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SIDEBAR. Empirical Approaches to Measure Connectivity
By J. Wilson White, Mark H. Carr, Jennifer E. Caselle, Stephen R. Palumbi, Robert R. Warner, Bruce A. Menge, and Kristen Milligan

It is logistically difficult to directly tag larvae to track their dispersal 
over large spatial scales (the rare exception is work done by Jones 
et  al., 2005), so a variety of approaches have been developed 
to measure connectivity processes indirectly or passively. When 
the Partnership for Interdisciplinary Studies of Coastal Oceans 
(PISCO) began in 1999, a sea change was underway in our under-
standing of larval connectivity: after decades of assuming that lar-
val dispersal was widespread and that larvae rained down to the 
benthos from a well-mixed pool, new tools and new evidence sug-
gested the potential for much shorter dispersal distances and con-
siderable retention of larvae near spawning sites (see White et al., 
2019, in this issue). In the subsequent two decades, PISCO scien-
tists have used a variety of empirical and modeling tools to under-
stand connectivity patterns. Some of these have evolved in com-
plexity with the advent of new techniques and greater computing 
power (genomics, biophysical models), while others have proven 
to be less fruitful than originally hoped (natural markers in calcified 
structures). Here, we describe some of these tools. 

Genetic Methods 
Dispersal inferences based on genetic differences between pop-
ulations integrate over many individuals and many generations, 
and may not reflect contemporary gene flow if dispersal dynam-
ics have changed (Waples, 1998). However, new genomic tools 
can reveal the geographic distribution of thousands of gene loci 
among populations, instead of the handfuls of loci that were used 
in decades past. Analyzing a large number of loci allows much 
finer detection of subtle patterns of gene flow, revealing barriers 
to dispersal and detecting loci that are under active selection in 
different environments (Marko and Hart, 2018). This is a double- 
edged sword because strong selection after settlement can limit 
gene flow, even in the absence of barriers to dispersal. As a result, 
a genetic difference between populations may not signal lack of 
dispersal but instead signal a different habitat, selecting for differ-

ent traits. This possibility must be accounted for when interpret-
ing genetic data. 

Richer data sets also allow detection of close kin in marine 
populations, sometimes even parent/offspring pairs (e.g.,  par-
entage analysis), strengthening our ability to quantify disper-
sal events over ecological time scales (e.g., D’Aloia et al., 2015; 
Almany et al., 2017). These can also help measure current pop-
ulation sizes through a type of genetic recapture analysis 
(e.g., Hillary et al., 2018). A different type of kinship, sibling-ship, 
has also been increasingly detected with unexpected frequency 
in larval cohorts settling at the same location. This can provide 
evidence that larvae spawned together may travel together in 
coherent “packets” (Selkoe et al., 2006).

Information from genetics can be generalized into a descrip-
tion of connectivity in the metapopulation. Often this takes the 
form of a dispersal kernel, a statistical description of the prob-
ability of a larva traveling a given distance and direction from 
its source. Bode et al. (2018) provide guidance on how to avoid 
some of the conceptual pitfalls in using this method. 

Biophysical Models
An increasingly widespread approach to estimating connectivity 
computationally is to simulate the release of “larvae” as particles 
in the flow field produced by a three-dimensional numerical ocean 
circulation model (e.g., Shchepetkin and McWilliams, 2005). As 
the data sets required to drive such models have become more 
widely available and computational power has increased, it has 
become possible to generate connectivity estimates for nearly 
any area of interest. The advantage of such models is that they 
can generate dispersal probabilities over large spatial scales at 
high resolution, without depending on intensive collection of indi-
vidual parents and settlers. However, there are three major limita-
tions. First, predictions depend on the specified behavior of the 
simulated larvae (Paris et al., 2007), but in many cases we know 

Examples of standardized larval collectors. (a) A PISCO diver 
retrieves a moored “SMURF” (Standardized Monitoring Unit 
for Reef Fishes) to sample kelp forest fish larvae. (b) A kitchen 
scrubber “tuffy” is used to sample settling larval mussels. 
(c) A ceramic tile samples settling larval barnacles. (d) PISCO 
scientists deploy tuffies and plates in the intertidal zone. Photo 
credits: J. Figurski (a), J. Robinson (b,c), and B. Poirson (d)
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little about the ontogeny of depth regulation and swimming in 
larvae. Second, many species of interest reside in shallow near-
shore waters, where it is difficult for models to faithfully repre-
sent circulation (though this is an active area of research; Kumar 
et al., 2015). Finally, it is difficult to validate dispersal predictions, 
because we usually lack information on where and how many lar-
vae are spawned at any given time, and thus how many should be 
predicted to disperse. However, this comparison has been made 
successfully in a few cases (e.g., Watson et al., 2010).

Natural and Artificial Markers in Calcified Structures
Many species lay down daily rings of calcium carbonate in their 
otoliths (fish “ear stones”) or statoliths (invertebrate “equilibrium 
stones”), preserving a time-stamped record of age, growth, and 
trace element signatures from the surrounding water. Because 
there is geographical variation in oceanic trace element concen-
trations, there exists the intriguing possibility of extracting time-
stamped spatial information from calcified structures and deter-
mining the origin or transport pathway of larvae. The idea is that 
one could map connectivity pathways by comparing the trace 
element signatures in the core region of the otolith or the statolith 
of a post-dispersal recruit to the geographic pattern (an “atlas”) of 
trace element signatures in pre-dispersal young. Unfortunately, 
the spatial resolution of such an atlas is usually quite coarse 
and can vary over time. Consequently, this approach has only 
been deployed successfully to estimate a full set of connectiv-
ity pathways for coastal or open-ocean species in a few cases, 
using bivalves (e.g., Becker et al., 2007). Other applications have 
provided more limited information on connectivity, such as the 
proportion of settling larvae produced locally vs. elsewhere 
(e.g., Hamilton et al., 2008).

Standardized Recruitment Monitoring
Large-scale, long-term monitoring of larval settlement across mul-
tiple sites can reveal the physical factors affecting nearshore larval 
delivery, and also facilitates comparisons with model predictions 
(e.g., Watson et al., 2010). Such monitoring requires standardized, 
easily deployable, inexpensive, and readily processable samples 
of larval propagule supply. The basic approach is to artificially 
mimic natural settlement substrate—from flat plates to filamen-
tous mussel byssal threads to artificial kelp canopy—and PISCO 
has used this approach to develop standardized larval monitor-
ing devices for mussels, sea urchins, sea stars, crabs, and fishes 
(see photos on opposite page). In all these cases, the goal is to 
provide homogeneity in collection method to facilitate compari-
sons over time and space. One caveat to these approaches is the 
concern that these devices could conceivably produce biased 
settlement estimates, because of either different attractiveness 
or different post-settlement mortality relative to natural habitats. 
Also, patterns of larval abundance and patterns of connectivity 
are not always perfectly linked, because abundance depends on 
patterns of larval production as well as larval delivery (Watson 
et al., 2010). However, it appears to be safe to use these as rela-
tive indices of larval delivery for the purposes of detecting long-
term, large-scale patterns. 
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