AI), machine learning (ML), and 
robotics are now augmenting traditional 
methods of observation. Marine robots, 
especially autonomous underwater vehi-
cles (AUVs; Rudnick and Perry, 2003; 
Bellingham and Rajan, 2007; Rudnick 
et al., 2018), have demonstrated the abil-
ity to provide continuous spatial and 

temporal observations, typically over 
the mesoscale. In addition, progress 
in computational science in the fields 
of real-time robotic visual sensing and 
ML have enabled inline high-resolution 
imaging, analysis, and interpretation. 
Bringing such computational methods 
to bear by augmenting current oceano-
graphic approaches with agile and adap-
tive autonomous inferential capabili-
ties that observe the environment at fine 
scales has become essential for under-
standing the changing ocean. In particu-
lar, a subset of machine learning, called 
deep learning (DL), utilizes neural net-
works (Qian, 1999), which we apply to 
microscopic robot visual sensor data. 
This nascent method shows substantial 

promise that we explore here.
AILARON (Autonomous Imaging and 

Learning Ai RObot identifying plaNkton 
taxa in situ) is an interdisciplinary inte-
grated effort that allows characterizing 
targeted plankton in situ. A camera aboard 
the AUV, shown in Figure 1, images 
planktontic organisms in the photic zone. 
This imagery is categorized and classified 
with onboard processing based on ML 
methods, and a probability density map 
is generated to show the spatial extent of 
various organisms imaged. In addition, 
an advanced AI-based controller is used 
to survey and facilitate return to the most 
coherent “hotspots” containing species of 
interest over the survey volume. The pro-
cessing chain is guided by a human expert 

FIGURE 1. The human-portable light autonomous underwater vehicle (LAUV; Sousa et al., 2012) is 
shown navigating Trondheimsfjorden, Norway. Components include a silhouette camera (SilCam), 
a Doppler velocity log (DVL), and CTD sensors that are all used in AILARON (Autonomous Imaging 
and Learning Ai RObot identifying plaNkton taxa in situ).

“With the ability to monitor planktonic patches at high 
spatiotemporal resolution on board a robotic vehicle, AILARON 

will provide a powerful and novel tool for biological oceanography, 
the equivalent of a robotic microplankton sniffer dog.” 
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(as needed) via a communication link to 
shore. The operator can alter the vehicle’s 
sampling preferences dynamically, ensur-
ing that the vehicle adapts on the fly. 
This process renders the AUV akin to a 
“sniffer dog” in that it maps out a volume 
for targeted ship-based, follow-on sam-
pling, a task traditionally carried out by 
a scientist. Our approach contrasts with 
one taken by the Zooglider AUV (Ohman 
et  al., 2019) in two critical ways. First, 
our AUV is powered and can adaptively 
target hotspots with onboard delibera-
tion, while Zooglider follows a designated 
trajectory with adaptation directed by 
shore-side commands. Second, and the 
focus of this paper, we use ML onboard 
our vehicle to aid in situ adaptation for an 
end-to-end workflow.

While we articulate the overall tech-
nical design and workflow of our sys-
tem, our focus here is the novel integra-
tion of deep learning classifiers based 
on approaches for taxonomic estimates 
from time-series image analysis (Roberts 
and Jaffe, 2007; Sosik and Olson, 2008). 
The full imaging-classification- analysis- 
control workflow is embedded on an 
AUV. Integrating state-of-the-art meth-
ods from different engineering disci-
plines, embedding them onto a mobile 
robot, and deploying them as a proof of 
concept provides a new methodology for 

studying and understanding the variabil-
ity of planktonic biomass and commu-
nities. Experimental results show prom-
ise that we expect will lead to significant 
future advancement of in situ plankton 
identification, assessment of biomass, 
and size fraction estimations. 

TECHNICAL APPROACH
The key workflow component is the clas-
sifier, which follows DL approaches elab-
orated later in the section on Plankton 
Classification. The classifier aims to 
(1) filter detected objects, (2) categorize 
the organisms of interest, and (3) provide 
the number of detected species found 
per taxa. It is then integrated within an 
imaging- classification-analysis-control 
workflow depicted in Figure 2, where 
boxes and lines in blue are online oper-
ations executed on board the AUV and 
those in orange are preprocessing tasks 
that are performed offline. The workflow 
is a continuous iterative process that starts 
with a camera capturing images from the 
water column in sequence and conveying 
them to the classifier for species detec-
tion and categorization. An in situ cur-
rent model is generated from a Doppler 
velocity log. Volumetric information is 
obtained by combining this current model 
with tagged spatiotemporal data collected 
by the CTD and chlorophyll sensors on 

the AUV.1 Using this information, the 
AI-based automated planning and exe-
cution engine (Rajan et al., 2013; Fossum 
et  al., 2019) generates an estimated spa-
tial map of different observed classes that, 
in turn, drives the AUV to systematically 
visit and sample the three-dimensional 
volume of locations of interest. Data col-
lected by the onboard sensors in this vol-
ume help determine the spatial spread 
and volume of the targeted taxa before the 
AUV visits the next hotspot.

PLANKTON CLASSIFICATION
Our planktonic classifier is based on a 
DL algorithm, a concept inspired by the 
human biological neuron (McCulloch 
and Pitts, 1943). Deep learning meth-
ods are closely related to computational 
statistics (Gentle et  al., 2012) and evo-
lutionary approaches from the machine 
learning paradigm that aim to iteratively 
build a mathematical model from sample 
data. The resulting algorithm (or model), 
which applies optimization techniques, 
evolves by experience without explicit 
programming. The term “deep” connotes 
the number of layers and a combination of 
neurons (nodes) that are used to form the 
algorithmic architecture (Le et al., 2011). 
The DL algorithms are, in part, enabled 
due to the advent of computational power 
with multicore central processing units 

FIGURE 2. System workflow 
and operation for AILARON. 
Orange arrows and boxes indi-
cate offline operations used as 
preprocessing steps to gener-
ate the classifier for underwater 
operations. Blue arrows and 
boxes represent continuously 
running operations on board the 
AUV and include imaging, classi-
fication, sensor evaluation, esti-
mation, and plan execution. This 
paper focuses on methods that 
facilitate the modules within the 
dashed orange box.
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1 Chlorophyll a indicates biomass of photosynthetic phytoplankton.
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and general-purpose graphics process-
ing units (GPUs). DL algorithms are state 
of the art in ML, especially for image-
based object detection and classification, 
and they have been shown to outper-
form traditional classification approaches 
(Krizhevsky et al., 2012).

Given a large data set of input and out-
put pairs, a DL algorithm will try to mini-
mize the difference between its prediction 
and expected output. By doing so, it learns 
the association/pattern between given 
input and output data—that, in turn, 
allows such a model to generalize input 
data that it has not seen before (Choi et al., 
2020). DL algorithms use neural networks 
to find associations between sets of input 
and output data. A DL algorithm com-
prises an input layer, hidden layers, and an 
output layer, all of which are composed of 
nodes. The input layer takes in a numer-
ical representation of data (e.g., plankton 
image pixels), output layers output predic-
tions (e.g., the plankton group affiliation), 
while hidden layers perform actual com-
putation such as feature extraction from 
objects provided by the input layer. The 
setup and the number of layers utilized 
define the learning process and are spe-
cific to the problem being solved.

Hidden layers are mostly composed 
of convolutional layers. They extract fea-
tures from objects based on a given image 

by applying convolution filtering, which 
processes spatial frequency features of an 
image to reveal object characteristics such 
as contours, edges, or curvatures. Most 
of the convolutional layers are followed 
by batch-normalization layers, which 
re sample and scale the output of the con-
volutional layer to ensure stability and to 
improve the performance of the network, 
and max-pooling layers, which reduce 
the high-dimensional representation2 of 
extracted features into fewer dimensions 
by replacing image intensity values with 
the maximal intensity value represented 
in that particular window. By doing so, 
each max- pooling layer simplifies the 
complexity of the object/filter represen-
tation by combining correlated features, 
compressing them into those that are 
most important. This operation is highly 
nonlinear and leads to dimensionality 
reduction of the data, enabling an increase 
in computational efficiency during the 
learning process. The last sequence of 
fully connected layers groups lists of fea-
tures and assigns them to classes.

There is a broad spectrum of ML meth-
ods, from supervised, to semi-supervised, 
to unsupervised learning, depending 
on prior knowledge and the input data 
set alongside the expected output. 
Supervised methods seek to learn higher- 
level representations from labeled data. 

A human domain expert assesses the 
data in a given context and tags it man-
ually to its given taxa in order to develop 
a labeled data set. The DL algorithm, in 
turn, learns how to combine the higher- 
level representation of the data and 
matches this combination by assigning it 
to a certain class that is predefined by the 
domain expert. DL methods using super-
vised learning approaches achieve high 
accuracy that outperforms human recog-
nition (Krizhevsky et al., 2012; Simonyan 
and Zisserman, 2015; Szegedy et al., 2015; 
Dai et al., 2016; He et al., 2016; Lee et al., 
2016; Py et  al., 2016; Moniruzzaman 
et  al., 2017). Unsupervised algorithms, 
on the other hand, without manual label-
ing, help discover hidden patterns in the 
data by, for example, clustering opera-
tions, and perform dimensionality reduc-
tion by projecting high-dimensional data 
down to fewer dimension clusters or 
classes (Min et al., 2009; Xie et al., 2016; 
Kuzminykh et al., 2018).

Because our AUV moves through the 
water column taking images continu-
ously, we explored multiple approaches 
for time-series image analysis and in situ 
classification (Roberts and Jaffe, 2007; 
Sosik and Olson, 2008) and investi-
gated the applicability of supervised DL 
mechanisms in order to find the best 
performing method.

FIGURE 3. The deep learning neural network implementation transforms an input image (high-dimensional representation) into a class assignment (lower- 
dimensional representation) via five convolutional layers (CONV) for feature extraction, interleaved with batch-normalization layers (BN) for resampling 
and max-pooling layers (MAXPOOL) for dimensionality reduction, followed by four fully connected layers (FC) for feature to class assignment. The input 
image format is RGB of size 64 × 64 × 3 (width × height × number of channels) in pixels. Each RGB color is saved in a separate channel.
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The chosen Deep Learning Neural 
Network implementation, shown in 
Figure 3, reported an accuracy of 95% 
as opposed to 90%–93% achieved by 
state-of-the-art neural networks such 
as ZooplanktoNet (Dai et  al., 2016), 
VGGNet (Simonyan and Zisserman, 
2015), AlexNet (Krizhevsky et al., 2012), 
ResNet (He et al., 2016), and GoogleNet 
(Szegedy et al., 2015), while training over 
a labeled data set of extracted objects 
from images of plankton organisms cap-
tured in situ and manually labeled by biol-
ogists (Table 1). The selected DL imple-
mentation, depicted in Figure 3, with five 
convolutional layers, shows good perfor-
mance for real-time in situ classification.

The training process for a supervised 
learning algorithm iteratively builds up 
the mathematical model from a labeled 
data set through the sequence of com-
bined neural layers. It does so by applying 
a gradient descent algorithm (Qian, 1999) 
that measures the effect of changing the 
input on the produced output. This effect 
is controlled by updating the weights 
of the nodes forming the layers while 
minimizing a predefined loss function, 
namely cross-entropy (De Boer et  al., 
2005). The latter indicates how the out-
put of the classification is diverging from 
the ground truth labels. This technique, 
known as backpropagation (Scalero and 
Tepedelenlioglu, 1992; Chauvin and 
Rumelhart, 1995), runs over a labeled 

data set provided to the algorithm as 
prior knowledge. Table 1 contains exam-
ple images from a database (Davies et al., 
2018) with a set of 7,728 individual 
planktonic images representing seven dif-
ferent classes that have been tagged and 
classified manually by biologists. Table 2 
lists the class distribution of the plank-
tonic taxa representation in the labeled 
database, with the training and valida-
tion sets forming 95% of the full database 
and the test set 5%. The state-of-the-art 
approaches for training the model over 
an imbalanced data set were adopted by 
Dai et  al., 2016. The algorithm utilizes 
batches from the training images in order 
to learn to map objects to the final set of 
classes. The validation set verifies the suc-
cess of the algorithm to optimize the loss 

function after each batch run and accord-
ingly updates the weights of the inter-
nal nodes. The train-validate loop runs 
until convergence or a stage where the 
difference in the output loss is negligible. 
The test set is kept to evaluate the algo-
rithm’s accuracy and performance after 
the training process. Both training and 
testing processes are performed offline 
through the deep learning algorithm 
(orange boxes in Figure 4), on two GPUs 
of ASUS RTX2080Ti Turbo with a 64 GB 
RAM, where the training is performed 
over 200 epochs, with each epoch taking 
an average of 81 seconds.

To test the performance of the trained 
algorithm, the set of images from the 
test set, unknown to the model, are fed 
into the system to predict correspond-

TABLE 2. The class distribution representation in the labeled data set used in the training process.

CLASS NAME

NUMBER OF IMAGES

TRAINING AND 
VALIDATION 
DATA SETS

TESTING  
DATA SET TOTAL

Copepods 623 34 657

Fecal pellets 478 26 514

Fish eggs 193 20 213

Diatom chains 803 47 850

Bubbles 2,497 139 2,636

Oily gas particles 903 34 927

Others 1,844 87 1,931

TABLE 1. Instances of a labeled data set (Davies et al., 2018) of objects extracted from in situ images and labeled manually by biologists as a prerequi-
site for the training process.

COPEPODS FECAL PELLETS

BUBBLES GAS OTHERS

FISH EGGS DIATOM CHAINS
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ing classes. The terms true-positive, 
true- negative, false-positive, and false- 
negative represent the correct and falsely 
allocated images with respect to specific 
classes. They are utilized to define model 
accuracy; in our case, the DL implemen-
tation depicted in Figure 3 reported an 
accuracy of 95% when tested on a set of 
~1,000 images that the algorithm had 
not seen before.

The Online Prediction Module
The online prediction module (Figure 4) 
implements three essential steps executed 
aboard the AUV: (1) segmentation, 
which aims to extract objects when 
they appear in the captured frame from 
time-series images; (2) identification 
and classification, based on the DL clas-
sifier, which learns a function that maps 
high dimensional representations of the 
input images to low dimensional out-
put data (prediction of the class assign-
ment); and (3) calculation of the class 
distribution, which deduces, from time- 
series information of images, the num-
ber of detected objects per taxa to pro-
vide their distribution with respect 
to location and time. The three steps 

are performed aboard the AUV on an 
NVIDIA Jetson TX2 SSD 500GB mSATA 
with 2 TB storage. As shown by the blue 
boxes in Figure 4, the onboard silhou-
ette camera (SilCam; Davies et al., 2017) 
captures images in sequence at a rate of 
five frames per second. Once captured, 
each image is queued in a buffer for pro-
cessing, which is done in parallel. Each 
image is processed in 3.852 seconds on 
average. The processing time depends on 
the number of objects extracted from the 
image. The average time taken per step in 
the sequence is 0.622 seconds for back-
ground correction, 0.458 seconds for 
segmentation, and 0.02 seconds to pre-
dict the class of each extracted object 
from the image. The measurement of 
class distribution outputs a mix of known 
and unknown taxa, which is then manu-
ally verified and tagged by the biologist 
through an offline process to update the 
knowledge base.

Step 1: Object Identification and 

Localization

https://github.com/SINTEF/PySilCam

A background correction algorithm 
subtracts a sliding average window 

of a set of images from each analyzed 
image to remove noise and to detect 
changes occurring in the time series. The 
background- corrected image is then con-
verted into binary form to extract the 
foreground objects following a threshold-
ing technique that uses a fast segmenta-
tion approach (Zhu et al., 2007; van der 
Walt et al., 2014). Each connected region 
forms an extracted object. Connected 
regions are then counted and localized 
to infer the number of extracted objects 
and their places in the image as well as in 
the time series.

Step 2: Extracted Object Classification

https://github.com/AILARON/silcam_ 

supervised_classification

The number of extracted objects from 
the previous step is an aggregated repre-
sentation of all existing foreground par-
ticles irrespective of the class to which 
each object belongs. Each object, form-
ing a connected region, is then passed to 
the classifier. The trained model, in turn, 
filters the objects of interest and associ-
ates to each a probability measure indi-
cating the likelihood the object belongs to 
a specific taxa.

Background
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(Objects)
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FIGURE 4. Block diagram of the classifier, from object identification, classification, and categorization to producing a plankton density map on the AUV. 
Supervised machine learning occurs offline to build a model, which is consulted during online classification. The dotted arrows from “class prediction” 
represent the predicted objects in situ. Each object belongs to one of the following two types: seen classes (the algorithm was trained on this category) 
and unseen classes (the algorithm was never trained on these classes, hence, the domain expert is consulted to update the data set). The figure shows 
offline tasks in orange arrows and boxes and onboard in situ processing in blue.

https://github.com/SINTEF/PySilCam
https://github.com/AILARON/silcam_supervised_classification
https://github.com/AILARON/silcam_supervised_classification
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Step 3: Measurement of Class 

Distribution 

https://github.com/AILARON/silcam_ 

supervised_classification

The inferred probabilities are logged 
along with spatial and temporal infor-
mation for each detected particle in 
the image.

Figure 4 shows the iterative nature 
of this classification process. Extracted 
objects that do not belong to any of 
the predefined classes and fall into the 
“others” category are validated manu-
ally by domain experts, who update the 
knowledge base offline. This evolving 
database is then used to train the model for 
future detection of all species identified.

SYSTEM INTEGRATION AND 
EXPERIMENTAL RESULTS
The full system of imaging-classification- 
analysis- control workflow, briefly described 
in the section above on Technical 
Approach, contains the DL classifier and 
is integrated on board an AUV.

A SilCam captures images of an equiv-
alent circular diameter >108 mm, where 
the captured volume is 75.6 cm3 (45 mm 
× 56 mm × 30 mm). The pixel resolu-
tion of the produced images is 27.5 μm. 
Captured images belong to classes of 
planktonic organisms such as cope-
pods (Calanoida) and diatom chains 
(Thalassiosira spp., Chaetoceros spp., and 
Skeletonema spp.). Time-series images, 

captured at five frames per second, are 
then fed into the DL-based image clas-
sification system. The classifier assigns a 
probability to each detected object, show-
ing how likely it is that an object belongs 
to a given class. When the assigned prob-
ability is >95%, the object is then counted 
in the respective class and the class con-
centration of organisms is updated. The 
histograms of organism concentration in 
Figure 5 show identified copepods and 
diatom chains at >95% likelihood taken 
at four-meter intervals. The concentra-
tion is the number of species (per liter) 
detected by the AUV in the water col-
umn. The number of diatoms is regulated 
by key environmental variables and zoo-
plankton (e.g.,  copepods) grazing pres-
sure and is affected by prey and preda-
tor size and species. Figure 6 shows that 
there were slightly lower copepod den-
sities at 10–20  m depth, while higher 
numbers were found at depths between 
20 m and 25 m. At depths greater than 
28 m, no copepods were found. These 
findings exemplify a post- spring- bloom 
situation (in this case, April 23) in 
Trondheimsfjorden, Norway. Post- blooms 
of phytoplankton in this area are gen-
erally characterized by a decline in the 
number of diatoms (Volent et al., 2011).

Organism concentration per group 
is then conveyed to the next step in the 
workflow to highlight community struc-
ture and spatial distribution in the water 
column. The output is a concentration 

estimate for each group, with corre-
sponding uncertainty estimates provided 
by the probability distribution, median, 
mean, and standard deviation. These 
uncertainty estimates, in turn, are used to 
continuously update a probability density 
map that shows community dispersion 
in three dimensions. This information is 
now used to generate a map of hotspots 
that directs an adaptive sampling pro-
cess with the automated planning and 
execution engine.

Below, we briefly discuss the function-
alities related to dynamic flow estimation 
and automated plan execution because of 
their importance to the overall context for 
machine learning; however, their details 
are outside the scope of this article. 

Hydrodynamics
To predict future positions of any 
observed plankton hotspots as they are 
advected with currents requires a model 
of the local hydrodynamics. For these 
computations, the flow must be evaluated 
at arbitrary locations inside and outside 
of the volume covered by the initial sur-
vey. From an initial survey, a set of veloc-
ity profiles are obtained using a Doppler 
velocity log on the AUV. After discarding 
measurements of poor quality, interpola-
tion and extrapolation are used to create 
a local estimate of the currents at differ-
ent depth layers.

Once an estimate of the local hydro-
dynamics has been obtained from the ini-
tial survey, a Lagrangian particle trans-
port model (van Sebille et  al., 2018) is 
applied to predict the temporal evolu-
tion of plankton concentration in space. 
Numerical particles representing differ-
ent types of plankton are seeded over the 
volume of the initial survey, with mea-
sured plankton concentrations. Each par-
ticle is transported individually through 
the current field using a fixed or 
variable-time step integrator (Nordam 
and Duran, 2020), applying a random 
walk to reflect the uncertainty in the mea-
sured currents, and optionally adding any 
active “swimming” behavior according to 
time of day and plankton type.

FIGURE 5. Histogram of 
organism concentration for 
identified copepods and 
diatom chains at >95% likeli-
hood, in Trondheimsfjorden, 
Norway, taken at four- meter 
intervals in April 2020.
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Automated Planning and Execution
The overall operational concept is for 
our AUV to adaptively visit planktonic 
hotspots as they advect in the water col-
umn after an initial fixed “lawn mower” 
survey. Such adaptivity requires delib-
erative decision-making using sensor 
input while projecting the future state 
in order to achieve stated goals or out-
comes (Ghallab et  al., 2016). Plan gen-
eration and execution embedded on a 
robot is continuous, dynamically adapt-
ing to the continuous sensory input 
from the robot’s environment. This input 
updates the internal plan representation 
that in turn can alter future actions by 
replanning or plan synthesis. In enabling 
this continuous sense-plan-act loop, the 

robot can adapt to changing conditions 
in the real world, enabling a level of cog-
nitive capacity not available on most 
robotic vehicles to date. We employ a 
mature onboard planning / execution 
software engine (Rajan et  al., 2013; 
Fossum et  al., 2019) that uses the input 
from classification to estimate a spatial 
probability density of the plankton-taxa 
classes as a spatiotemporal Gaussian pro-
cess (GP; MacKay, 1998). The hydro-
dynamic model is used to project a 
hotspot location that, when visited by 
the vehicle, uses a GP to systematically 
map an individual density field. The esti-
mated GP and the planned path are con-
tinuously updated as new measurements 
are gathered along a trajectory.

DISCUSSION
The use of machine learning methods in 
flow cytometry (Kalmbach et  al., 2017) 
has provided new insights into plank-
tonic communities. However, to under-
stand how community structure and dis-
persion correlate with water-column 
biological processes, they must be stud-
ied in situ and mapped at scale. Powered 
AUVs have proven to be robust and adap-
tive with sufficient capability for onboard 
computation, in addition to long in-water 
residence time (our vehicle, for exam-
ple, can operate for upwards of 48 hours). 
AUVs have the necessary computing 
power to operate the pipeline proposed 
in this project. Furthermore, they have 
the computational and propulsive capac-

FIGURE 6. (a) Density (kg m–3), (b) salinity 
(PSU), (c) temperature (°C), and (d) three- 
dimensional density (kg m–3) snapshots 
of detected planktontic organisms, in this 
case mainly copepods, the dominant taxa 
with respect to biomass in distinct water 
layers. Data are from an April 2020 AUV 
mission in Trondheimsfjorden, Norway.
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ity to be able to “return” to a hotspot, 
making the sampling more adaptive. 
Integrative capacity to image, categorize, 
model, and command on board such a 
low-cost vehicle can ensure rapid spread 
of such a find-tag-follow capability for 
planktonic biomass.

However, some technological chal-
lenges remain. Foremost among them is 
the ability to obtain and manually label 
a large image data set at similar magni-
fication for classification accuracy. Saad 
et al. (2020) proved that ML approaches 
for object instance and semantic segmen-
tation perform better on the SilCam cap-
tured images in terms of speed and accu-
racy. Embedding such approaches into the 
framework and deploying them online 
can help to speed up the system process-
ing of the images captured in sequence. 
Additionally, these approaches might 
allow the number of captured frames per 
second to be increased. Second, to date 
we have only a limited number of classes 
available for detection (Table 1), in large 
part because of the scale of labeling and 
data collection needed. The data collected 
belong to the Trondheimsfjorden envi-
ronment to ensure that the concept is via-
ble in our local domain. As we increase 
the number of AUV missions, we expect 
to provide a diverse set of classes while 
enabling the framework to work across 
different environments. Third, advances 
in imaging resolution that would allow 
higher taxonomic classification and 
imaging for microplankton <200 μm 
is still in infancy. Last but not the least, 
motility of zooplankton with distinct 
avoidance behavior, likely due to the dis-
turbance of the flow around the vehicle 
when it is moving rapidly, requires fine 
calibration of vehicle dynamics or sub-
stantial variation of trajectory planning, 
a challenge with any form of mobility in 
the water column.

CONCLUSION
Abundance and organism identification 
require careful and repetitive work, which 
can now be enhanced by new techniques 
in robotic vision, classification, and cat-

egorization using deep learning meth-
ods, as we have described. The novelty 
presented here lies in embedding these 
advances in an autonomous robot that 
can then be tasked using mature methods 
in sampling, sensor fusion, hydrodynam-
ics, and autonomous systems to revisit 
microorganism hotspots. AILARON is  
the first to apply the entire chain of 
imaging- classification- analysis- control 
to plankton taxa classification, in partic-
ular, on board a mobile robotic platform. 
With the ability to monitor planktonic 
patches at high spatiotemporal resolution 
on board a robotic vehicle, AILARON 
will provide a powerful and novel tool for 
biological oceanography, the equivalent 
of a robotic microplankton sniffer dog. In 
doing so, it will provide enhanced knowl-
edge of plankton communities and their 
spatiotemporal distribution patterns, 
which have great importance for ecosys-
tem surveillance and monitoring global 
change effects. 
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