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There is a well-documented global pat-
tern of species shifting their ranges in the 
direction of changing climate conditions 
(Perry et  al., 2005; Cheung et  al., 2009; 
Chen et  al., 2011; Pinsky et  al., 2013). 
Long-lived mobile species, like marine 
mammals, should be able to track their 
bioclimate envelopes and other chang-
ing conditions, shifting their ranges in 
response. Because climate change is 
affecting ecosystems with increasing 
immediacy, we need to know whether 
our current understanding of range shifts 
yields effective conservation and man-
agement strategies. 

Since 2004, the Gulf of Maine has been 
one of the fastest warming ocean eco-
systems on the planet, as measured by 
sea surface temperature (Pershing et  al., 
2015). The rapid rate of warming has been 
punctuated by sudden ecosystem changes 
with economic consequences, primarily 
to fisheries, where sudden temperature 
changes are not well accounted for in man-
agement (Mills et al., 2013; Pershing et al., 
2015, 2018; Neckles et  al., 2015). Recent 
changes in the Gulf of Maine provide an 
opportunity to test our assumptions about 

how species respond to rapid warming.
A striking change has occurred within 

the endangered North Atlantic right 
whale population (Eubalaena glacialis, 
pop. ~450; Pace et al., 2017). E. glacialis 
is not listed among mammals negatively 
impacted by climate change (Pacifici 
et  al., 2017) and, under the range-shift 
paradigm, this highly mobile species 
should be able to follow favorable condi-
tions. Successful management of the spe-
cies has relied on its historically regular 
seasonal migrations, moving from spe-
cific foraging grounds in the western Gulf 
of Maine in winter and spring to the east-
ern Gulf of Maine and Scotian Shelf in the 
summer and autumn. These movements 
track the abundance of this species’ main 
prey, late stages of the lipid-rich cope-
pod Calanus finmarchicus (Murison 
et  al., 1989; Mayo and Marx, 1990; 
Beardsley et  al., 1996; Pendleton et  al., 
2009, 2012). Right whales began to devi-
ate from their typical foraging migration 
pattern between 2008 and 2010. Their 
health has since declined (Rolland et al., 
2016), and recovery has stalled (Kraus 
et al., 2016; Davis et al., 2017; Pace et al., 

2017). In 2017, at least 17 whales died, 
and no calves were born in 2018, raising 
new alarm that E. glacialis may be extinct 
within 30 years (Stokstad 2017; Meyer-
Gutbrod and Greene, 2018). The predom-
inant hypothesis is that a warming-driven 
northward shift of C. finmarchicus has 
driven whales into regions where protec-
tions to minimize ship strikes or fishing- 
gear entanglements do not yet exist 
(Daoust et al., 2017; Stokstad, 2017; Pettis 
et al., 2018; Meyer-Gutbrod et al., 2018). 
However, the western Gulf of Maine has 
meanwhile had record-high abundance 
measurements of C. finmarchicus since 
2010 (Runge et al., 2015), apparently con-
tradicting this hypothesis.

We tested the hypothesis that 
E. glacialis changes relate to recent rapid 
changes in climate and prey. Most analy-
ses of rapid ocean warming have focused 
on sea surface temperature because of 
the broad coverage of satellite measure-
ments (Pershing et al., 2015; Di Lorenzo 
and Mantua, 2016; Thomas et al., 2017). 
However, a large amount of excess heat 
energy is found in subsurface waters 
(Jewett and Romanou, 2017), and much 
of the climate-driven warming in the Gulf 
of Maine is predicted to occur at depth 
(Saba et  al., 2016). The C. finmarchicus 
life cycle depends on seasonal deepwater 
temperatures because of its annual dor-
mancy period, which occurs from late 
summer through winter at depths below 
100 m in the Gulf of Maine. To test our 
hypothesis, we aggregated data from 
oceanographic buoys, transects, and 
multiple zooplankton and whale sur-
veys from around the Gulf of Maine 

ABSTRACT. As climate trends accelerate, ecosystems will be pushed rapidly into new 
states, reducing the potential efficacy of conservation strategies based on historical pat-
terns. In the Gulf of Maine, climate-driven changes have restructured the ecosystem 
rapidly over the past decade. Changes in the Atlantic meridional overturning circula-
tion have altered deepwater dynamics, driving warming rates twice as high as the fastest 
surface rates. This has had implications for the copepod Calanus finmarchicus, a crit-
ical food supply for the endangered North Atlantic right whale (Eubalaena glacialis). 
The oceanographic changes have driven a deviation in the seasonal foraging patterns 
of E. glacialis upon which conservation strategies depend, making the whales more 
vulnerable to ship strikes and gear entanglements. The effects of rapid climate-driven 
changes on a species at risk undermine current management approaches. 
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(Figure 1 and Supplementary Figure S1), 
focusing on the period of rapid warm-
ing (2004–present) both at the sur-
face and at depth. Based on the shift in 
the right whale population occurring 
around 2010 (Kraus et al., 2016), we sub-
divided data into early (2004–2008) and 
late (2012–2016) periods and compared 
time-series data between these two peri-
ods using a Mann-Whitney rank sum 
comparison test (Gibbons et  al., 2011). 
Focusing on areas where spatial and tem-
poral overlap would suggest the possibil-
ity of a causal effect between variables, 
we also tested correlations between inter-

annual time series across data sets. These 
two complementary approaches pulled 
out both stepwise and more continu-
ous shifts over the recent warming time 
period and highlighted probable ocean-
ographic linkages between variables. 
We oriented much of our interpreta-
tion around an oceanographic transport 
pathway determined by back-tracking 
currents from the Bay of Fundy feeding 
grounds (Figure S2). Specific details for 
processing of each data set and for com-
puting the oceanography are described in 
the Materials and Methods in the online 
supplementary materials.

Seasonal patterns of E. glacialis and 
C. finmarchicus have shifted significantly 
from the early period (2004–2008) to the 
late period (2012–2016). The most notable 
shift for E. glacialis was a sharp decline in 
sightings per unit effort (SPUE) in the Bay 
of Fundy critical habitat (Figure 2a,b). In 
the western Gulf of Maine habitats, there 
was a decline in the Great South Channel 
and an increase in Cape Cod Bay, consis-
tent with recent analyses (Ganley et  al., 
2019). Increases of C. finmarchicus were 
largely restricted to the western Gulf of 
Maine and occurred in spring, while the 
late summer through winter decreases in 
C. finmarchicus occurred throughout the 
Gulf, corresponding to the period of dor-
mancy at depth (Figures 1 and S1). There 
was a significant decrease in late-stage 
abundance in late summer, autumn, and 
winter (Figure 2c–f). At the Wilkinson 
Basin station, there was a significant 
increase in the spring abundance of juve-
nile stages (Figure 2e,f). In Cape Cod Bay, 
there was a notable increase in copepod 
abundance in early winter (Figure 2g,h).

We ran pairwise interannual cor-
relations across time series during the 
2004–2016 period. The strongest rela-
tionships aligned along an oceanographic 
transport pathway stretching from the 
Northeast Channel through the deep 
waters of Jordan Basin and into Grand 
Manan Basin (Figures 1 and S2), partic-
ularly in late summer through autumn 
and winter. Extreme deepwater warming 
that began in 2004 exhibited strong sub-
annual and subsurface components. The 
fastest warming rates occurred at depth 
in the late summer, autumn, and winter 
months (Figure 3a). Warming was fast-
est at depths of 20–150 m, from August 
to February, reaching as high as 0.5°C per 
year, twice the extreme warming rates 
of 0.23°C per year reported by Pershing 
et al. (2015) for surface waters. The rapid 
warming in these deep waters and in 
surface waters correlated strongly with 
the Gulf Stream Index (Figure 3b–e). 
The spatial structure of this correlation 
changed seasonally, being strongest at 
the surface in spring and shifting toward 
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FIGURE 1. Gulf of Maine sampling. Yellow dots show time-series stations (Wilkinson Basin, Prince-5, 
and Browns Bank Line). Grid shows statistically significant (Mann-Whitney rank sum, p < 0.05) 
increases (red) and decreases (blue) in late-stage C. finmarchicus log abundance from the NOAA 
Northeast Fisheries Science Center Ecosystem Monitoring (ECOMON) survey, based on the dif-
ference between the two time periods 2004–2008 and 2012–2016. The map is divided because 
increases are evident primarily in spring in the western gulf (left) and decreases primarily in late 
summer-autumn in the eastern gulf (right). The heavy dashed black line shows the Gulf of Maine 
North Atlantic Time Series (GNATS) transect. The red dot indicates the location of oceanographic 
buoy N. Arrows trace the sources of advection into Gulf of Maine surface (orange) and deep (blue) 
layers. The light green regions are areas historically identified as right whale feeding habitats. More 
detailed information can be found in Figures S1–S3 in the online supplementary materials.



Oceanography  |  June 2019 165

depths below 100 m in summer and 
winter. The most recent high- resolution 
ocean models project above- average 
warming to occur in the Northwest 
Atlantic, particularly in the deep waters 
of the Gulf of Maine (Saba et  al., 2016). 
A key oceanographic node in this warm-
ing process is the Northeast Channel, 
where warmer, deeper slope water can 
enter the Gulf of Maine. This location 
has been identified as a key indicator of 
changes in the Atlantic meridional over-
turning circulation (AMOC; Sherwood 
et al., 2011; Rahmstorf et al., 2015), which 
has slowed more rapidly than expected 
(Caesar et al., 2018). The strong correla-
tions between the Gulf Stream Index and 
the deepwater temperatures in Jordan 
Basin over the past decade reflect a strong 
localized effect of this process in the deep 
Gulf of Maine. 

C. finmarchicus spends much of the 
year in dormancy at depths below 100 m. 
Season-specific deepwater temperature 
(150 m) correlated negatively (p <0.05) 
with late-stage C. finmarchicus abun-
dance during summer (r 2 = 0.67), autumn 
(r2 = 0.40), and winter (r 2 = 0.90), but not 
spring (Figure 4). Lagged correlations 
between the Browns Bank Line stations 
and inner Gulf of Maine C. finmarchicus 
measurements showed that only Station 6 
correlated significantly with Jordan Basin 
(r2 = 0.67, Figure 3). Other Browns Bank 
Line stations showed weak to no cor-
relations with the inner Gulf of Maine 
stations (Figure S3). Because of the 
location of Station  6 adjacent to the 
Northeast Channel, this pattern is consis-
tent with the pattern of deepwater inflow 
(Figures 1 and S2).

The rapid decline in E. glacialis habi-
tat use in the Bay of Fundy correlated sig-
nificantly with late-stage C. finmarchicus 
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FIGURE 2. Climatological differences between the early (2004–2008) and late (2012–2016) peri-
ods in (a,b) E. glacialis sightings per unit effort, (c,d) C. finmarchicus abundance at the Prince-5 sta-
tion and the (e,f) Wilkinson Basin station, and (g,h) copepod abundances in Cape Cod Bay. CI–CVI 
indicates the copepod life stage. Plots are stacked. Horizontal lines highlight multi-month significant 
differences (p <0.05) between the early and late periods for c–f. (i,j) Chlorophyll concentrations from 
Wilkinson Basin for the two periods.
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FIGURE 3. (a) Rate of temperature change for 
2004–2017 at buoy N in the Northeast Channel 
by depth and month. (b–e) Correlation between 
water temperature from the GNATS transect 
(see Figure 1) averaged into seasons and the 
Gulf Stream Index over the period 1998–2015. 
Dots indicate statistical significance (p <0.05).
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abundance in the eastern Gulf of Maine 
during the same late-summer period. 
There was a strong positive correlation 
(r 2 = 0.92) between Jordan Basin late-
stage C. finmarchicus abundances and 
September E. glacialis SPUE in the Bay 
of Fundy (Figure 4f). There also appeared 
to be a distinct break at C. finmarchicus 
abundances of around 40,000 m–2, below 
which E. glacialis sightings were very 
low. Mayo and Marx (1990) and Murison 
and Gaskin (1989) estimated the imme-
diate decision-making threshold for 
E. glacialis feeding to be approximately 
1,000 m–3 for Cape Cod Bay and the 
Bay of Fundy, respectively. Kenney et al. 
(1986) estimated the minimum concen-
trations necessary for right whale feed-

ing to provide a net energetic benefit over 
the long term to be in the 105–106 m–3 
range. The 40,000 m–2 threshold in our 
data suggests a similar break, represent-
ing the regional copepod abundance at 
which high-density, exploitable, small-
scale patches within a region are likely to 
occur. In the western Gulf of Maine, links 
between changes in copepod abundance 
and E. glacialis habitat use were ambigu-
ous. The data from Cape Cod Bay, span-
ning January to May, did not correlate 
significantly with right whale SPUE in 
any month for any of the three dominant 
copepod taxa (C. finmarchicus, Pseudo-
calanus, and Centropages; Table S1). 
This likely has to do with the fact that 
E. glacialis is exploiting multiple spe-

cies, each with different phenologies and 
energetic contents.

These lines of evidence support the 
concept that there are presently two 
largely distinct oceanographic path-
ways controlling C. finmarchicus and 
E. glacialis in the Gulf of Maine. The two 
pathways manifest at different times of 
year and at different depths, are sensi-
tive to different driving forces, and influ-
ence E. glacialis foraging differently. The 
first pathway influences the western Gulf 
of Maine, which has been the location of 
some of the highest abundances measured 
for C. finmarchicus within its range (Melle 
et al., 2014). These high abundances are a 
consequence of the “coastal amplification 
of supply and transport (CAST)” process, 
described by Ji et  al. (2017), in which 
individuals are carried along the highly 
productive Maine Coastal Current, tak-
ing advantage of the high productivity of 
the coastal environment (Figure 1, orange 
arrow). This pathway typically results in 
very high C. finmarchicus abundances in 
the western Gulf of Maine in spring and 
is more sensitive to winter phytoplankton 
stock available to reproducing females 
(Figure 2i,j) than to temperature because 
of the strong link between food avail-
ability and egg production rates (Durbin 
et al., 2003). In contrast to predictions of 
northward range shifts, this pathway has 
maintained favorable conditions in the 
spring for both C. finmarchicus (Ji et al., 
2017) and E. glacialis in the western Gulf 
of Maine, where E. glacialis also feed on 
smaller copepods in the winter and spring 
(Pendleton et  al., 2009), further buffer-
ing potential changes in C. finmarchicus. 
While the CAST pathway as described 
is internal to the Gulf of Maine (Ji 
et  al., 2017), the upstream extension 
along the Nova Scotia Current has been 
cited as a key input of C. finmarchicus 
into the Gulf of Maine (Greene et  al., 
2004). Presumably, some level of exter-
nal supply is necessary to sustain this 
C. finmarchicus population, and a reduc-
tion in supply would hypothetically affect 
this source. However, the lack of cor-
relation between the nearshore Browns 
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each of the four seasons. (e) Copepodite C. finmarchicus at Browns Bank Line Station 6 in April ver-
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Bank Line stations and the interior Gulf 
of Maine C. finmarchicus abundances 
(Figure S3) suggests that supply along this 
part of the advective route is less import-
ant than has been reported in past years. 
The high winter phytoplankton produc-
tivity and high reproductive potential of 
C. finmarchicus (i.e.,  the coastal amplifi-
cation) reduces the sensitivity to changes 
in supply along this route.

The second pathway, in contrast, is 
more sensitive to climate-driven changes 
in oceanography. Slope water along the 
Scotian Shelf represents another poten-
tial source of C. finmarchicus to the shelf 
and to downstream locations (Head 
et  al., 1999; Zakardjian et  al., 2003). 
In the eastern Gulf of Maine, dormant 
C. finmarchicus populations are exposed 
to oceanographic changes occurring 
at greater depths during late summer 
through winter. Warming has been most 
rapid in deep water during these seasons, 
likely reflecting changes in flow through 
the Northeast Channel (Figure 3). The 
decline in C. finmarchicus is likely a com-
bination of reduced supply and a more 
direct effect of deepwater temperatures. 
The lagged link with Browns Bank Line 
Station 6 (Figures 4e and S3) is consistent 
with C. finmarchicus supply from warm 
slope-water sources (Figures 1 and S2). 
While the temperatures are not high 
enough to cause mortality directly, 
C. finmarchicus mortality is typically cal-
culated as an increasing function of tem-
perature (Speirs et al., 2006) to capture the 
combined effects of predation, increased 
metabolic demands, and decreased dia-
pause duration. The fact that the tem-
perature effect is strongest in winter 
(Figure 4a) suggests a cumulative direct 
effect of temperature throughout the dor-
mancy period. Whether through direct 
advection of C. finmarchicus or through 
the effect of warmer advected water, the 
decline is consistent with a change in flow 
through the Northeast Channel associ-
ated with changes in the AMOC. This 
driver has been documented in recon-
structed past data (Sherwood et al., 2011), 
is well described in models (Saba et  al., 

2016), and has resulted in rapid deep-
water warming. This depth and season-
ality match the time of year when lipid- 
rich C. finmarchicus are in diapause in 
the Gulf of Maine in deep water, and also 
when E. glacialis typically feeds in the 
eastern Gulf of Maine. The documented 
change in the AMOC (Caesar et al., 2018) 
is the likely driver of these changes, and 

because of the link between the AMOC 
and climate change, this is a probable pre-
cursor to future changes. 

Adapting to rapid change will require 
approaches that anticipate change. In the 
case of E. glacialis, measures to reduce 
risk—such as designation of critical hab-
itat areas, vessel routing modifications, 
and fishing closures—are built upon the 
notion that whales will visit the same for-
aging grounds at the same times each 
year (Vanderlaan et  al., 2011). A dis-
ruption to this regularity, as a conse-
quence of rapid oceanographic changes, 
has exposed whales to increased risks 
as they have ranged beyond their regu-
latory protections, prompting new sur-
vey effort and risk-reduction measures 
in Canadian waters (Davies and Brillant, 
2019). One approach to making manage-
ment more dynamic is forecasting at sub-
annual timescales. For example, using 
a dynamic species distribution model 
informed by C. finmarchicus distribu-
tions, Pendleton et  al. (2012) predicted 
highly favorable E. glacialis foraging habi-
tat south of Nantucket, which was outside 
of the known foraging areas. This region 
was subsequently found to be a foraging 

hotspot (Leiter et al., 2017), demonstrat-
ing the potential value of oceanographic 
forecasts as early warning systems and as 
adaptation tools in a more rapidly chang-
ing environment. 

Climate change is often viewed as a 
long-term problem, and in this context, 
mean species range shifts could be a use-
ful tool. However, mean shifts assume 

that organisms can adjust quickly to new 
conditions in the ocean. While the shift 
in right whale distributions is consis-
tent with this assumption, low calf pro-
duction is an indication that they are not 
yet able to forage well in these new habi-
tats (Corkeron et al., 2018). Recent mod-
eling work suggests that a healthy whale 
population can rebound after a few low- 
reproduction years by finding and adapt-
ing to a new habitat (Tulloch et al., 2019). 
The right whale population is not healthy, 
and more time spent foraging may lead to 
additional mortality, amplifying the chal-
lenges this species faces. Rapid warm-
ing at the level observed in the Gulf of 
Maine is likely to be a more prominent 
feature of the future ocean. Even climate- 
based projections, which predict grad-
ual northward range shifts, fall short at 
finer timescales. An understanding of 
subannual ecosystem and oceanographic 
dynamics, and of the response of systems 
to rapid change, will be necessary to sup-
port conservation in the future. 

SUPPLEMENTARY MATERIALS
Materials and Methods, Figures S1–S3, Table S1, and 
References are available online at https://doi.org/ 
10.5670/oceanog.2019.201.

 “An understanding of subannual ecosystem 
and oceanographic dynamics, and of the response 

of systems to rapid change, will be necessary to 
support conservation in the future.

”
. 
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