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Ancient
Sea Level 

as Key to the Future
By Kenneth G. Miller, W. John Schmelz, James V. Browning, Robert E. Kopp, 

Gregory S. Mountain, and James D. Wright

SPECIAL ISSUE ON PALEOCEANOGRAPHY: LESSONS FOR A CHANGING WORLD

Scientists boarding D/V JOIDES Resolution off 
New Jersey in 1993. Sea level in an ice-free 
world would be 66 meters (216.5 feet) higher 
than now—shoulder-high to the Statue of 
Liberty. Image credit: Kenneth G. Miller, James 
V. Browning, and Gregory S. Mountain
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SEA LEVEL AS A BAROMETER OF 
EARTH’S CLIMATE STATES
The state of Earth’s climate is reflected by 
the position of the shoreline globally, both 
in the modern world as sea level inexora-
bly rises and accelerates, and in ancient 
worlds of vastly different sea levels that 
ranged from 130 m below present, when 
now submerged continental shelves were 
exposed (e.g.,  20 thousand years before 

1950 [ka]), to over 150 m above present 
due to ice-free conditions and long-term 
tectonics, when large areas of the conti-
nents were inundated (e.g.,  ca. 90 mil-
lion years ago [Ma] and 55 Ma). Today, 
humanity looks to its coastlines not only 
for living space, food, and other resources 
but also as a barometer of global climate 
changes that are causing rapidly escalat-
ing social and economic impacts. Reading 

the record of past sea level changes pro-
vides an understanding of processes that 
control sea level (Figure 1) and shore-
line position that are relevant to plan-
ning for future rise. Recent advances in 
data, imaging, and modeling provide 
fresh constraints and new insights into 
timing, amplitudes, and rates of ancient 
sea level changes (Table 1). In this over-
view, we briefly discuss the history of 
the timing, rates, and causes of sea level 
changes (Figures 1–3) during the last 
66 million years (with greater uncertainty 
prior to ca. 48 Ma) and their implications 
for present and future rise.

Sea level change is not uniform around 
the world. Relative sea level (RSL) is the 
difference in height between the sea sur-
face and the solid Earth at a particular 
place. GMSL change is the global mean 
of relative sea level change and is the vol-
ume of the ocean divided by the ocean 
surface area (Gregory et al., 2019). In geo-
logical literature, GMSL change is some-
times called “eustatic change,” which is 
defined with respect to some fixed datum 
level such as the center of the Earth and is 
more properly termed global mean geo-
centric sea level change (Gregory et  al., 
2019). We eschew the terms “eustasy” 
and “eustatic change” because such 
datum levels are lacking or equivocal in 
the geologic record. RSL change at a par-
ticular place is controlled both by GMSL 
change and by regional and local land 
motion. RSL includes the effects of ther-
mal subsidence, sediment loading, flex-
ure, mantle dynamic topography, and 
glacial isostatic adjustment (GIA), as 
well as changes in the height of the geoid 
driven by the changing distribution of 
ice and ocean mass and by GIA. In addi-
tion, there are short-term (1–1,000-year 
scale) ocean dynamic sea level changes 
(e.g.,  El Niño and Gulf Stream varia-

Prediction is very difficult, especially if it’s about the future. Old Danish proverb

ABSTRACT. Studies of ancient sea levels provide insights into the mechanisms and 
rates of sea level changes due to tectonic processes (e.g., ocean crust production) and 
climatic variations (e.g.,  insolation due to Earth’s orbital changes and atmospheric 
CO2). Global mean sea level (GMSL) changes since the Middle Eocene (ca. 48 million 
years ago [Ma]) have been primarily driven by ice volume changes paced on astro-
nomical timescales (2400, 1200, 95/125, 41, and 19/23 thousand years [kyr]), modu-
lated by changes in atmospheric CO2. During peak warm intervals (e.g., Early Eocene 
Climatic Optimum 56–48 Ma and the early Late Cretaceous ca. 100–80 Ma), atmo-
spheric CO2 was high and Earth was more than 5°C warmer and mostly ice-free, con-
tributing ~66  m of GMSL rise from ice alone. However, even in the warmest times 
(e.g., Early Eocene, ca 50 Ma), growth and decay of small ice sheets (<25 m sea level 
equivalent) likely drove sea level changes that inundated continents and controlled the 
record of shallow-water deposits. Ice sheets were confined to the interior of Antarctica 
prior to the Oligocene and first reached the Antarctic coast at 34 Ma, with the low-
est sea levels –20±10 m relative to modern GMSL. Following a near ice-free Miocene 
Climatic Optimum (17–13.8 Ma), a permanent East Antarctic Ice Sheet (EAIS) devel-
oped in the Middle Miocene (ca. 13.8 Ma). During the Pliocene (4–3 Ma), CO2 was 
similar to 2020 CE (Common Era) and sea levels stood ~22±10 m above present, 
requiring significant loss of the Greenland Ice Sheet (~7 m of sea level), West Antarctic 
Ice Sheet (~5 m after isostatic compensation), and vulnerable portions of the EAIS. The 
small Northern Hemisphere ice sheets of the Eocene to Pliocene expanded into con-
tinental scale in the Quaternary (past 2.55 million years). Sea level reached its low-
est point (~130 m below present) during the Last Glacial Maximum (ca. 27–20 thou-
sand years before 1950 [ka]), episodically rose during the deglaciation (ca. 20–11 ka) 
at rates that at times were in excess of 47 mm yr–1 (vs. modern rates of 3.2 mm yr–1), 
and progressively slowed during the Early to Middle Holocene from ca. 11 ka until 
~4 ka. During the Late Holocene (last 4.2 kyr, including the CE), GMSL only exhib-
ited multi-centennial variability of ±0.1 m. The modern episode of GMSL rise began 
in the late nineteenth century, with most of the twentieth century rise attributable to 
global warming and ice melt. Under moderate emissions scenarios, GMSL is likely to 
rise 0.4–1.0 m in this century, with ancient analogs suggesting a longer term (centen-
nial to millennial scale) equilibrium rise of ~10 m. Under higher emissions scenar-
ios, twenty-first century GMSL will rise greater than 2 m, and in the long term, tens of 
meters cannot be excluded.
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tions that regionally cause tens of cen-
timeters of transient sea level changes). 
GMSL variations are caused primarily 
(Figure 1) by changes in ocean tempera-
ture (tens of centimeters on annual to 
centennial timescales, with up to 10 m 
over the past 48 million years due to cool-
ing), changes in land ice volume (meter 
scale operating on decadal to centennial 
scales and up to 200 m on astronomical 
timescales of ~20 thousand years [kyr] to 
2,400 kyr), and changes in the volumes of 
ocean basins (100+ m scale primarily on 
>1 million year timescales; see summary 
in Miller et al., 2005a). 

The yet-to-be formally defined 
Anthropocene epoch (Zalasiewicz, 2008) 
can be partly characterized by human- 
induced modifications of Earth’s climate 
state due to changes in atmospheric CO2 
concentrations from 280 ppm in ~1850 to 
414 ppm in 2020 CE, with current trends 
projected to lead to 600–900 ppm in 
this century in the absence of strong 
global climate policy (Riahi et  al., 2017; 
Meinshausen et al., 2020). Other potential 
markers for the base of the Anthropocene 
can be as young as the atomic-testing 
tritium spike that culminated in 1963, 
though here we use the CO2 record to 
place the base at 1850 CE (Figure 3). The 
Anthropocene will constitute a climate 

and sea level state fundamentally differ-
ent from glacial periods (e.g.,  27–20 ka) 
or the Holocene interglacial (11.3 ka to 
1850 CE). Ancient climates range from 
cold, glacial periods (e.g.,  Last Glacial 
Maximum [LGM]) with CO2 at 180 ppm 
to warm, ice-free states, the most recent 
of which are the Early Eocene Climatic 
Optimum (EECO; 56–48 Ma) and pos-
sibly the Miocene Climatic Optimum 
(17–13.8 Ma), with CO2 two to three times 
higher than 1850 CE. Miller et al. (2020) 
recognize three pre-Anthropocene cli-
mate states: Hothouse (very warm, largely 
ice-free conditions; Late Cretaceous and 
Early Eocene), cool Greenhouse (Early 
to Middle Eocene) with small ice sheets 
(<25 m sea level equivalent), and Icehouse 
conditions with continental- scale ice 
sheets at one or both poles (Figure 2). 
Today, the Greenland Ice Sheet (GIS) con-
tains 7.4 m of sea level equivalent; the 
West Antarctic Ice Sheet (WAIS) con-
tains 5.6 m of sea level equivalent, includ-
ing the Antarctic Peninsula; the East 
Antarctic Ice Sheet (EAIS) contains 52 m 
of sea level equivalent; and mountain gla-
ciers and ice caps contain <1 m of sea 
level equivalent (Morlighem et al., 2019). 
Within the Icehouse of the Oligocene to 
Holocene (Figure 2), climates varied on 
glacial and interglacial timescales, with 

continental ice sheets waxing and waning 
in East Antarctica during the Oligocene to 
Middle Miocene (ca. 34–13.9 Ma), a per-
manent EAIS developing in the Middle 
Miocene (ca. 13.8 Ma), and large Northern 
Hemisphere ice sheets developing in 
the Quaternary (last 2.55 million years). 
Changes in ice volume dominate the rise 
and fall of sea level during Icehouse, cool 
Greenhouse, and perhaps even Hothouse 
worlds (Miller et al., 2020).

MEASURING SEA LEVEL 
CHANGES
Sea level change is determined by mea-
suring time (age) and height of water with 
respect to datum levels. We refer sea level 
to the modern mean sea level (MSL) datum 
level (https://tidesandcurrents. noaa.gov/ 
 datum_options.html). Instrumental mea-
surements of RSL are based on data from 
tide gauges with extensive global cover-
age after World War II and sparse cover-
age dating back to the eighteenth century, 
and from satellites with global coverage 
since 1993. GMSL is statistically inferred 
from these records (e.g.,  Dangendorf 
et al., 2017). For reconstruction of ancient 
sea level, proxies (shorelines, fossils, sed-
iment facies) are calibrated to time and 
MSL, with ages determined from radio-
metric data (mostly radiocarbon over 
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FIGURE 1. Processes affecting sea level change. (left) Log-log plot of maximum amplitudes (in meters with error) versus maximum rates. The blue box 
encompasses rates that can only be explained by ice volume changes or basin desiccation. (right) Log-log plot of amplitudes versus durations for each 
process where the length of each hypotenuse gives the maximum rate of change. LIPs = Large Igneous Provinces.
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the past 40 kyr, with coral U/Th ages 
back several 100 kyr), from fossils (bio-
stratigraphy), or from other techniques 
(magnetostratigraphy, chemostratigra-
phy, and astrochronology). For the Late 
Pleistocene to present (last 129 kyr), dat-
ing of corals or marshes formed near sea 
level provides the most accurate means or 
reconstructing sea level. Measurements 
of foraminifera δ18O records reflect ice 
volume and temperature changes that 
can be calibrated to sea level by indepen-
dent temperature estimates back through 
the Middle Eocene (e.g.,  Miller et  al., 
2020). Flooding (transgressions) and 
exposure (regressions) of the continents 
reflect GMSL and tectonic processes, as 
does the record of sequences (unconfor-
mity bounded units; Vail et  al., 1977). 
Continental flooding and sequence stra-
tigraphy provide the longest (billion year) 
records, though they also record pro-
cesses of sediment supply, compaction, 
loading, thermal and flexural subsid-
ence, mantle dynamic topography, and 
active tectonics. 

Various generations of sea level curves 
produced by Exxon Production Research 
Company (Vail et  al., 1977; Haq et  al., 
1987) have become entrenched as the 
Phanerozoic standard. These “cycle” 
charts provide an excellent record of the 

timing of sea level falls but are greatly 
exaggerated in their sea level amplitudes 
because they were scaled to sea levels 
derived from seafloor spreading recon-
structions and did not account for pro-
cesses of compaction, loading, and ther-
mal and flexural subsidence. Even the 
relative amplitudes are suspect, and 
thus these curves provide little to no 
constraints on sea level mechanisms 
(e.g., Miller et al., 2005a). 

Drilling by the International Ocean 
Discovery Program (IODP) and its pre-
decessors has provided material for inde-
pendently estimating sea level using 
sequence stratigraphy and backstripping 
(progressively accounting for the effects 
of compaction, loading, and thermal sub-
sidence; John et  al., 2004; Miller et  al., 
2005a), and for combining deep-sea 
benthic foraminiferal δ18O and Mg/Ca 
records, with the latter providing an inde-
pendent paleothermometer (Lear et  al., 
2000; Cramer et  al., 2011; Miller et  al., 
2020). Convergence of these two meth-
ods (Figure 2B) allows identification 
of GMSL changes and inferences about 
their mechanisms (Miller et  al., 2020). 
In addition, coral drilling in Barbados 
(Figure 3A; Fairbanks, 1989) and Tahiti 
by IODP Expedition 310 (Deschamps 
et  al., 2012) provides constraints on 

the rates of sea level rise during the last 
deglaciation. Finally, studies of Holocene 
marshes have produced pristine chronol-
ogies and estimates of the rates of GMSL 
rise during the Holocene (Figure 3B), 
including the CE, that can then be linked 
to instrument records (tide gauge and 
satellites). Here, we provide a geological 
perspective on past, present, and future 
sea level change using published back-
stripped (Miller et al., 2020), δ18O-Mg/Ca 
(Miller et  al., 2020), coral (Peltier and 
Fairbanks, 2006; Deschamps et al., 2012), 
marsh (e.g.,  Kemp et  al., 2009, 2018; 
Kopp et  al., 2016; Horton et  al., 2018), 
and instrumental (Dangendorf et  al., 
2017) sea level records.

HISTORY OF GMSL CHANGES
High-latitude temperatures were remark-
ably warm in the Late Cretaceous 
(e.g., Huber et al., 2018) and Early Eocene 
(e.g.,  with Arctic surface temperatures 
>23°C; Sluijs et  al., 2006), and there is 
consensus that Earth was substantially 
ice-free at these times, with CO2 con-
centrations in excess of 1,000 ppm (sum-
mary in Foster et al., 2017). However, sea 
level records indicate large (>25 m) and 
rapid changes in the Late Cretaceous to 
the Eocene that can only be explained by 
ice growth and decay (e.g.,  Miller et  al., 

TABLE 1. Amplitudes and rates of sea level change updated from Pitman and Golovchenko (1983) with best estimates from this 
study. LIPs = Large Igneous Provinces; the 50 m LIP estimate does not include isostatic loading.

MECHANISMS AND RATES 
OF SEA LEVEL CHANGE

PITMAN AND 
GOLOVCHENKO

(1983)

AMPLITUDE 
BEST 

ESTIMATE 
(m)

AMPLITUDE ERROR
RATE

(mm yr–1)
RATE

(m Myr–1)
LOWER (m) UPPER (m)

Ocean crust production 250 75 50 250 0.01 10

Ice volume changes 200 200 180 220 50 50,000

LIPs 50 15 5 35 0.01 10

Orogeny 70 50 5 20 0.001 1

Global sedimentation 60 50 5 10 0.001 1

Basin flooding/desiccation 15 30 5 15 50 50,000

Lakes and aquifers   7 2 45 1 1,000

Thermal expansion   10 8 15 1 1,000

Greenhouse sea level changes    >25 0.025 25

1900–2020   0.3 0 0 3 3,000

21st Century   0.8 0.5 2 13 11,000
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2005a,b, 2020; Ray et  al., 2019; Davies 
et al., 2020). The solution to this enigma 
is that there were small (15–25 m sea 
level equivalent or 25%–40% of modern 
volume), ephemeral ice sheets during the 
Late Cretaceous to Eocene in the inte-
rior of Antarctica (Miller et  al. 2005a; 

Huber et al., 2018; Ray et al., 2019; Davies 
et al., 2020). Remarkable new data show 
marine-terminating glaciers existed at 
the Sabrina Coast, adjacent to the Aurora 
Basin, Antarctica, by the Early to Middle 
Eocene (Gulick et al., 2017), and model-
ing studies show that significant ice sheets 

(15+ m equivalent) can exist in regions 
of high Antarctic topography (Deconto 
and Pollard, 2003) even while subtropical 
conditions persist along the coast (Pross 
et al., 2012). We posit that sea level varia-
tions on the order of 15±10 m occurred as 
significant ice sheets grew and decayed, 
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even in intervals such as the Early Eocene 
and Late Cretaceous.

The cool Greenhouse conditions of the 
Middle to Late Eocene illustrate ice vol-
ume control on sea level in what was com-
monly thought to be an ice-free period. 
Despite warm bottom water temperatures 
(8°–12°C), our δ18O-Mg/Ca- based esti-
mates show (Figure 2) large (15–30 m) 
sea level falls at ca. 49, 47.8, 46.9, and 
44.5 Ma; smaller falls (~10–20 m) at 
43.6, 42.9, and 40.8 Ma; and a major rise 
of ~40 m to near ice-free conditions at 
the Middle Eocene Climatic Optimum 
(40.1 Ma; Bohaty and Zachos, 2003), fol-
lowed by a ~20 m drop (39.5 Ma). During 
the Late Eocene, sea level fell 40 m, only 
to rise in near ice-free conditions again 
at ca. 35 Ma. The new Middle to Late 
Eocene sea level record (Figure 2; Miller 
et  al., 2020) indicates dynamic growth 
and collapse of moderately large ice 
sheets (0%–75% of modern EAIS), con-
trolled by the 1,200 kyr tilt cycle (Miller 
et  al., 2020). Atmospheric CO2 prox-
ies show decreasing values accompanied 
this change in state (Foster et  al., 2017) 
from Hothouse with ephemeral, small 
ice sheets to cool Greenhouse conditions 
with moderate-  sized ice sheets.

A continental-scale EAIS developed 
in the Icehouse Early Oligocene associ-
ated with Zone Oi1 (ca. 34 Ma; Oi1, Oi2, 
Mi1 to Mi6 are million-year-scale δ18O 
maxima; Miller et  al., 1991), with mil-
lion year sea level falls of 40–60 m and 
peak glaciations in the Early Oligocene 
(Oi1, ca. 34 Ma), middle Oligocene (Mi2, 
ca. 30 Ma), and spanning the Oligocene/
Miocene boundary (Mi1, ca. 22 Ma; 
Miller et  al., 2020). Sea level lowstands 
were generally lower than present from 
34–17 Ma, explaining the poor represen-
tation of strata of this age in continen-
tal margin sections. During this time, 
ice growth and decay was paced by the 
1,200  kyr tilt cycle (Boulila et  al., 2011; 
Miller et al., 2020), though ice volume was 
affected by the orbital cycles of precession 
(19/23 kyr), short tilt (41 kyr), and eccen-
tricity (95/125, 405, and 2,400 kyr).

The cool, glacial climates of the 

Oligocene to Early Miocene were 
punctuated by the Miocene Climatic 
Optimum (17.0–13.8 Ma), the last time 
Earth was potentially ice-free (Miller 
et  al., 2020). The Miocene Climatic 
Optimum is associated with relatively 
high CO2 (~500  ppm), high carbon 
burial (the Monterey event; Vincent and 
Berger, 1985), and high global δ13C val-
ues (though these lag the warming). The 
Miocene Climatic Optimum may be con-
sidered an incipient ocean anoxic event, 
possibly attributed to outgassing of the 
Columbia River basalts (Kasbohm and 
Schone, 2018; Sosdian et al., 2020).

A permanent EAIS developed in the 
Middle Miocene Climate Transition as 
signaled by Antarctic climates (Lewis 
et  al., 2008) and three major million 
year-scale δ18Obenthic increases, coolings, 
and attendant sea level falls (Miller et al., 
2020): Mi3a (14.8 Ma; ~30 m fall, ~0.7°C 
cooling), Mi3 (13.8 Ma; ~50 m fall, ~1.2°C 
cooling), and Mi4 (12.8 Ma; 20–30 m sea 
level fall, ~1.0°C cooling). GMSL rose 
after each event but to a lower mean state, 
stabilizing less than 12 m above present. 
From 12.8 until ca.  4.5  Ma, the ampli-
tudes of sea level change were muted 
and ice sheets were mainly paced by the 
41 kyr tilt cycle. The large EAIS of the 
Middle to Late Miocene was less sensitive 
to precessional and eccentricity forcing. 
The cause of the Middle Miocene Climate 
Transition was likely a decrease in atmo-
spheric CO2 (Greenop et al., 2014), per-
haps linked to cessation of Columbia 
River basalt volcanism and weathering 
(Sosdian et al., 2020). 

The Pliocene recorded the last major 
warm period (4.5–3 Ma) when (1) global 
mean surface temperatures were 2°–3°C 
warmer than 1850 CE (e.g.,  Dowsett, 
2007), (2) CO2 was similar to 2020 
(e.g., Bartoli et al., 2011), and (3) sea lev-
els stood ~22±10 m above present (Miller 
et  al., 2012). Maximum sea level is con-
strained by δ18Obenthic values at ca. 3 Ma 
to <20 m (Miller et al., 2019), though sea 
level may have peaked higher earlier in 
the Pliocene (32±5; Hearty et  al., 2020). 
The ~20–30 m estimates are significant 

because they imply absence of the GIS, 
the WAIS, and vulnerable portions of the 
EAIS (Miller et  al., 2012). Considering 
the errors, no melting of the EAIS may 
be required (Rovere et al., 2014; Raymo 
et al., 2018). However, sea level estimates 
generally fall into the range of 15–20 m 
at 3 Ma and 20–35 m at ca. 3.5–4.5 Ma 
(Miller et  al., 2012, 2019, 2020; Hearty 
et  al., 2020), consistent with melting of 
the EAIS in the Wilkes and Aurora Basins 
suggested by models (DeConto and 
Pollard, 2002) and sediment tracer data 
(e.g.,  Bertram et  al., 2018; see Gasson 
and Keisling, 2020). This warmer Early 
Pliocene world was more sensitive to pre-
cessional and eccentricity forcing than the 
cooler Late Miocene, though the 41 kyr 
tilt cycle still dominated sea level changes.

Small (Greenland-sized) Northern 
Hemisphere ice sheets existed at 
least intermittently beginning in the 
Middle Eocene (St. John, 2008), but the 
Quaternary (last 2.55 million years) 
began with development of continen-
tal-scale Northern Hemisphere ice 
sheets signaled by the large Marine 
Isotope Stage (MIS) 100 δ18O increase 
(>1‰; ~2.5 Ma), sea level fall (~60 m), 
and appearance of ice rafted sediments 
in the northern North Atlantic. (MISs 
are defined as periods of higher [even 
stages, colder and large ice sheets] and 
lower [odd stages, warmer, smaller ice 
sheet] δ18O values in deep sea carbon-
ates.) Ice sheets gradually increased in 
size from ca.  2.8–2.55 Ma, with pro-
gressive increase in glacial-interglacial 
δ18O amplitudes. The cause of the begin-
ning of the large Northern Hemisphere 
ice ages has been variously attributed to 
closing gateways (e.g.,  Panamanian sea-
way, Norwegian-Greenland sill), moun-
tain building, ocean circulation, and CO2 
drawdown (e.g.,  discussion in Raymo, 
1994), though dropping of CO2 below 
a critical threshold of 300 ppm is impli-
cated (Willeit et  al., 2015; Miller et  al., 
2020). Sea level was paced by the 41 kyr 
tilt cycle with amplitudes <100 m.

Sea level amplitudes increased and 
began to be paced by short eccentric-
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(A) Time series of global mean sea level 
(GMSL) estimates from 30,000 calen-
dar years to 1950 (= 0 age). Coral data 
are from Barbados, corrected for gla-
cial isostatic adjustment (red points; 
Peltier and Fairbanks, 2006), and 
the global whole Earth ICE-5G (VM2) 
model (red line, Peltier, 2004). The 
GIA-corrected model of Lambeck et al. 
(2014; yellow line) is shown for compar-
ison. Thick dashed lines/darker shad-
ing and thin dashed lines/lighter shad-
ing indicate the 1 sigma and 2 sigma 
errors, respectively, on the statistical 
estimates of sea level. 

(B) Time series of GMSL from 
2000 BCE to 2020 CE showing sta-
tistical analyses of Kemp et al. (2018). 
Thick dashed lines/darker shading and 
thin dashed lines/lighter shading indi-
cate the 1 sigma and 2 sigma errors, 
respectively,  on the statistical esti-
mates of sea level. The yellow line is 
the GIA-corrected model of Lambeck 
et  al. (2014). Blue lines are drawn 
based on statistical analysis of satellite 
and tide gauge records by Dangendorf 
et al. (2019). Purple points indicate sat-
ellite data for 1993–2020. 

(C) Time series of GMSL from 1800 
to 2020 based on a statistical analy-
sis of satellite and tide gauge records 
by Dangendorf et al. (2019; blue line). 
Purple dots record satellite data for 
1993–2020 (Beckley et al., 2016). The 
green line shows processed com-
bined tide and satellite data. The thick 
dashed blue line/darker shading and 
thin dashed blue line/lighter shad-
ing indicate the 1 sigma and 2 sigma 
errors, respectively, on the statistical 
estimates of sea level. 

(D) Time series of GMSL from 1900 
to  2200, including process-model 
sea level projections under 2°C 
(Rasmussen et al., 2018; Bamber et al. 
2019) and 5°C representative concen-
tration pathway (RCP) 8.5 warming sce-
narios (Kopp et al., 2014, updated for 
consistency with Oppenheimer et  al., 
2019; Bamber et al., 2019). The black 
line is a quadratic regression model fit 
to the Beckley et  al. (2016)  satellite 
data. Extrapolation of the acceleration 
indicates over 0.7 m of sea level rise by 
2100 and a ~12.5 mm yr–1 rate of rise in 
2100. Thick dashed lines/darker shad-
ing and thin dashed lines/lighter shad-
ing  represent  the  17th to 83rd and 5th 
to 95th percentiles for each of the sea 
level projections, respectively. 

(E) The median 17th to 83rd, and 5th to 
95th  percentile  sea level projections 
for 2050, 2100, and 2200 from the 
process-model projection time series 
displayed in panel D.
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FIGURE 3. Data sets and statistical analyses of variations in sea level from 30,000 calendar years 
before 1950 (ka), including the Last Glacial Maximum, 27–20 ka to 2200 CE. Gray correlation lines 
show the relative temporal relationships between panels. Note that the range varies from over 
150 m (panel A) to 60 cm (panel B), 30 cm (panel C), and over 5 m (panels D, E). 
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ity (quasi 100 kyr), precession, and tilt 
forcing during the Bruhnes (780 ka) fol-
lowing the Mid-Pleistocene Transition. 
Precession (19, 23 kyr) and tilt (41 kyr) 
directly forced sea level lowerings of 
10–60 m, but larger sea level rises yield-
ing the distinct sawtooth 100 kyr termi-
nations of the last 780 kyr are likely due to 
amplification by CO2 (Shackleton et  al., 
2000). The cause of the shift to domi-
nant quasi-100 kyr periods and large, 
rapid (>100 m) sea level rises during the 
Mid-Pleistocene Transition is unknown, 
though decreasing atmospheric CO2 
from ~320 to 250 ppm may have reached 
a threshold, resulting in the return of 
a 100 kyr beat that had previously been 
important in the early history of the EAIS 
(Miller et al., 2020). 

Sea level reached its highest points 
of the last 780 kyr in MIS 11 (9±3 m, 
~405  kyr) and MIS 5 (7.5±1.5 m above 
present, ca 125 kyr), with global mean 
temperatures about 1°C warmer than 
1850 (Dutton et  al., 2015). Sea level 
reached its lowest point of the last 
200 million years during the LGM (Peltier 
and Fairbanks, 2006; Lambeck et  al., 
2014). The Barbados sea level record of 
–120±5 m (Fairbanks, 1989) corrected 
for GIA indicates the LGM occurred 
from ~27 ka to 20 ka, with GMSL 
of 122–127  m below present (Peltier 
and Fairbanks, 2006). An inversion-  
based analysis using over 1,000 sea level 
observations from corals proposed an 
LGM timing of 21 ka and GMSL of 134 m, 
though the database is sparsely populated 
between 30 ka and 20 ka (Lambeck et al., 
2014). Following the LGM, sea level rose 
with two large Meltwater Pulses, MWP1A 
(14.7–14.3  ka, rate >47 mm yr–1) and 
MWP1B (11.7-11.5 ka, >40 mm yr–1; 
Fairbanks, 1989; Stanford et  al., 2006; 
Deschamps et  al., 2012; Liu et  al., 2016; 
Abdul et al., 2016). 

The Holocene (11.3 ka to the begin-
ning of the Anthropocene in 1850 CE) 
was an epoch of relative stability for 
global mean temperature and progressive 
slowing and stabilizing of GMSL. During 

the Early Holocene (11.3–8.2 ka), GMSL 
rise slowed to ~8 mm yr–1 and progres-
sively slowed to 2 mm yr–1 in the Middle 
Holocene (8.2–4.2 ka) and less than 
1 mm yr–1 by 5 ka (Figure 3A; Lambeck 
et al., 2014). Statistical analysis of a global 
database of regional sea level records 
(Figure 3B) shows very little change 
in Late Holocene GMSL (4.2 ka to the 
beginning of the Anthropocene), aside 
from hundred-year scale oscillations of 
± 0.1 m (Kopp et al., 2016; Kemp et al., 
2018). This corroborates the analysis of 
CE GMSL by Kopp et  al. (2016), which 
exhibited multi-centennial variability of 
±0.1 m, but no rising trend. The modern 
rise is not a remnant of deglaciation but 
rather due to anthropogenic warming.

The modern period of GMSL rise 
began in the late nineteenth century, and 
the rate of rise over the twentieth cen-
tury was the fastest in at least 3,000 years 
(Kopp et al. 2016; Kemp et al., 2018). The 
acceleration of sea level rise continued in 
the late twentieth and early twenty-first 
centuries. Statistical analysis of satellite 
and tide gauge records by Dangendorf 
et al. (2019) shows a 1.6±0.4 mm yr–1 rate 
of sea level rise between 1900 and 2015, 
with the current acceleration beginning 
in the late 1960s. The rate of sea level 
rise increased from 2.1±0.1 mm yr–1 
to 3.4±0.3 mm yr–1 from 1993 to 2015 
(Dangendorf et  al., 2017). Using nearly 
30 years of satellite data (Nerem et  al., 
2010; Beckley et  al., 2016), a simple 
regression model (Figure 3C) captures 
the late twentieth to twenty-first cen-
tury acceleration of sea level rise. GMSL 
today is driven primarily by ocean warm-
ing (~40%) and the melting of ice sheets 
(~30%) and mountain glaciers (~20%) 
(Church et  al., 2013; WCRP Global Sea 
Level Budget Group, 2018). 

Though future sea level rise remains 
a subject of conjecture dependent on 
future emissions pathways, certain limits 
can be placed on sea level rise during 
the twenty-first century and beyond. 
Simple extrapolation of the acceleration 
seen in the satellite data (Nerem et  al., 

2010; Beckley, 2016) predicts over 0.7 m 
of GMSL rise by 2100 (Figure 3D, thick 
black line) and a ~12.5 mm yr–1 rate of 
rise in 2100. However, whereas the next 
couple of decades of GMSL rise are inde-
pendent of emissions pathways, human 
choices about emissions become an 
increasingly important driver in the sec-
ond half of this century and beyond. In 
a world that eliminates its net carbon 
dioxide emissions and stabilizes global- 
mean warming at 2°C above preindus-
trial temperatures, GMSL is likely (with 
at least a 66% probability) to be between 
0.4 m and 1.0 m by the end of the cen-
tury (Figure 3D,E; Rasmussen et  al., 
2018; Bamber et  al., 2019). By con-
trast, in a world of unchecked emissions 
growth that leads to global-mean warm-
ing around 5°C by the end of the cen-
tury, the currently limited understanding 
of ice sheet stability on century times-
cales yields a much broader range of pro-
jections. The relatively conservative pro-
jections laid out in chapter four of the 
special report of the Intergovernmental 
Panel on Climate Change on The Ocean 
and Cryosphere in a Changing Climate 
indicate a likely rise of 0.6–1.1 m over 
this century (Oppenheimer et al., 2019), 
while a structured expert judgment study 
(Bamber et al., 2019) indicates a broader 
range of 0.8–1.7 m. 

The future beyond 2100 CE is even less 
certain. Both process modeling (Clark 
et  al., 2016) and ancient sea level ana-
logs discussed here reflecting slow feed-
back mechanisms suggest that 2°C of 
warming will lock in ~10 m of GMSL rise 
over the coming millennia. Under higher 
emissions scenarios, twenty-first century 
GMSL rise greater than 2 m cannot be 
excluded (e.g., Bamber et al., 2019), and 
equilibrium rise over the next few mil-
lennia may be tens of meters. Emissions 
to date have committed humanity to a 
world of sea level rise not seen for 3 mil-
lion years, and our coastal systems, natu-
ral and built, need to adapt, roll back, and 
continue to acclimate to inexorable rise. 
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B. Gréselle, M.D. Simmons, and C. Robson. 2019. 
The magnitude and cause of short-term eustatic 
Cretaceous sea-level change: A synthesis. Earth-
Science Reviews 197:102901, https://doi.org/ 
10.1016/j.earscirev.2019.102901.

Raymo, M. 1994. The initiation of Northern 
Hemisphere glaciation. Annual Review of Earth and 
Planetary Sciences 22:353–383, https://doi.org/ 
10.1146/annurev.ea.22.050194.002033.

Raymo, M.E., R. Kozdon, D. Evans, L. Lisiecki, and 
H.L. Ford. 2018. The accuracy of mid-Pliocene 
δ18O-based ice volume and sea level recon-
structions. Earth-Science Reviews 177:291–302, 
https://doi.org/ 10.1016/j.earscirev.2017.11.022.

Riahi, K., D.P. Van Vuuren, E. Kriegler, J. Edmonds, 
B.C. O’Neill, S. Fujimori, N. Bauer, K. Calvin, 
R. Dellink, O. Fricko, and others. 2017. The Shared 
Socioeconomic Pathways and their energy, 
land use, and greenhouse gas emissions impli-
cations: An overview. Global Environmental 
Change 42:153–168, https://doi.org/10.1016/ 
j.gloenvcha.2016.05.009.

Rovere, A., M.E. Raymo, J.X. Mitrovica, P.J. Hearty, 
M.J.O. Leary, and J.D. Inglis. 2014. The mid- Pliocene 
sea-level conundrum: Glacial isostasy, eustasy 
and dynamic topography. Earth and Planetary 
Sciences Letters 387:27–33, https://doi.org/ 10.1016/ 
j.epsl.2013.10.030.

Shackleton, N.J., J. Imbrie, and M.A. Hall. 1983. 
Oxygen and carbon isotope record of East Pacific 
core V19-30: Implications for the formation of 
deep water in the late Pleistocene North Atlantic. 
Earth and Planetary Science Letters 65:233–244, 
https://doi.org/ 10.1016/0012-821X(83)90162-0.

Shackleton, N.J. 2000. The 100,000-year ice-
age cycle identified and found to lag tempera-
ture, carbon dioxide, and orbital eccentricity. 
Science 289:1,897–1,901, https://doi.org/10.1126/
science.289.5486.1897.

Sluijs, A., S. Schouten, M. Pagani, M. Woltering, 
H. Brinkhuis, J.S. Sinninghe Damsté, G.R. Dickens, 
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