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Paleoceanography is changing from a qualitative story-telling 
field to one that is quantitative. This transformation is in part 
due to the development and adoption of a growing arsenal 
of statistical tools that evaluate uncertainty. A strength of the 
field is the illustration of fundamental changes in the Earth/
ocean/climate system that are beyond humanity’s recent 
experience. A weakness lurks in the difficulty of telling time 
well. Precise and accurate geochronology is essential for 
establishing rates of change and for quantifying physical or 
biogeochemical fluxes. 

Rates and fluxes are important constraints on the impacts 
of carbon (and other) feedbacks on a warming climate. We 
know that additional warming of the planet is already “baked 
into” our future because paleoceanographers and paleo-
climatologists have documented how the relatively long 
response times of the ocean’s interior, ice sheets, and some 
carbon reservoirs slow down the various responses to forc-
ings (e.g., carbon emissions)—but may also eventually amplify 
them or render them irreversible; thus, we know that new 
Earth system equilibria will only be approached after millen-
nia. For example, over 90% of the excess heat produced by 
artificially elevated CO2 is already in the ocean (Durack et al., 
2018). If humanity eventually controls its carbon emissions 
and reduces atmospheric CO2, it will take a long time for the 
excess heat to emerge from, and for the excess carbon to be 
neutralized in, the ocean (Ehlert and Zickfeld, 2018). 

But how fast and how much will our planet change? To 
answer those questions, we need paleo studies that better 
constrain transient times and feedbacks so models can be 
adequately tested under extreme change scenarios and bet-
ter predict the future with confidence. Fischer et  al. (2018) 
summarized various impacts of past warming on the scale of 
a few degrees of global warming above preindustrial levels, 
but avoided specifying rates of change, considering them too 
uncertain with available chronological constraints. 

Fortunately, progress is at hand. Radiometric age models 
are improving. For example, Marine20, a new calibration of 
marine radiocarbon data into so-called “calendar” ages, is 
just out and now extends back ~55,000 years (Heaton et al., 
2020). The details remain tricky and model-dependent in the 
ocean because of the need to account for the changing car-
bon cycle coupled to changes in circulation patterns and rates 
in the ocean interior, which conspire with changing 14C pro-
duction rates to influence regional reservoir ages. The model 
that projects Marine20’s surface-water reservoir ages over 
the past 55,000 years propagates uncertainties in changing 
14C production and carbon cycling, while satisfying constraints 

of limited data available from the ocean. This is a big improve-
ment over previous syntheses. Nevertheless, the representa-
tion of changing deep-ocean circulation is inevitably incom-
plete. We do not yet know this history because various tracers 
do not yet converge on a single answer without re-evaluation 
of processes that control the tracer measurements including 
δ13C and εNd (Du et al., 2020), and this too has implications for 
radiocarbon reservoir ages. 

Marine20 comes with a clear warning that it applies to the 
warm surface ocean assumed to be near dynamic equilib-
rium with respect to ocean mixing and air-sea gas exchange. 
Application to higher latitudes or regions of changing wind-
driven upwelling, where these assumptions break down, 
requires additional considerations, such as assignment of 
a deviation from the ideal reservoir age, known as Delta-R, 
which varies regionally. Delta-R may also vary through 
time, but for lack of constraints, it is often assumed con-
stant through time. Efforts are underway to use a variety 
of simple models to begin to address this issue empirically  
(e.g., Walczak et al., in press). 

A continuous age model based on radiocarbon or other 
sources of age datums involves finding a logical pathway 
between dated levels, with quantified uncertainties. Several 
Bayesian tools are available to assist in this task, such as 
Bacon (Blaauw and Christian, 2011), Bchron (Haslett and 
Parnell, 2008; Parnell, 2020), and Oxcal (Bronk Ramsey, 
2009). Quantitative correlation also now provides for assess-
ment of the precision of stratigraphic alignment of “wiggly” 
proxy signals as an adjunct to independent chronologic infor-
mation (Lee et al., 2019). 

These Bayesian methods, now widely used, are not limited 
to radiocarbon but can be used with many kinds of data for 
alignment and as smart interpolation tools with propagation 
of uncertainties. Their solutions are not all identical, however. 
Tools like this don’t absolve us of thinking carefully about the 
systems we are measuring and the assumptions underlying 
the methods, which may include ideas about sedim-entation 
patterns and mechanisms.

SIDEBAR. On Quantifying Stratigraphic, Chronologic, and 
Paleo Flux Uncertainties in Paleoceanography

By Alan C. Mix

11th Commandment: 
Thou shalt not covet high-resolution 

results with low-resolution data
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FIGURE 1. Illustration of various model assumptions used in calculating organic carbon mass accumulation 
rates (MAR: a convolution of sedimentation rate from calibrated dates, dry bulk density, and organic carbon 
[Corg] contents, using data compiled by Lopes et al., 2015, here recalibrated with the Marine20 calibration 
curve of Heaton et al., 2020). (a) Age-depth curve with Bayesian age model calculated using Bchron (Parnell, 
2020). Organic carbon mass accumulation rates calculated using (b) point-to-point MAR changes based on 
all Marine20 calendar dates (black) and as a sensitivity test every second date odd (red) and even (blue). 
(c) Point-to-point MAR changes based on Bchron’s Bayesian age model at the dated levels, otherwise as in (b). 
(d, e, f) Bootstrap calculations with full uncertainty propagation for Corg MAR in 500-, 1,000-, and 2,000-year 
bins, respectively. The result in (b) is unstable, and age reversals produce negative MAR, requiring arbitrary 
decisions about data culling. The result in (c) is better, because the Bayesian model resolves age reversals, 
but uneven spacing imposes resolution bias. The uniform bins in (d, e, f) allow uncertainty estimation and illus-
trate the trade-offs between resolution and certainty—coarser time bins give more certain results, but may 
lose important temporal structure. 
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Assigning sediment accumulation rates is unfortunately not 
as simple as taking a first derivative of an age model curve, 
and may be subject to circular reasoning if sedimentation pro-
cesses are assumed as part of the age modeling exercise. The 
sedimentary record’s completeness is thought to be a func-
tion of the time span over which it is measured (Sadler and 
Strauss, 1990); specifically, longer time integrations tend to 
have lower apparent sediment accumulation rates because of 
a higher probability of missing sediment. Point-by-point flux 
normalization notwithstanding (e.g., by 3He or 230Th; e.g., Costa 
et al., 2020), a reasonable requirement for minimizing miss-
ing-sediment bias is to calculate sediment accumulation rates 
over fixed and constant time intervals while propagating quan-
tified uncertainties in the age models from the Bayesian age 
modeling tools. This is relatively straightforward using Monte-
Carlo bootstrap methods, but is rarely done. 

Calculation of biogeochemical fluxes demands further error 
propagation of sediment accumulation, bulk densities, and 
component concentrations. This is accomplished by binning 
or otherwise assessing proxy data within the boundaries of 
the time intervals for averaging, and convolving bin uncertain-
ties on dry bulk density with those on property concentrations 
and sedimentation rates. This too is sufficiently complicated 
that bootstrap methods are reasonable approaches. The lit-
erature is rife with examples of calculated fluxes made with 
point data applied to interpolated ages between age datums 
of unequal spacing and without error propagation. 

To illustrate how point spacing effects, binning, and chang-
ing resolution affect inferred changes in mass accumulation 
rates and their uncertainties, I calculated carbon burial fluxes 
(Figure 1) using a published high-resolution data set from a 
well-characterized core in the Northeast Pacific off Oregon 
(W98709-13pc, 42.117°N, 125.750°W, 2,712 m depth, with an 
average spacing between dated levels of 500 years; Lopes 
et al., 2015). That study showed apparent decoupling between 
diatom-based primary productivity, export productivity, and 
organic carbon burial in response to climate change, and it 
raised questions about how to address issues concerning 
the effects of biogeochemical fluxes on carbon feedbacks 
in climate models. 

In this case, it appears that variations in carbon burial are 
not resolved beyond uncertainty in 500-year bins, that some 
events appear to be resolved in 1,000-year bins, and that most 
variations are resolved in 2,000-year bins. Armed with this 
analysis, it is possible to choose at what reasonable temporal 
resolution and what significance level to evaluate changes in 
biogeochemical fluxes, or before analysis, we can determine 
how to design a sampling and analysis program to get the res-
olution and precision needed to test a hypothesis. 

Among paleoceanography’s grand challenges for the com-
ing decade is to refine geochronology, and in so doing to 
quantify rates of change and material fluxes. To do this well 
demands understanding of biases in the sedimentary record 
and rigorous estimation of uncertainties. While a variety of 

approaches will probably always be needed, widespread 
adoption of new and emerging Bayesian age modeling tools 
is essential. Quantitative estimation of uncertainty reveals the 
need for higher-resolution and higher-precision data sets, 
which put further demands on our laboratories, and of course 
on the funding that pays for the analyses. We can expect 
these approaches to continue to evolve and improve as the 
relevant literature of theory, tools, and applications expands. 
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