Bear Glacier flowing into the Gulf of Alaska at the
mouth of Resurrection Bay near Seward, Alaska.
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Any migration during the Last Glacial Maximum
and early deglaciation period may have been facilitated
by altered coastal currents, which would have favored

such travel for only a few millennia.

ABSTRACT. Early migrants to the Americas were likely seaworthy. Many archae-
ologists now agree that the first humans who traveled to the Americas more than
15,000 years before present (yr BP) used a coastal North Pacific route. Their initial
migration was from northeastern Asia to Beringia where they settled for thousands
to more than ten thousand years. Oceanographic conditions during the Last Glacial
Maximum (18,000-24,000 yr BP) would have enhanced their boat journeys along
the route from Beringia to the Pacific Northwest because the influx of freshwater that
drives the opposing Alaska Coastal Current was small, global sea level was at least
120 m lower than at present, and necessary refugia existed. The onset of the Bolling-
Allered warming period, between 15,000 yr BP and 14,000 yr BP, accelerated the
melting of the Cordilleran Ice Sheet. Rapid increases in freshwater influx would have
hindered travel along the coast of Alaska and British Columbia as global sea levels rose
14-18 m in 340 years, submerging refugia that had been used as haul-out locations. The
northward-flowing Alaska Coastal Current accelerated, making southward movement
along the coast less likely. An increase in the challenges to migration beginning with
the Bolling-Allered until the Younger Dryas (12,800-11,600 yr BP) likely occurred and

could have resulted in a migration hiatus.

INTRODUCTION

Possible routes taken by the first humans
entering North America from northeast-
ern Asia are a lively topic of discussion
within the archaeological community.
Two routes are most commonly pro-
posed. One is an overland route across
the Bering land bridge and subsequently
between the Cordilleran and Laurentide
Ice Sheets, and the second is a coastal
route along the perimeter of the North
Pacific Ocean from Beringia, a grassy tun-
dra region that stretched between what
are now Alaska and eastern Siberia and
included some parts of each. Although
this controversy has not yet been fully
resolved, many in the archaeology com-
munity now agree that the first human
inhabitants reached the Americas via the
coastal route before at least 14,600 years
before present (yr BP; Wheat, 2012; Braje

et al., 2017). Current research continues
to support this hypothesis (e.g., Davis
et al., 2019; Waters, 2019), even though
until recently there was an absence of
unambiguous artifacts to support the
coastal route (Potter et al., 2018; McLaren
et al, 2019). Braje et al. (2018) argued
that such artifacts associated with the
ocean route may be present though not
yet found, as they would most commonly
be many meters below current sea level.
The focus of this paper is on the roles that
oceanographic conditions played in ini-
tially helping and later hindering these
early marine travels to the Americas.

EARLY SETTLEMENT IN BERINGIA
DNA-based evidence and controver-
sial archaeological findings suggest that
settlement in eastern Beringia began
by about 24,000 yr BP (Bourgeon et al.,

2017; Moreno-Mayar et al., 2018; Waters,
2019), but there is no evidence for fur-
ther resettlement at that time south-
ward through eastern Beringia (Alaska,
Yukon Territory). The new inhabitants to
North America likely walked from north-
eastern Asia into Alaska because global
sea level at that time was approximately
120 m lower than it is today. However,
their path to the south was blocked by
the Cordilleran Ice Sheet (CIS; Erlandson
and Braje, 2011; Menounos et al., 2017),
which extended from the present-day
Aleutian island chain along the Gulf
of Alaska coast south to about Seattle,
Washington, and to the east to the west-
ern margin of the Laurentide Ice Sheet
(Erlandson et al., 2008).

Coastal travel to Beringia was also pos-
sible, as supported by evidence of “island
hopping” in the western North Pacific,
consisting of obsidian trade, settlement,
and shell middens in the vicinity of Japan
as far back as 35,000 yr BP (Erlandson
and Braje, 2011; Braje et al., 2019). Early
migrations by boat along the North Pacific
rim following the route inhabited by sim-
ilar marine ecosystems are plausible.
Such a coastal route is logical because the
migrants would follow their food supply.
The route, often referred to as the “kelp
highway;” is found along the Pacific coast
from Japan to Mexico (Erlandson et al.,
2007, 2015; Sutton, 2018). Archaeological
and genomic data are also consistent
with the concept that the Americas were
colonized between 24,000 yr BP and
15,000 yr BP by humans who followed
this North Pacific coastal corridor from
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Northeast Asia to the Americas (Braje
et al., 2018). Walking for great distances
along the shores of the Gulf of Alaska is
virtually impossible today, and it would
have been worse where glacial ice fields
extended to the shoreline. The only pos-
sible southward path to the Americas
was by water.

According to Erlandson et al. (2015),
the coastal route was free of major
obstructions after ~16,000 yr BP and
presented few geological restrictions
to human settlement. However, tech-
nological developments and oceano-
graphic conditions might have affected
the subsequent timing of early settlement
of the Americas.

BOAT TECHNOLOGY

AND REFUGIA

Migration south of Beringia required
vessels that could carry people and their
essential supplies through relatively cold
waters and moderate sea states. Johnstone
(1988, p. 5) surmises “Man undoubtedly
used water-craft during the Paleolithic
period, but we cannot say exactly what
type of craft these were” Evidence of
boat travel is based on obsidian use by
people who traveled between Taiwan
and Japan as long ago as 35,000 yr BP
(Tsutsumi, 2007). However, open rafts
or floating logs would not have been suf-
ficient for human travel in cold, high-
latitude waters. Settlement of the west-
ern North Pacific along the Kuril Islands
at 17,000 yr BP would have required
paddling between islands that averaged
26 km apart, with one pair of islands
66 km apart (Erlandson and Braje, 2011).
Improved development of boat tech-
nology during the late Pleistocene era
(ca. <25,000 years BP) was critical.

These early vessels must have been
made from materials of local origin.
The types of Pleistocene boats used near
Japan could have been dugout canoes
constructed using trees available from
local forests. The scarcity of trees in
Beringia required that the vessels would
have been skin boats constructed from
the hides of mammals, probably marine,
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for the outer shell and mammal bones
or driftwood for their structural mem-
bers (Dixon, 2000). Only primitive tools
would have been necessary and an abil-
ity to sew skins together, a skill that the
inhabitants of this relatively cold climate
would have already possessed (Hoffecker,
2005), because needles and thread were
necessary for their clothing. This boat
development by the maritime population
in Beringia is reasonable, though no his-
torical evidence of it exists today because
these materials are highly biodegradable.
The skin boats, similar to modern kay-
aks and umiaks, would have been quite
seaworthy, but would have had a seri-
ous duration limitation because the skins
would have become waterlogged after
24-36 hours in the sea (Braund, 1988).
Assuming constant paddling averaging
3 km hr™!, trips over 25 km of open water
would have been reasonable with a maxi-
mum range of travel of less than 100 km.
Short hop, coastal voyages were likely,
but long-distance, open-ocean voyages
would have been impossible. Thus, fre-
quent haul-outs would have been neces-
sary, requiring closely spaced refugia.

A possible lack of suitably spaced refu-
gia for haul-outs prior to 16,000 yr BP
needs to be considered. Mariners likely
would have encountered a vertical wall of
ice at the glacial front in some areas that
would not have provided an opportunity
for boat haul-outs. Much of the Alaska/
British Columbia coast was covered
by the CIS prior to about 14,000 yr BP
(Menounos et al, 2017). However,
Lesnek et al. (2018) used '°Be ages from
southeastern Alaska to report that the
CIS retreat had uncovered several near-
shore islands at about 17,000 years BP.
Therefore, these islands would not have
been suitable for human habitation until
after 17,000 yr BP (Lesnek et al., 2018).
However, Darvill et al. (2018) found that
along the British Columbia coastal mar-
gin by at least 17,000 + 300 yr BP, numer-
ous ice-free areas were exposed that could
have provided a route for human travel.
Because global sea level at 17,000 yr BP,
as measured at Tahiti, was about 120 m

below present sea level (Dechamps et al.,
2012), some of the continental shelf in
the Gulf of Alaska might also have been
above sea level and therefore may have
provided some of the essential refugia.

The exact configuration of the refu-
gia for that time is complicated by iso-
static responses of the land to glacial load-
ing. The CIS created refugia in the form
of forebulges that were established ahead
of the advancing ice sheet. Forebulges
are created as the weight of glacial ice
depresses Earth’s crust beneath it, with an
accompanying uplift of Earth’s crust for-
ward of the ice front. Luternauer et al.
(1989), Hetherington et al. (2003), and
McLaren et al. (2014) have reported
evidence of forebulges off the coast of
British Columbia during the Last Glacial
Maximum (LGM; Mix et al, 2001).
Hetherington et al. (2003) described an
uplift of more than 100 m, with horizontal
scales of hundreds of kilometers. In addi-
tion to these forebulges, there could have
been seafloor uplift due to seismic activ-
ity along offshore faults in this tectonically
active coastal region. Shugar et al. (2014)
suggest that the continental shelf off
Southeast Alaska may have responded to a
combination of crustal deformation (neo-
tectonics), changes in the volume of water
in the ocean (eustasy), and Earth’s crustal
response to the ice sheets (isostasy),
resulting in a sea level that may have been
165 m lower than today. Therefore, many
refugia may have existed at the time of the
LGM on the continental shelf of coastal
Alaska and British Columbia.

A refinement of the forebulge pro-
cess is a hinge concept in which the CIS
created a downward crustal response
beneath the ice sheet with an accompany-
ing upward motion of forebulge offshore,
with a hinge-like motion in between
(Shugar et al., 2014). Hetherington and
Barrie (2004) support the hinge concept
and report 100 m of uplift related to fore-
bulge growth west of the CIS off the coast
of British Columbia. There is some evi-
dence of this hinge today in Southeast
Alaska. Today, Earth’s crust continues to
rebound from the melted CIS. The sea



level at Juneau (178 km inland but con-
nected to the ocean by estuarine passes)
is decreasing by 13.19 mm yr~', whereas
the sea level at Sitka (located at the coast)
is decreasing by only 2.34 mm yr.
The region of the shelf that contained
the uplifted LGM forebulges may have
served as refugia for early Americans.
Unfortunately, geological data to support
this hypothesis have not yet been col-
lected (Shugar et al., 2014). However, rec-
ognizing that sea level was at least 120 m
lower than it is now, combined with a
possible uplift of the seafloor, allows
that there could have been sufficient
areas of dry land available for island-
hopping mariners in skin boats to tran-
sit the coastline of Alaska and British
Columbia at about 16,000 yr BP.

PHYSICAL OCEANOGRAPHIC
INFLUENCES ON EARLY
MIGRATION

Any migration during the LGM and early
deglaciation period may have been facil-
itated by altered coastal currents, which
would have favored such travel for only
a few millennia. Direct measurements of
ocean circulation 14,000-18,000 yr BP
are not available, though the driving
mechanisms of winds and freshwater
influxes were probably similar to con-
ditions today, differing only in intensity.
Today, the wind field is dominated by the
large-scale Aleutian low-pressure system,
with cyclonic winds and winter inten-
sification that drive the offshore Alaska
Current in a counterclockwise direction
(that is, north and then west; Royer, 1982;
Figure 1). Inshore of the Alaska Current,
a parallel flow, propelled by both along-
shore winds and freshwater discharges,
drives the Alaska Coastal Current (ACC;
Royer, 1981; Weingartner et al., 2005).
These winds drive a primarily down-
welling shelf circulation that maintains
the ACC as a buoyancy and wind-driven
alongshore flow. The ACC is the dom-
inant circulation feature on the conti-
nental shelf of the Gulf of Alaska, with
northward and then westward flows
within about 20-30 km of the coast and

current speeds in excess of 35 cm s
(Stabeno et al., 2016). Westward, along-
shore peak current speeds in autumn of
more than 140 cm s~ at 2 m depth have
been measured with 35-hour filtered val-
ues of more than 100 cm s (Johnson
and Royer, 1986). Freshwater is added
from coastal runoft and rivers as the ACC
flows northward and westward around
the Gulf of Alaska and finally enters the
Bering Sea (Royer, 1982). Annually, this
intense nearshore current carries about
870 km® of freshwater from precipitation
and glacial meltwater (Neal et al., 2010),
about 50% more freshwater annually than
is transported by the Mississippi River.
Prior to about 16,000 yr BP, the
amount of freshwater entering coastal
Gulf of Alaska may have been much
less than it is today. Freshwater inputs
would have included precipitation falling
directly on the ocean surface and run-
off from coastal watersheds. Though the
precipitation rates were likely lower than
they are today, the runoff also would have
been greatly reduced because a greater
proportion of the precipitation falling on

. Alaska
Coastal
Current

~155' 150"

—145°  -140°

glacial ice fields would have added to the
snow and ice mass rather than being dis-
charged into the ocean, thereby minimiz-
ing the ACC flow. This coastal circula-
tion condition would have created a more
welcoming avenue for seafaring settlers
with (1) a biologically productive marine
ecosystem, (2) refugia created by off-
shore forebulges and sea levels more than
120 m lower than today, and (3) a greatly
reduced or absent ACC.

As the LGM began to wane, the ACC
may have become a serious hindrance to
southward human migrations along the
Gulf of Alaska coast. Freshwater discharge
and hence the ACC would have acceler-
ated during the Belling-Allerod warm-
ing period. Climate changes associated
with this period, starting at 14,650 yr BP
(Deschamps et al., 2012), caused the CIS
to melt at locations in the North Pacific
where salinity has a greater influence on
density than temperature and hence on
ocean dynamics (Royer, 1982; Hickey and
Royer, 2001). This phenomenon is a result
of the nonlinearity of the equation of state
of seawater (Millero, 2010). Increased

FIGURE 1. Ocean circulation in the Gulf of Alaska. The surface ocean currents flowing counter-
clockwise in the Gulf of Alaska include the North Pacific Current, the Alaska Current, the Alaskan
Stream, and the Alaska Coastal Current (ACC). The ACC (depicted in black) is a narrow (<30 km),
nearshore flow with speeds of the order of 100 cm s™" near the coast. The ACC begins in the vicin-
ity of the Washington-British Columbia border and carries precipitation and runoff, including snow
and glacial meltwater, into the Bering Sea (Weingartner et al., 2005). The ACC now flows over conti-
nental shelves that might have served as haul-out regions for ancient mariners prior to 15,000 years
before present. Figure courtesy of Seth Danielson, University of Alaska Fairbanks
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nearshore and alongshore melting would
have strengthened the offshore horizontal
density and pressure gradients, with the
accompanying increased poleward flow
of the warmer waters creating a positive
feedback system. Warmer water trans-
ported northward would have increased
the rate of glacial melting. Even in the
absence of this positive feedback system,
Truffer and Motyka (2016) argue that
the heat from ocean sources available to
melt tidewater glaciers is almost infinite.
Additionally, the increased sea surface
temperature could have supplied heat
to the atmosphere and intensified the
Aleutian low-pressure system, providing
another positive feedback process driving
the atmosphere-ocean system, further
increasing the air temperature and pre-
cipitation rates. Therefore, melting of the
CIS along the ocean-ice interface could
have accelerated the alongshore, north-
ward flow along the British Columbia
and Southeast Alaska coasts, acceler-
ating the CIS’s melting. This increased
glacial melting would have strength-
ened the ACC opposing eastward and
southward travel along the coast of
Alaska and British Columbia toward the
present-day Americas.

POST-LGM OCEANOGRAPHY

OF THE GULF OF ALASKA

To determine the ocean’s responses to
the Belling-Allered warming, we use an
understanding of contemporary global
glacial melting and its effects on global sea
level (Table 1). Estimates of present-day
annual runoff in the Gulf of Alaska from

TABLE 1. Comparisons of the contributions of global and Alaskan glacial meltwater to sea level rise.

glacial melting range from 46 km’ to
100 km®. This annual water volume com-
prises 8% to 11% of the total global melt-
water contribution to sea level rise. The
percentage of the Alaskan contribution
of meltwater to the present total global
glacial meltwater is therefore assumed to
be approximately 10%. Some other stud-
ies of contemporary melting of glacial ice
support the importance of glacial melt-
water influxes into the Gulf of Alaska to
global sea levels. Hill et al. (2015) deter-
mined that from 2004 to 2008, glaciers in
the northern region of the Gulf of Alaska
alone contributed 57 km® yr™ to the
global ocean’s volume. The importance
of the Gulf of Alaska glacial meltwater
to global meltwater input was also noted
by Jacob et al. (2012) and Gardner et al.
(2013), who used satellite gravimetry and
altimetry as well as local records to esti-
mate that from 2003 to 2009, Alaskan gla-
ciers contributed the most meltwater to
the ocean, excluding those in Antarctica
and Greenland. The contributions of
Alaskan glaciers to global sea level rise
are therefore significant. The volume of
glacial ice melt required to increase the
global sea level by 1 mm in a year is esti-
mated to be 360 km?® (from Table 1).
Changes in global sea level are the
result not only of changes in the amount
of water but also of changes in the water
density due to steric changes (that is,
changes in temperature and salin-
ity). Contemporary non-steric sea level
change estimates range from 1.8 mm yr'
(Meier et al., 2007) to 1.48 mm yr* (Jacob
et al,, 2012). Knowledge of the present-

Global

Alaska Global

day contribution of glacial melting in the
Gulf of Alaska and its influence on con-
temporary sea level can be used to esti-
mate Alaskan coastal conditions during
the end of the LGM.

Ancient Gulf of Alaska glacial dis-
charges are estimated using dat-
ing of global sea level change prior to
14,000 yr BP as constructed from tempo-
ral changesin the depth of coral reefs from
Tahiti (Deschamps et al., 2012; Figure 2).
A rapid sea level rise of 14-18 m occurred
at Tahiti between 14,310 and 14,650 yr BP
(40-50 mm yr'), coinciding with the
commencement of the Belling-Allerod
warming period and the Meltwater
Pulse 1A (MWP-1A) period warming
14,600 yr BP. Assuming a global glacial
ice loss to sea level rise rate of 360 km” per
millimeter of sea level rise from Table 1,
the 40-50 mm yr' sea level rise would
have required a 14,400-18,000 km® yr™
change in global glacial volume during
MWP-1A. This supports the estimates of
about 15,000 km’ yr™ for this period by
Lambeck et al. (2014) using the sea level
change after the LGM from their Figure 4.
In summary, global glacial ice melting of
about 15,000 km?® yr was required to
produce this sea level change during the
340 years of MWP-1A warming.

Based on present-day data, a 10% con-
tribution of Alaskan glaciers to global
sea level rise during the MWP-1A is esti-
mated to have been about 1,500 km®yr™.
This coordination of Alaskan glacial melt
within the broader CIS melt is supported
by Davies-Walczak et al. ( 2014), though
this volume is probably an underestimate

Alaska % Glacial Ice

Alaska

ST Time Period Ice Mass Glacial Mass | Sea Level Rise Sea Level Rise of Volume Change/
(W) Change Change Non-Steric (mm yr) Global Sea Sea Level Rise

(km?3 yr) (km?3 yr) (mm yr™") Y Level Rise (km? yr~'/mm™)

Lambeck et al. (2014) | 15,000-14,000 yr BP 15,000 1,500 40-50 4-5 10 387

Arendt et al. (2002) 1995-2001 - 96 - 0.27 8-9 -

Neal et al. (2010) 1990-2001 - 87 - - - -

Meier et al. (2007) 2006 645 100 1.8 0.28 11 358

Jacob et al. (2012) 2003-2010 536 46 1.48 013 8.8 362
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because the CIS was a far more domi-
nant feature during MWP-1A than are
the Alaskan ice fields of today (Clague,
2009), and there were more tidewater gla-
ciers. An estimate of present-day total
freshwater discharge into the Gulf of
Alaska is 27,600 m® s™' or 870 km’ yr,
with 10% of it as glacial meltwater (Neal
et al.,, 2010). Substituting this meltwater
rate with the glacial meltwater esti-
mated 14,000-15,000 yr BP, the average
annual Gulf of Alaska freshwater con-
tribution to the ocean would have been
2,283 km’ yr! or 72,300 m’s™! averaged
over 340 years. If the glacial melting took
place for only nine months of the year,
the discharge could have reached about
93,000 m’s™". (For a contemporary com-
parison, there are five months of snow
accumulation annually in Juneau, Alaska;
http://climate.gi.alaska.edu/Climate/
Normals). Thus, glacial meltwater would
have been more than an order of magni-
tude greater than today and would have
produced a total freshwater discharge
that was, for 340 years, about triple the
discharge today.

Reconstruction of past salinity in the
Gulf of Alaska between 15,000 yr BP and
14,000 yr BP from coastal sediment core
data supports this freshening hypoth-
esis. Sediment core data indicate that at
14,450 + 290 yr BP, significant changes
in the hydrographic structure in the
coastal water column took place in the
Gulf of Alaska (Davies et al., 2011). A pis-
ton core (EW0408 85JC) was obtained
at 682 m water depth offshore of the
present-day Bering Glacier (59°33.32'N,
144°9.21'W) during a 2004 research
cruise on R/V Maurice Ewing. An abrupt
decrease of 1 ppt (part per thousand) is
recorded by the benthic foraminifera
80 at 14,450 yr BP. This occurrence
was either a signal from an abrupt bot-
tom water temperature increase of about
5°C (unlikely) or a reduction in the bot-
tom salinity of about 1 psu. Davies et al.
(2011) present three possible explanations
for this salinity event: (1) local formation
of isotopically depleted brines from sea
ice formation with their ultimate sink-

ing, (2) deepening of the halocline, or
(3) hyperpycnal flows. The ice formation
hypothesis is unlikely because this was
the time of the Bolling-Allerod warming
(Deschamps et al., 2012; Gregoire et al.,
2016), coincident with a 3°C increase in
sea surface temperature off Vancouver
Island (Taylor et al.,, 2014). Davies et al.
(2011) initially eliminated the possi-
ble deepening of the halocline because
it would have required an order of mag-
nitude greater freshwater input into the
Gulf of Alaska than is estimated for pres-
ent times. Thus, hyperpycnal flows, by

default, were assumed to be the cause of
this 8'°0 layer (Maureen Davies, Oregon
State University, pers. comm., 2016).

The second hypothesis of Davies
et al. (2011), however, provides the best
explanation in light of increased Gulf of
Alaska freshwater discharges predicted
by MWP-1A sea level changes. The §'*0
changes are consistent with our recon-
structed freshwater influxes into the Gulf
of Alaska at that time. Also, the western
limit of the CIS probably extended onto
the continental shelf at that time due to
lowered sea level (Clague, 2009), forcing
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FIGURE 2. Tahiti sea levels 19,000-9,000 years before present (yr BP). The inset shows the
rapid rise in sea level from 14,650 yr BP to 14,310 yr BP (14.65 kyr BP to 14.31 kyr BP), called
Meltwater Pulse 1A (MPW-1A), during the Bglling-Allered warming. m.b.s.l. = meters below sea

level. From Deschamps et al. (2012)
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the axis or core of the ACC to be close
to the location of core EW0408 85]C.
Assuming that global sea level was at least
125 m lower than at present (Deschamps
et al., 2012), the core location would have
been within 19 km of the LGM coast-
line, though determining the exact
paleogeography of the site at this time
is complicated by eustatic, isostatic, and
ice-gravitational effects (Kendell et al,
2005). Thus, Davies et al. (2011) assumed
the axis of the ACC was very close to the
benthic core site rather than more than
100 km away from it. Also, there may
have been a forebulge ahead of the glacier
that raised the seafloor by tens to hun-
dreds of meters (Shugar et al., 2014). This
shallower depth would not have required
an immense volume of freshwater to
freshen the waters near the seafloor. The
rate determined from global sea level
changes (93,000 m® s™") exceeds the fresh-
water discharge estimate of 92,000 m’s™,
which Davies et al. (2011) calculated to
explain the decrease in salinity implied by
the 6O changes. Therefore, the salinity
decrease Davies et al. (2011) reported was
probably the result of glacial meltwater,
and this conclusion is supported by the
Gulf of Alaska freshwater estimate made
using ancient sea level measurements and
contemporary measurements of changes
in glacial ice mass and sea level.

OTHER SUPPORTING EVIDENCE
OF IMPACTS ON EARLY SETTLERS
IN THE COASTAL CORRIDOR

AND REFUGIA

Gulf of Alaska glacial meltwater probably
impacted the migrations of early humans
to the Americas in several ways. During
the LGM, greatly reduced glacial melting
and runoft would have minimized along-
shore flow of the ACC and provided eas-
ier travel eastward and southward along
the coast from Beringia. As the LGM
ended and deglaciation intensified as the
Bolling-Allergd period began, the time of
easy coastal passage ceased. There would
have been (1) rapidly rising global sea
levels, (2) increased CIS melting con-
tributing more than an order of magni-
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tude more freshwater into the ACC, and
(3) an acceleration of the ACC. Both cur-
rent speeds and current widths should
have increased. Additional poleward
heat transport by the ocean could have
increased the intensity of the Aleutian
Low, further strengthening the winds
and precipitation rate, and enhancing
opposing (poleward) coastal currents.
However, the most critical change in the
oceanography might have been the rap-
idly rising sea level that submerged the
refugia, making the required transits too
great for skin boat travel.

Several recent papers have addressed
archaeological and genetic evidence of
early coastal migrations. The timings of
the initial migrations into the Americas
are supported by evidence of early set-
tlement (e.g, Monte Verde South
America by ~14,500 yr BP), after a mod-
erate genetic bottleneck in Beringia
about 23,000-19,000 yr BP followed by
a rapid population expansion between
18,000 yr BP and 15,000 yr BP (Fagundes
et al., 2008, 2018; Moreno-Mayar et al.,
2018; Braje et al., 2019). This strong
which ended
~15,000 yr BP, supports pre-Clovis occu-

population expansion,

pation of the New World and suggests
rapid settlement of North and South
America by humans following a Pacific
coastal route. Llamas et al. (2016) state
that, “We knew that Native Americans
living today have a relatively low genetic
diversity, meaning it is highly likely that
sometime in the past, they lost some of
their genetic diversity in what we call a
bottleneck” A small population may have
entered the Americas via the coastal route
around 16,000 yr BP. This is supported
by early dates at several sites, includ-
ing the Columbia River basin in west-
ern Idaho (16,560 yr BP to 15,280 yr BP;
Davis et al., 2019); Manis, Washington
(Waters et al, 2011); coastal British
Columbia (McLaren et al., 2019); Monte
Verde (Chile); and others. These data
reinforce the concept that the Americas
were settled prior to 13,000 yr BP (Wade,
2017), before the opening of the passage
between the Laurentide and Cordilleran

Ice Sheets. Using ancient DNA, pollen,
and plant remains, Pedersen et al. (2016)
established the timing of the opening of
the 1,500 km-long land corridor through
Canada as 12,600 yr BP, though evi-
dence for somewhat earlier passage is
possible (Potter et al., 2018). Pedersen
et al. (2016) suggest possible settlement
models that include one consistent with
the timing of early marine migrations
prior to 14,000 yr BP as a single wave
along the coastal route, with later terres-
trial migrations in the ice-free corridor
between the ice sheets.

Other Late Pleistocene technological
linkages and traditions that date prior to
opening of the land corridor have been
found in coastal locations in North and
South America (Erlandson and Braje,
2011). The initial Pleistocene migrations
into the Americas may have occurred
within a narrow time window of no more
than 2,000 years. The succession of tem-
porally distinct movements along the
coastal route between 17,000 yr BP and
15,000 yr BP (Perego et al., 2009) coin-
cided with lowered sea level and relatively
small alongshore coastal flows, mak-
ing coastal refugia available. This win-
dow of opportunity closed at the onset of
the Bolling-Allerod warm period, which
melted glaciers and caused high fresh-
water influxes that drove strong north-
erly alongshore flows. Recent high-
resolution DNA analyses allow a finer
estimate of the timing of early settlement
of the Americas. Llamas et al. (2016)
determined that early settlement began
about 16,000 yr BP and ended less than
2,000 years later (about 14,000 yr BP). In
sum, this body of evidence supports the
idea of a brief pre-15,000 yr BP coastal
marine route for early Americans, prior
to the rapid melting of the CIS in the
Gulf of Alaska. McLaren et al. (2019)
outline a stepwise process to aid in dis-
covering Pleistocene archaeological sites
along the Pacific coast of North America
in the search for sites that predate
14,000 yr BP. The recent review by Froese
et al. (2019) on geological evidence con-
cluded it was more likely that prior to



15,000 yr BP-14,500 yr BP, the first peo-
ples traversed from Beringia by way of
the coastal route rather than through the
ice-free corridor between the Cordilleran
and Laurentide Ice Sheets.

CONCLUSIONS

The timing of migration into Beringia,
boat development, and changes in ocean
conditions along the Northeast Pacific
coastline are consistent with the pos-
sibility of an initial migration into the
Americas prior to the Bolling-Allerad
warm period. This period was also a time
when “a coastal avenue to the Americas”
was open for travel. At some time after
15,000 yr BP, however, these travels
would have been much more difficult
due to rapidly rising sea levels and stron-
ger opposing flows in the Alaska Coastal
Current that created serious constraints
to this southward migration. This migra-
tion hiatus might have continued until
sufficiently closely spaced, ice-free coastal
areas emerged from beneath the melting
CIS and the volume of CIS meltwater
diminished, reducing the strength of the
ACC. Once again, safe coastal passage
along the Alaskan and British Columbia
coasts would have been possible during
the Younger Dryas and after the Melt
Water Pulse 1B (~11,300 yr BP). The cur-
rent chronology of human settlement in
the Americas is consistent with this pro-
posed timing of “ocean avenues.”

Any coastal migrants to the Americas
must have been capable of designing and
constructing seaworthy boats to navigate
along the coastal route from Beringia
to the Pacific Northwest toward ulti-
mate settlement in the Americas. Their
coastal migrations were possibly halted
by climate change during the Belling-
Allered warming period that led to melt-
ing of the global ice sheets, including the
CIS over western North America. Rising
global sea levels drowned the origi-
nal coastal refugia, and the increased
regional freshwater flows led to escalated
coastal currents that also obstructed the
pathways. A hiatus in the use of this east-
ward and southward waterway probably

lasted for several thousand years, pro-
hibiting new settlers to the Americas
but allowing northward passage back
to Beringia. It seems likely that early
migrants to the Americas were victims
of a severe climate change when sea lev-
els rose at 40-50 mm yr~! for 340 years,
more than an order of magnitude greater
than our present-day sea level rise of

about 3 mm yr'.

RECOMMENDED FUTURE

STUDIES

The lack of adequate research vessels and

access to logistical resources and person-

nel has caused the Southeast Alaska conti-

nental shelf region to be an understudied

part of the Northeast Pacific Ocean. The

following problems/questions might be

addressed to resolve whether this route

was truly a travel or settlement corridor

for early Americans:

= Do shell middens, stone fish weirs,
and structures exist beneath meters of
glacial sediments, particularly within
submerged flow channels?

= Can sub-bottom seismic profiling
and coring be used as effective tools
to investigate for possible prehis-
toric underwater archaeology features
(e.g., Dixon and Monteleone, 2014)?

= Can local sea level curves, elevation
models, and archaeological site pre-
diction models be used to locate sub-
aerial coastal sites documenting early
human occupation (e.g., McLaren
etal., 2019)?

= Will studies of tectonic features and
sediment cores verify the existence
of regional Quaternary forebulges
and lead to a better understanding of
Northeast Pacific plate tectonics and
coastal refugia?

= Can satellite measurements of shelf
bottom topography in the Gulf of
Alaska be used to detect the shelf
hinges of bottom displacements?

= How did freshwater flux into the Gulf
of the Alaska vary from the LGM to
present? Such reconstructions require
knowledge of the history of both gla-
cial meltwater and precipitation.

= Can reconstructions of CIS degla-
ciation and ice volume be used to

refine the meltwater calculations

(e.g., Tarasov et al,, 2012)?

= Can atmospheric circulation mod-
els and paleoclimatic data be used to
quantify past changes in precipitation
in Northeast Pacific watersheds?

= What was the ancient variability of the
ACC during this period in response to
the estimated large changes in glacial
meltwater and climate?

= What were the current velocities after
the LGM, and how might the flows
have been distributed across the shelf
and seasonally?

= Were seasonal melt variations ampli-
fied during the transition from the
LGM to the Holocene?

= How might atmospheric circulation
and resultant changes in precipitation
and productivity have been different
from today?

= What were the differences and similar-
ities in the ancient marine ecosystem
as compared to today?
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