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INTRODUCTION
The Antarctic Ice Sheet is the largest com-
ponent (by volume) of Earth’s cryosphere. 
It has a major impact on both regional and 
global climate through the modification 
of surface albedo and by altering atmo-
sphere and ocean circulation (DeConto 
et al., 2007; Bintanja et al., 2013; Colleoni 
et  al., 2018; Golledge et  al., 2019). The 
Antarctic Ice Sheet is the largest store of 
freshwater on Earth and has the potential 
to raise global sea level by 58 m if com-
pletely melted. Today, it receives 2,100 Gt 
of annual snowfall that is balanced by 
mass lost from ice flowing under grav-
ity toward the coast, where it is removed 
approximately equally by ocean melting 
of floating ice shelves and the calving of 
icebergs (Rignot et al., 2019). Unlike the 
Greenland Ice Sheet, which has an exten-
sive ablation zone, there is minimal melt-
ing on the Antarctic Ice Sheet surface at 
present, although surface meltwater is 
found in small areas (Trusel et al., 2013; 
Kingslake et  al., 2017; Lenaerts et  al., 
2017; Banwell et al., 2019).

Much of the ice sheet (~23 m sea level 
equivalent) is “marine,” meaning that 
it sits on bedrock currently below sea 
level (Fretwell et  al., 2013) and is often 
buttressed by floating ice shelves. There 
are concerns about the role ocean warm-
ing plays regarding the future stability of 
these parts of the ice sheet (Alley et  al., 

2015). Of particular concern is the stabil-
ity of the smaller West Antarctic Ice Sheet 
if its supporting ice shelves should be lost 
(Mercer, 1978; Fürst et  al., 2016; Pattyn, 
2018). There is also growing apprecia-
tion that marine portions (~19 m sea 
level equivalent) of the much larger East 
Antarctic Ice Sheet may be vulnerable to 
ocean warming (e.g., Rintoul et al., 2018; 
Wilson et  al., 2018). Although today 
~40% of the Antarctic Ice Sheet volume 
sits on bedrock below sea level, the frac-
tion that is marine has increased through 
time. This increase is a result of tecton-
ics and glacial evolution, which carved 
Antarctica’s landscapes, moved sediment 
to the expanding continental margins, 
and depressed the bedrock (Bart, 2003; 
Young et  al., 2011; Colleoni et  al., 2018; 
Paxman et al., 2018). Recent reconstruc-
tions of past Antarctic bedrock topog-
raphy for a number of intervals show 
how the marine fraction of Antarctica 
has changed through time (Figure 1; 
Paxman et al., 2019).

The remainder of the Antarctic Ice 
Sheet is “terrestrial,” that is, grounded 
on bedrock presently above sea level, so 
its stability is largely controlled by direct 
atmospheric melting and buttressing by 
surrounding ice and the basal topogra-
phy (e.g.,  Morlighem et  al., 2020). Most 
importantly, the marine sectors of the 
ice sheet have the potential to lose mass 

through ocean-driven melting and ice-
berg calving, as well as surface melting, 
whereas the terrestrial sectors lose mass 
when surface melting exceeds snowfall, 
or by ice flow. Whether retreat occurs in 
marine or terrestrial sectors can affect the 
rate at which mass is lost and therefore 
the rates at which the ice sheet contrib-
utes to sea level change. Understanding 
the style of past ice sheet retreat is there-
fore critical to understanding possible 
rates of future sea level rise (DeConto 
and Pollard, 2016; Rintoul et  al., 2018; 
Dowdeswell et al., 2020; Golledge, 2020). 

Our current understanding of the for-
mation and subsequent waxing and wan-
ing of the Antarctic Ice Sheet on million- 
year timescales is largely based on marine 
sediment records recovered over the 
past 50 years through scientific ocean 
drilling (e.g.,  Kennett and Shackleton, 
1976; Barker et al., 1999; Expedition 318 
Scientists, 2010). A recently published 
review in Oceanography focused on how 
scientific ocean drilling of marine sedi-
mentary records from the Antarctic con-
tinental margin has revolutionized under-
standing of the past behavior of the 
Antarctic Ice Sheet (Escutia et al., 2019). 
The ice proximal records discussed pro-
vide critical data in support of far-field 
records, which track the pacing of ice sheet 
change through changes in global ice vol-
ume and sea level, and also provide infor-
mation on the climate drivers that caused 
these changes (e.g., Littler et al., 2019). 

Although Antarctica was partially gla-
ciated during intervals of the Eocene, 
with glaciation in the high Gamburtsev 
Mountains (Rose et  al., 2013) and gla-
ciers reaching the coast during cooler 
intervals (Gulick et  al., 2017), the onset 
of continental- sized glaciation occurred 
during the earliest Oligocene (Miller et al, 
1991; Zachos et  al., 1992). Immediately 
after the Eocene-Oligocene boundary, 
~32.8 million years ago, a continental- 
scale ice sheet reached the coast of 
Antarctica (Stocchi et  al., 2013; Galeotti 
et  al., 2016). Throughout the Oligocene 
and into the early Miocene, ice advanced 
and retreated across the expanding con-
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tinental shelf, but the magnitude of 
these oscillations is still subject to debate 
(McKay et  al., 2016; De Vleeschouwer 
et al., 2017). Although not a direct mea-
sure of ice volume, far-field reconstruc-
tions based on oxygen isotope records 
from benthic foraminifera suggest cycles 
similar in magnitude to that of modern 
day Antarctic Ice Sheet volume (de Boer 
et al., 2010; Liebrand et al., 2017; Miller 
et  al., 2020). The pacing of this early 
Antarctic Ice Sheet gradually shifted to a 
stronger sensitivity to obliquity (Earth’s 
axial tilt) toward the mid and then late 
Miocene, as there was increased ice-
ocean interaction (Levy et al., 2019). The 
ice sheet retreated substantially during 
the middle Miocene as atmospheric and 
ocean temperatures increased, and in this 
warmer and wetter climate, woody plants 
grew on the Antarctic coast (Warny et al., 
2009; Lear et  al., 2010; Feakins et  al., 
2012; Levy et al., 2016; Pierce et al., 2017; 
Sangiorgi et  al., 2018). Immediately fol-
lowing this period, across the middle 
Miocene climate transition (~14 million 
years ago), the climate cooled and the ice 
sheet expanded and became more stable 
(Shevenell et  al., 2004, 2008; Holbourn 
et  al., 2005; Lewis et  al., 2008). In the 
more recent geologic past, the Antarctic 
Ice Sheet likely retreated during warm 
intervals of the mid-Pliocene and during 
some of the warmest interglacials of the 
late Pleistocene, although this ice was 
likely sourced only from the marine sec-
tors (Cook et  al., 2013; Shakun et  al., 
2018; Wilson et al., 2018). High sea lev-
els during the last interglacial are often 
interpreted as evidence for retreat of 
the Antarctic Ice Sheet, in particular, 
marine sectors of the West Antarctic 
Ice Sheet (Dutton et  al., 2015; Rohling 
et al., 2019); however, direct evidence for 
the loss of the West Antarctic Ice Sheet 
during the last interglacial is still lack-
ing (e.g.,  Turney et  al., 2020). Note that 
aspects of this overview are disputed—
notably, the magnitude of past Antarctic 
Ice Sheet retreat has generated   many vig-
orous debates (e.g., Barrett, 2013). 

Here, we focus on the separate chal-
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FIGURE 1. (a) Present-day Antarctica. Blue areas indicate marine ice, with topography currently 
below sea level, and white areas indicate terrestrial ice, grounded on topography above sea level. 
The black line is the present-day grounding line, the transition between grounded and floating 
ice. Gray flowlines indicate direction of surface ice flow from an ice sheet model simulation. AP = 
Antarctic Peninsula. ASB = Aurora Subglacial Basin. CG = Crane Glacier. PIG = Pine Island Glacier. 
WSB = Wilkes Subglacial Basin. (b) The composite oxygen isotope record from deep-sea foramin-
ifera reveals the general history of the evolution of the Antarctic Ice Sheet, with higher values for 
increasing ice volume (Zachos et al., 2008). EOT = Eocene-Oligocene transition. OMT = Oligocene-
Miocene transition. MMCO = Mid-Miocene climatic optimum. MMCT = Middle Miocene climate tran-
sition. MPWP = Mid-Pliocene warm period. (c) Reconstructions of past marine (blue) and terrestrial 
(white) ice distribution on Antarctica for different time intervals (Paxman et al., 2019). (d) Composite 
of selected marine-based proxy CO2 reconstructions (Pearson et  al., 2009; Foster et  al., 2012; 
Zhang et al., 2013; Greenop et al., 2014, 2019; Martínez-Botí et al., 2015; Anagnostou et al., 2016). 
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lenges of simulating retreat of the marine 
and terrestrial sectors of the ice sheet by 
drawing on two intervals: (1) the mid-
dle Miocene, an interval that occurred 
~15 million years ago, when atmospheric 
CO2 concentrations were similar to those 
projected for the coming decades under 
intermediate emissions pathways (Foster 
et al., 2012), and (2) the mid-Pliocene, an 
interval that occurred ~3 million years 
ago and likely the last time that atmo-
spheric CO2 concentrations were as 
high as they are today (Cook et al., 2013; 
Martínez-Botí et al., 2015; Shakun et al., 
2018). There is evidence for retreat of the 
terrestrial Antarctic Ice Sheet during the 
middle Miocene (e.g., Miller et al., 2020), 
and it is likely that there was retreat of 
the marine Antarctic Ice Sheet during the 
mid-Pliocene (Cook et al., 2013; Shakun 
et  al., 2018; Dumitru et  al., 2019; Grant 
et al., 2019). Note that in the rest of this 
paper, we purposely avoid distinction 
between the East and West Antarctic Ice 
Sheets, both of which contain terrestrial 
and marine sectors. 

TERRESTRIAL ICE SHEET 
RETREAT: COMPLETE COLLAPSE 
OF THE ANTARCTIC ICE SHEET 
DURING THE MIDDLE MIOCENE? 
Records from around the Antarctic mar-
gin (Levy et al., 2016; Gulick et al., 2017; 
Pierce et al., 2017) and from far-field sea 
level and ice volume estimates (Shevenell 
et  al., 2008; Miller et  al., 2020) support 
retreat of the Antarctic Ice Sheet during 
the warm middle Miocene. The change 
in ice mass led to sea level change on the 
order of ~60 m (Kominz et al., 2008; John 
et al., 2011) and fluctuations in the oxy-
gen isotope composition of seawater, an 
estimate of ice volume, of ~0.5‰ (Lear 
et al., 2010). These conditions would have 
required major retreat of the terrestrial- 
based ice sheet through surface melting—
possibly complete collapse of the ice sheet 
(Pekar and DeConto, 2006; Miller et al., 
2020). However, simulating this retreat 
with coupled climate and ice sheet mod-
els with boundary conditions appropriate 
for the middle Miocene has been chal-

lenging (Pollard and DeConto, 2005). 
The key middle-Miocene differences in 
boundary conditions that impact the ice 
sheets are differences in astronomical 
parameters, paleogeography (although 
these differences are relatively small com-
pared with modern), and greenhouse 
gas concentrations. To generate wide-
spread surface melting and retreat of 
the terrestrial Antarctic Ice Sheet with 
global circulation model (GCM)-forced 
ice sheet models requires a much larger 
increase in atmospheric CO2 than can 
be reconstructed from proxy records 
(Greenop et al., 2014). 

The growth of the Antarctic Ice Sheet 
cooled the Antarctic continent’s climate. 
Principally, increased albedo reflected 
more sunlight, and the atmospheric lapse 
rate led to cooling of the ice surface as 
the elevation of the growing ice sheet 
increased (Huybrechts, 1993). These 
strong positive feedbacks mean that sim-
ulating retreat of the Antarctic Ice Sheet 
requires a magnitude of warming that is 
inconsistent with proxy reconstructions 

of atmospheric CO2 during the middle 
Miocene (Pollard and DeConto, 2005; 
Langebroek et  al., 2009). Although sim-
ulations of the onset of Antarctic glaci-
ation are largely consistent with proxy 
reconstructions (DeConto and Pollard, 
2003; Pearson et  al., 2009), the simu-
lated deglacial CO2 threshold is much 
higher than indicated by proxy records 
and generally outside the error range 
of these reconstructions (Foster et  al., 
2012; Foster and Rohling, 2013; shown 
in red on Figure 2). Following its incep-
tion, the simulated Antarctic Ice Sheet 
is therefore much more stable than the 
geologic record suggests. This is a fun-
damental problem because models that 
cannot capture past collapse will be con-
servative with respect to projections of 
future sea level change. Proposed solu-
tions to this conundrum have targeted 
(a) the proxy records, for example, CO2 
was higher than thought in the middle 
Miocene (Goldner et  al., 2014), or we 
have been misinterpreting ice volume 
proxies; (b) climate and ice sheet mod-
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FIGURE 2. Reconstruction of regional sea level against proxy CO2 for the past 40 million years in 
gray (Foster and Rohling, 2013, and references therein). Sea level reconstructions are based on a 
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ice sheet physics.
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els simulating an overly stable ice sheet 
(Pollard and DeConto, 2005; Langebroek 
et  al., 2009); (c) a missing forcing, for 
example, a larger role of changes in ocean 
gateways and changes in paleogeography; 
or (d) some combination of these effects 
(e.g.,  Langebroek et  al., 2009; Gasson 
et al., 2016b; Stap et al., 2019).

The large ice volume changes in the 
Miocene Climate Optimum are based 
on assumptions inherent to our under-
standing of the oxygen isotope composi-
tion of benthic foraminifera, which pro-
vides a record of both global ice volume 
and deep ocean temperature that must be 
deconvolved (Shackleton, 1967). Multiple 
approaches have been used to extract ice 
volume from the benthic oxygen isotope 
records, including using an indepen-
dent temperature proxy (e.g.,  Shevenell 
et  al., 2008; Lear et  al., 2010), estimat-
ing ice volume to temperature parti-
tioning (e.g.,  Liebrand et  al., 2017), and 
inverse modeling (de Boer et  al., 2010). 
Langebroek et al. (2010) noted that pro-
ducing an accurate ice volume record also 
requires knowledge of the changes in oxy-
gen isotope composition of the ice sheets 
through time. Indeed, such changes, 
which are caused by changes in atmo-
spheric moisture transport and ice sheet 
height, could lead to an overestimation 
of past ice volume changes (Winnick and 
Caves, 2015). Reconstructions that do not 
take this process into account (e.g., Miller 
et al., 2020) should be viewed with cau-
tion. Similarly, sea level reconstructions 
from passive continental margins may 
also contain signals that are caused by 
mantle dynamic topography rather than 
eustasy caused by the waxing and waning 
of the ice sheets (Moucha et al., 2008). 

Alternatively, if ice-proximal recon-
structions of past ice sheet extent and 
past estimates of ice volume change are 
deemed reliable, and sea level did rise and 
fall by as much as 60 m, then it is import-
ant to determine why current climate and 
ice sheet models are unable to produce 
this level of dynamism. Improved repre-
sentation of ice sheet–climate feedbacks 
is one way of increasing ice sheet dyna-

mism. Recent simulations that used an 
asynchronous ice sheet–climate coupling 
and that accounted for changes in ice 
sheet oxygen isotopes are a better match 
to benthic oxygen isotope estimates 
and records from the Antarctic margin 
(Gasson et al., 2016b; Levy et al., 2016), 
although they still predict a smaller sea 
level amplitude (~35 m) than some sea 
level reconstructions (John et  al., 2011; 
Miller et  al., 2020). These simulations 
also include a mechanism for the struc-
tural failure of marine ice cliffs, discussed 
in more detail below.

The problem of simulating the retreat 
of terrestrial Antarctic ice is linked to 
another well-studied model-data dis-
agreement in paleoclimate (Barron, 
1983)— the reduced temperature gradient 
between the poles and the tropics during 
warm periods and, in particular, the 
strong polar warming shown by tempera-
ture proxies that is generally not matched 
in coupled ocean-atmosphere model sim-
ulations (cf. Huber and Caballero, 2011; 
Sagoo et  al., 2013). Successive genera-
tions of GCMs have failed to capture this 
polar amplification (Lunt et al., 2012); the 
models that come closest to the proxies 
require unrealistically high CO2 forcing 
or model tuning. However, recent results 
from the latest generation of GCMs show 
promise for resolving this long-standing 
problem (Lunt et al., 2020).

The reduced equator-to-pole tem-
perature gradient is perhaps best asso-
ciated with the early Eocene, a warm 
interval when there were no ice sheets 
on Antarctica. Improvements to climate 
model cloud physics has led to enhanced 
Eocene warming at high latitudes 
through shortwave cloud feedbacks; 
these results are closer to proxy-derived 
temperature reconstructions at high lat-
itudes (Zhu et  al., 2019), although they 
may now be too warm in the tropics (Zhu 
et  al., 2020). The new generation of cli-
mate models includes a subset of models 
that have much higher climate sensitiv-
ity (the amount of warming for a dou-
bling of atmospheric CO2) than earlier 
models, in part because of developments 

in the representation of cloud physics 
(Zelinka et  al., 2020). Paleoclimate data 
are a key test as to whether this higher 
climate sensitivity is plausible or not 
(Zhu et al., 2020).

It remains to be seen how the presence 
of significant ice on Antarctica affects 
polar amplification and shortwave cloud 
feedbacks in this new generation of cli-
mate models, something missing in stud-
ies of the early Eocene. Another model-
ing target is the Miocene. The advantage 
of focusing on the Miocene is that it is an 
interval during which the global conti-
nental configuration was fairly similar to 
today—importantly including the pres-
ence of ice on Antarctica (Goldner et al., 
2014). It is possible that with greater polar 
amplification there will be enhanced sur-
face melting and a strong surface mass 
balance feedback as the ice elevation 
decreases and melt accelerates at a lower 
atmospheric CO2 threshold than previ-
ously simulated. Idealized simulations 
have shown that the ice sheet hysteresis 
problem can be reduced with an increase 
in polar amplification, although a mech-
anism to drive this increase is lacking 
(Langebroek et  al., 2009). It is therefore 
an exciting time to reassess the long-
standing problem of simulating past 
changes to the terrestrial sectors of the 
Antarctic Ice Sheet.

There is still much work to be done to 
understand how the Antarctic Ice Sheet 
responded to past climate changes and, 
in particular, what drove past retreat of 
terrestrial ice. Advances will come from 
a combined approach targeting both far-
field and ice-proximal data (Kennicutt 
et  al., 2015). Clearly defined model-
ing targets, such as quantitative ice- 

volume estimates or locations with evi-
dence for meltwater, are incredibly 
useful (e.g.,  Lewis et  al., 2006; Warny 
et al., 2009; Mudelsee et al., 2014; Gulick 
et al., 2017). The recent retrieval of new 
ice-proximal records from three sectors 
of Antarctica as part of the International 
Ocean Discovery Program are already 
providing some of these key records 
(Escutia et al., 2019; McKay et al., 2019). 
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If the retreat of the terrestrial Antarctic 
Ice Sheet through surface melting did 
occur under modest atmospheric CO2 
concentrations, we may be forced to 
reassess long-term future projections (on 
millennial timescales) of the response of 
the ice sheet to anthropogenic warming 
(e.g., Winkelmann et al., 2015). 

MARINE ICE SHEET RETREAT: 
ICE SHEET RESPONSE TO 
MID-PLIOCENE WARMTH
During the middle Miocene Climate 
Transition, the climate cooled and the 
terrestrial Antarctic Ice Sheet became 
more stable (Kennett, 1977; Shevenell 
et al., 2004). This scenario is supported by 
cosmogenic isotope data from the Ross 
Sea suggesting that for the past 8 million 
years there has been no retreat of the ter-
restrial Antarctic Ice Sheet (at least of the 
sectors draining through the Ross Sea) 
that would expose land (Shakun et  al., 
2018). Any ice loss that raised sea lev-
els during this interval would have come 
from the marine sectors of Antarctica, 
such as the West Antarctic Ice Sheet, 
the large basins of East Antarctica, and 
the Wilkes and Aurora subglacial basins 
(shown in Figure 1). As mentioned pre-
viously, these sectors contain enough ice 
to raise global sea level by ~23 m. This 
figure is similar to some estimates of sea 
level rise during the mid-Pliocene warm 
interval (3.0–3.2 million years ago; Miller 
et  al., 2012), the last time atmospheric 
CO2 concentrations exceeded 400 ppm 
(Martínez-Botí et  al., 2015). The sea 
level maximum during the mid- Pliocene 
remains poorly constrained, with large 
uncertainties (Dutton et  al., 2015). 
However, there is physical evidence for 
substantial ice retreat in the marine sec-
tors of East Antarctica (Cook et al., 2013) 
as well as far-field evidence for >10 m sea 
level fluctuations (Dumitru et  al., 2019; 
Grant et al., 2019).

Marine ice sheets have long been of 
interest because of their potential vulner-
ability to ocean warming (Mercer, 1978). 
A grounded ice sheet and a floating ice 
shelf connect at the grounding line. The 

rate of ice flow from grounded to float-
ing ice is very sensitive to the ice thick-
ness at the grounding line. Analytical 
solutions suggest that the ice flow across 
the grounding line increases highly non-
linearly in response to increases in the 
grounding line ice thickness. In places 
where the ice sheet bed is on a slope that 
deepens upstream of the grounding line, 
including in the large marine basins men-
tioned above, the geometry of the ice 
sheet creates the potential for a runaway 
retreat (Schoof, 2007). As the grounding 
line retreats backward across this deep-
ening bed, a positive feedback called the 
“Marine Ice Sheet Instability” (MISI) 
develops because of the strong increase 
in ice flow (Mercer, 1978). Restabilization 
only occurs when the profile of the bed 
topography changes and the grounding 
line retreats to sufficiently shallow topog-
raphy (Figure 3a; Alley and Joughin, 
2012). The ability for ice sheet models 
to correctly simulate the MISI is a key 
test conducted in inter-model compari-
son projects (Cornford et al., 2020). The 
mid-Pliocene warm interval could be 
considered a real-world test of marine 
ice sheet behavior, with the caveats that 
the forcing and the response both have 
uncertainties (DeConto and Pollard, 
2016; Dolan et al., 2018). 

Similar to the problem of simulat-
ing retreat of the terrestrial Antarctic Ice 
Sheet, model simulations have largely 
failed to reproduce retreat in marine sec-
tors of the ice sheet during the Pliocene. 
This is true for a range of ice sheet mod-
els (although they are all relatively low- 
resolution models with simplified phys-
ics) and climate model forcing (de Boer 
et al., 2015; Dolan et al., 2018). The only 
models that have successfully simulated 
retreat have required additional processes 
that enhance losses from ocean melt-
ing (Mengel et  al., 2016; Golledge et  al., 
2017), surface melting (Hill et al., 2007), 
or calving (Pollard et al., 2015). We next 
review each of these approaches and their 
potential limitations. 

Golledge et al. (2017) simulated retreat 
of the Antarctic Ice Sheet by ~9 m during 

the early Pliocene. This model includes a 
parameterization that affects ocean melt-
ing at the grounding line. The “sub-grid 
melt parameterization” applies a reduced 
ocean melt rate proportional to the frac-
tion of model cells that are floating ver-
sus grounded (Figure 3c). This is con-
troversial because it applies an ice shelf 
melt rate, albeit reduced, to all parts of 
the cell, including the grounded frac-
tion that is upstream of the grounding 
line. This parameterization is used to 
overcome the limitations of using low- 
resolution ice sheet models in order to 
perform long-duration simulations that 
can be compared with paleoclimate data. 
It also builds on the increasing recogni-
tion that ice-ocean interactions occur 
over a broader grounding “zone” rather 
than a fixed grounding line. Similar sub-
grid schemes are used to calculate the ice 
flux across the grounding line (Pollard 
and DeConto, 2009). However, tests of 
the sub-grid melt parameterization with 
higher-resolution models that are able to 
resolve the grounding line in more detail 
show that this scheme may overestimate 
mass loss from ice shelf melting (Seroussi 
and Morlighem, 2018). The sensitivity 
of ice sheet simulations to the inclusion 
of this parameterization can be large—
the Antarctic Ice Sheet sea level projec-
tions for the emissions scenario RCP8.5 
of Golledge et  al. (2015) vary from 
1.6 m to 3.0 m by 2300, with and without 
sub-grid melt. 

Hill et  al. (2007) forced an ice sheet 
model with constant climate forcing from 
a climate model run with an already par-
tially retreated Antarctic Ice Sheet. This 
simulation resulted in retreat of the 
Antarctic Ice Sheet equivalent to ~9 m 
of sea level, driven by surface melting. 
This study is one example of a common 
approach to ice sheet modeling stud-
ies in which the ice sheet model and the 
climate model are not directly coupled. 
Therefore, the global surface topography, 
including the ice sheets, is prescribed in 
the climate model and large differences 
can develop between ice sheet extent in 
the ice sheet model and in the climate 
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model. Any feedbacks from the retreat of the ice 
sheet are applied to the climate forcing before 
the ice sheet has retreated. There is therefore 
concern that the experimental design led to this 
result. Indeed, tests of alternative climate model 
forcing, without a collapsed ice sheet, do not 
produce a similar magnitude of retreat (Dolan 
et  al., 2018). Approaches to forcing ice sheet 
models are evolving as more attention is paid to 
direct or asynchronous climate coupling to cap-
ture feedbacks between the ice sheets, the ocean, 
and the atmosphere (e.g., Golledge et al., 2019). 

Pollard et  al. (2015) introduced a scheme 
for the structural failure of large marine- 
terminating ice cliffs in combination with the 
hydrofracture of ice shelves. This scheme was 
based on earlier work of Bassis and Walker 
(2012) and is called “Marine Ice Cliff Instability” 
(MICI; DeConto and Pollard, 2016). Based on 
theoretical work, Pollard et  al. (2015) intro-
duced an upper limit for the height above water 
level that ice cliffs can reach. Beyond this limit, 
stresses exceed the strength of ice and there 
is brittle failure of the ice cliff. Ice cliffs can 
form when the buttressing ice shelves are rap-
idly removed. In the model, this is done using 
a scheme for hydrofracturing, which is caused 
by the rapid calving of ice shelves when melt-
water and rain drain into surface crevasses. This 
process is similar to the disintegration of the 
Larsen B ice shelf, which occurred very rapidly 
(in ~1 month). Once an ice cliff fails, as long as 
the grounded ice is thick enough to keep failing, 
a runaway retreat can occur (Figure 3b). 

There are many uncertainties associated with 
MICI, including the potential rate of ice cliff col-
lapse, what is the failure threshold for subaerial 
ice cliffs, and whether ice shelves can be removed 
fast enough to generate sheer cliffs before ice 
flows into a more stable state (Bell et al., 2017; 
Clerc et  al., 2019; Parizek et  al., 2019; Robel 
and Banwell, 2019). Understanding the poten-
tial significance of MICI is limited by a lack of 
observations because there are only a few loca-
tions where MICI-like behavior occurs. Most 
Antarctic glaciers that have bedrock geometry 
favorable for MICI are currently protected by 
ice shelves, with the possible exception of Crane 
Glacier. In Greenland, the calving fronts of 
Helheim and Jakobshavn Isbræ Glaciers termi-
nate with subaerial ice cliffs that reach ~100 m 
in height (Meredith et al., 2019). Observation of 

(a) Marine Ice Sheet Instability (MISI)

(b) Marine Ice Cliff Instability (MICI)

(c) Sub-Grid Grounding Line Parameterization

FIGURE 3. Schematics of processes discussed in the text. (a) Marine ice sheet insta-
bility on a retrograde slope. (b) Marine ice cliff instability (DeConto and Pollard, 2016). 
(c) The sub-grid grounding line melt parameterization (adapted from Seroussi and 
Morlighem, 2018).
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calving events at these glaciers is ongoing 
to improve understanding of MICI. 
However, these glaciers are situated in 
confined valleys and are not perfect ana-
logues to the much wider calving fronts 
of Antarctica, such as that of Thwaites 
Glacier (Parizek et al., 2019). This active 
area of research has been stimulated in 
part by the rapid rates and high magni-
tudes of future sea level change in simu-
lations that include these processes—up 
to ~8 m by 2300 under emission scenario 
RCP8.5 (DeConto and Pollard, 2016). 

An alternative take on the Pliocene 
sea level problem is that retreat was con-
fined to the marine sectors of the West 
Antarctic Ice Sheet. This scenario would 
be consistent with model predictions 
that do not include MICI (de Boer et al., 
2015). When the uncertainties regarding 
Pliocene sea level estimates are interro-
gated more closely, this scenario is a possi-
bility for at least some methods (Winnick 
and Caves, 2015; Gasson et  al., 2016a). 
Indeed, Edwards et al. (2019) suggest that 
the simulations of DeConto and Pollard 
(2016) that do not include MICI and ice 
shelf hydrofracture are consistent with 
the lowest bounds on Pliocene sea level. 
The lack of consensus on the Pliocene sea 
level maximum means that this warm cli-
mate interval is currently of debated util-
ity in discriminating between different 
ice sheet physics (Raymo et  al., 2018). 
This situation was improved recently by 
the publication of two new studies on 
Pliocene sea level, one concerning over-
growths on speleothems measured in 
caves on Mallorca (Dumitru et al., 2019) 
and another the amplitude of glacial- 
interglacial sea level cycles based on 
grain-size analysis of cores drilled in New 
Zealand (Grant et al., 2019). Both of these 
support retreat of marine ice throughout 
Antarctica during the Pliocene. However, 
the uncertainties are still large and may 
not alter the conclusions of Edwards 
et al. (2019). Better constrained sea level 
estimates of the mid-Pliocene warm 
period remain critically important to 
resolving the debate over the stability of 
Antarctica’s marine ice. 

OUTLOOK AND CONCLUSIONS
We have described the broad chal-
lenges that currently exist in simulat-
ing the response of the Antarctic Ice 
Sheet to climate changes in the geo-
logic past. In sum, proxy records suggest 
greater ice sheet instability than is often 
captured by ice sheet modeling stud-
ies (Pollard and DeConto, 2005; de Boer 
et  al., 2015). Maintaining a critical view 
of both data- and model-based histo-
ries of the Antarctic Ice Sheet is critical 
for connecting, and ultimately bridging 
the two related but often isolated disci-
plinary communities. We have focused 
on the separate challenges of simulating 
retreat of the “terrestrial” and “marine” 
sectors of the ice sheet and the different 
styles and mechanisms of ice sheet retreat 
during the warm intervals of the middle 
Miocene and the mid-Pliocene. These 
intervals were chosen as they arguably 
best characterize the model-data mis-
match and provide clear examples of how 
new modeling approaches are probing 
longstanding mysteries. 

Many other avenues not mentioned in 
this paper should be further explored by 
the next generation of ice sheet modelers. 
The role of opening and widening ocean 
gateways, in particular Drake Passage, 
in the inception, fluctuations, and per-
sistence of ice on Antarctica remains 
debated (Figure 1; Kennett, 1977; Goldner 
et  al. 2014). Coupling of ice sheet and 
solid Earth models demonstrates how 
and why different sectors of Antarctica 
may have become more or less prone to 
retreat through time (Austermann et al., 
2015; Whitehouse et al., 2019). Ice sheets 
exert local influences on sea level and the 
surrounding ocean that can affect their 
stability, and these processes have only 
recently been included in ice sheet mod-
eling studies (Golledge et al., 2019). Novel 
observations collected by marine mam-
mals near calving fronts (e.g.,  Treasure 
et  al., 2017) and autonomous vehicles 
under floating ice shelves (e.g.,  Spears 
et al., 2016) are challenging model param-
eterizations of the interactions between 
warm ocean water and the ice sheet. Such 

techniques will be critical for under-
standing active subglacial meltwater fea-
tures (e.g.,  Drews et  al., 2017) that may 
extend over a kilometers- wide “ground-
ing zone” beneath the grounded ice sheet 
(e.g., Christianson et al., 2016). As obser-
vations become more detailed, we also 
find small-scale geological features that 
can be directly linked to ice sheet pro-
cesses and thus offer tantalizing targets for 
models—for example, the observation of 
corrugation ridges in Pine Island Trough 
(Wise et  al., 2017), “ladders and rungs” 
on the seafloor of the eastern Antarctic 
Peninsula (Dowdeswell et al., 2020), and 
paleo-meltwater channels in the Ross 
Sea region (Lewis et  al., 2006; Simkins 
et al., 2017) and along the Sabrina Coast 
(Gulick et al., 2017). In these realms and 
others, the convergence of geologic data, 
new observations, and continental-scale 
models offers many productive paths 
forward for understanding past fluctu-
ations of the Antarctic Ice Sheet. In fur-
ther addressing the data-model incon-
sistencies highlighted in this paper, new 
developments in ice sheet models may 
reveal still more mysteries. Close col-
laboration between data- and model- 
focused communities will remain critical 
for moving forward. 
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