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CAPTURING FRESH LAYERS
WITH THE SURFACE SALINITY PROFILER

SPECIAL ISSUE ON SPURS-2: SALINITY PROCESSES IN THE UPPER-OCEAN REGIONAL STUDY 2

ABSTRACT. During the second Salinity Processes in the Upper-ocean Regional 
Study (SPURS-2) field experiments in 2016 and 2017 in the eastern tropical Pacific 
Ocean, the surface salinity profiler (SSP) measured temperature and salinity profiles 
in the upper 1.1 m of the ocean. The SSP captured the response of the ocean surface to 
35 rain events, providing insight into the generation and evolution of rain-formed fresh 
layers. This paper describes the measurements made with the SSP during SPURS-2 and 
quantifies the fresh layers in terms of their vertical salinity gradients between 0.05 m 
and 1.1 m, ∆S1.1–0.05m. For the 35 rain events sampled with the SSP in 2016 and 2017, 
the maximum value of ∆S1.1–0.05m is well correlated with the accumulated rainfall. The 
maximum value of ∆S1.1–0.05m is shown to be linearly proportional to the maximum rain 
rate and inversely proportional to the wind speed. This wind speed-dependent relation-
ship shows a high degree of scatter, reflecting that the vertical salinity gradient formed 
during any individual rain event depends on the complex interaction between the local 
ocean dynamics and the highly variable forcing from rain and wind. 
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INTRODUCTION
Frequent rainfall helps to maintain the 
relatively fresh (~33 psu) surface waters 
beneath the Intertropical Convergence 
Zone (ITCZ) of the eastern tropical 
Pacific Ocean. Rain cells on scales of 
O(1 to 100) km within the ITCZ episod-
ically deposit freshwater onto the ocean 
surface, producing buoyant fresh lay-
ers that are eventually integrated into 
the underlying ocean through advection 
and mixing. One of the major objectives 
of the second Salinity Processes in the 
Upper-ocean Regional Study (SPURS-2) 
experiment is to understand the genera-
tion and evolution of rain-formed fresh 
layers, including the spatial and tem-
poral scales of their salinity anomalies 
(defined in terms of the surface freshen-
ing observed by satellites). As part of the 
SPURS-2 experiment, we made measure-
ments of temperature, salinity, and tur-
bulent dissipation rate in the upper meter 
of the ocean at fine horizontal, vertical, 
and temporal resolution using the sur-
face salinity profiler (SSP; Asher et  al., 
2014a,b), a surface-following platform 
that is towed from a ship. These data will 
enable us to characterize the structure of 
near-surface fresh layers formed by rain. 
In this article, we focus on the salinity 
response of the upper ocean to rain. 

Although it is known that the strongest 
impact of rain occurs in the upper tens 
of centimeters of the ocean, few observa-
tions of salinity have been made over these 
shallow depths due to difficulties in sam-
pling close to the ocean surface. Therefore, 
much of our detailed knowledge about the 
impacts of rainfall on the upper meter of 
the ocean comes from laboratory exper-
iments (Ho et  al., 2004; Zappa at al., 
2009; Harrison et al., 2012) and modeling 
(Soloviev et al., 2015; Drushka et al., 2016; 
Bellenger et al., 2016). These studies have 
been supplemented by a limited number 
of field observations that have character-
ized rain impacts on the upper few meters 
of the ocean surface (e.g., Price et al., 1979; 
Soloviev and Lukas, 1997; Wijesekera 
et  al., 1999; Asher et  al., 2014a; Walesby 
et al., 2015; Moulin et al., 2018; Thompson 

et al., 2019; ten Doeschate et al., in press). 
The consistent results from these labora-
tory, modeling, and field studies indicate 
that rainfall forms layers of stably stratified 
fresher water on the order of 1 m to 10 m 
thick at the ocean surface, and that these 
“fresh layers” can persist from minutes to 
hours, depending on ocean surface mix-
ing due to wind forcing, convective over-
turning, and internal and surface waves. 

The impact of rainfall on the ocean is 
often characterized in terms of the ver-
tical salinity gradient, ∆SZ2–Z1, between 
depths Z1 and Z2. As an example, salin-
ity measurements from the Soil Moisture 
and Ocean Salinity (SMOS) or Aquarius 
satellite products, with a radiometric 
measurement depth of approximately 
0.01 m, have been compared with salinity 
measured at 5 m by Argo profiling floats. 
The difference in salinity from these plat-
forms gives ∆S5–0.01m, the vertical gradi-
ent in salinity between 0.01 m and 5 m 
depth. Several studies have determined 
that in the tropics there is a linear rela-
tionship between ∆S5–0.01m and the local 
rain rate (R): 

 ∆S1.1–0.05m = kR, (1)

where ∆S5–0.01m > 0 indicates fresher val-
ues at 0.01 m compared to 5 m and R is 
provided by satellite-derived rain prod-
ucts (e.g., Boutin et al., 2014; Drucker and 
Riser, 2014; Santos-Garcia et  al., 2014). 
Depending on the satellite data products 
used for salinity and rain, values for k 
ranging from 0.07 to 0.36 psu (mm hr–1)–1 
have been estimated (see Boutin et  al., 
2016, for a review of these studies). 

Equation 1 does not take into account 
other parameters that have been found to 
influence the formation of salinity gradi-
ents. For instance, wind can affect salin-
ity gradients by generating turbulence 
that mixes the ocean surface (Asher 
et  al., 2014a; Thompson et  al., 2019; ten 
Doeschate et al., in press). Drushka et al. 
(2016) used a one-dimensional model to 
explore the influence of both rain rate and 
wind speed on vertical salinity gradients 
for idealized rain events having constant 
wind speed and a Gaussian-shaped rain 

rate time series. Similar to Equation  1, 
they found that

 ∆S5–0.05m = kRmaxU10
–b, (2)

where U10 is the wind speed at a height 
of 10 m, Rmax is the maximum rain rate 
during the event, k = 0.11 psu (mm hr–1)–1, 
and b = 1.1. Equations  1 and 2 are not 
equivalent: for 2 ≤ U10 ≤ 10 m s–1 and 
1 ≤ Rmax ≤ 100 mm hr–1, ∆S5–0.01m cal-
culated using Equation  2 is an order 
of magnitude smaller than that pre-
dicted from fits of satellite/Argo data to 
Equation  1. The cause of this difference 
is unclear, but possible explanations are 
that a one- dimensional model may not 
fully account for all the processes govern-
ing fresh layer dynamics, or that differ-
ences in the spatio temporal scales of sat-
ellite measurements (which are averaged 
in space and time) and the model (which 
represents a point measurement) could 
lead to the differences in the estimations 
of ∆S. There are also other factors not 
represented in Equation  2 that may be 
important for predicting vertical salinity 
gradients (e.g., preexisting surface ocean 
stratification, air-sea heat fluxes, mixing 
from surface and internal waves). 

The objective of data collection with 
the SSP during SPURS-2 was to system-
atically characterize near-surface salinity, 
temperature, and turbulence within rain-
formed fresh layers over a range of oce-
anic and atmospheric conditions. In this 
paper, we focus on the salinity and tem-
perature measurements made from the 
SSP; detailed discussion of the micro-
structure turbulence measurements will 
be presented in a forthcoming study. The 
SSP measurements are used to quantify 
vertical salinity gradients within fresh 
layers, including their relationship to rain 
and wind forcing. The observations are 
also used to validate and reconcile the 
parameterizations in Equations 1 and 2. 

DATA
The Surface Salinity Profiler
The SSP samples temperature and salin-
ity in the upper meter of the ocean while 
being towed from a ship, as described by 
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Asher et  al. (2014a,b). The SSP used for 
SPURS-2 was a second-generation plat-
form whose modified design provided 
additional capabilities. The modified SSP 
consisted of a 3.8 m long, 0.74 m wide, 
0.13 m thick stand-up paddleboard 
attached with two horizontal struts to 
a 2.2 m long surfboard that was located 
inboard of the paddleboard relative to 
the ship. The paddleboard provided the 
majority of the buoyancy, while the surf-
board acted as a stabilizing outrigger 
(Figure 1a). A 1.2 m deep by 0.6 m wide 
keel was affixed to the bottom of the cen-
ter of the paddleboard and was secured 
to the outrigger with angled struts in 
order to reduce vibration of the instru-
mented keel and increase the strength of 
the SSP (Asher et al., 2014b). The keel of 
the SSP was constructed from a 12.5 mm 
thick layer of rubber sandwiched between 
3 mm thick aluminum plates to further 
isolate sensors from vibration while the 
platform was towed. 

Four CTD sensors (SBE 49, Sea-Bird 
Electronics) were mounted to the keel 
at depths of 0.12, 0.23, 0.54, and 1.10 m 
below the ocean surface. Salinity in the 
upper 0.05 m was measured using a 
“salinity snake” that pumped water from 
a floating hose with an intake depth in the 
upper 0.05 m through a vortex debubbler 
and then a thermosalinograph (TSG; 
SBE 45, Sea-Bird Electronics). Seawater 
temperature at the intake of the salinity 

snake was measured using a self-logging 
temperature sensor (SBE 56, Sea-Bird 
Electronics) that was mounted on the 
intake hose (Figure 1a shows the articu-
lated arm used for the 2017 field exper-
iments that held the SBE 56 and intake 
hose for the salinity snake). Each CTD 
was sampled at 6 Hz, the TSG was sam-
pled at 2 Hz, and the SBE 56 logged tem-
perature at 1 Hz. 

The SSP also measured the microstruc-
ture temperature and conductivity using 
probes (MicroSquid, Rockland Scientific) 
that were mounted to the SSP keel at 
0.37 m depth below the water line. The 
microstructure probes were mounted on 
opposite sides of the keel, with each sens-
ing element located forward of the CTD 
intakes in order to avoid flow distortion. 
In 2017, a downward- looking Nortek 
Vectrino-II profiling acoustic Doppler 
velocimeter (ADV) was mounted on the 
keel at 0.5 m depth and a downward- 
looking Nortek Signature1000 acous-
tic Doppler current profiler (ADCP) was 
mounted outboard of the paddleboard 
at a depth of 0.1 m. The ADCP operated 
in high- resolution mode and measured 
velocities in 0.02 m vertical bins from 
0.2 m to 2 m depth below the sea sur-
face. An inertial measurement unit took 
data that allowed platform motion to be 
decoupled from the ADV and ADCP 
velocity records. 

The SSP was deployed episodically 

for up to 12 hours per deployment, with 
18 deployments during the 2016 cruise 
and 16 during the 2017 cruise. During 
each deployment, the SSP provided a 
continuous record of temperature and 
salinity from 0.05 m to 1.1 m depth, along 
with measurements of turbulence from 
0.2 m to 2 m. The SSP was towed from 
a point near the center of the ship on the 
port side using a 50 m long tow cable 
attached to a three-point bridle system, 
which forced it to track at a ~135° angle 
relative to the ship’s heading. As a result, 
the SSP was 35 m outboard and 10 m aft 
of the vessel, thus sampling water undis-
turbed by the ship’s wake (Figure 1b; 
Asher et al., 2014a,b). The SSP was towed 
at a maximum speed of 2 m s–1 in order to 
minimize bubble generation by the plat-
form and to provide a reasonable balance 
between resolution of large- and small-
scale horizontal features in the ocean. 
At this speed, the SSP followed the water 
level over swell and non-breaking wind 
waves such that the instruments main-
tained approximately the same depth 
below the sea surface. This was confirmed 
by the 0.02 m root-mean-square vari-
ance in the pressure data from the keel-
mounted CTDs. 

Salinity data from the CTDs mounted 
at 0.12 m and 0.23 m were processed to 
remove spikes (caused by bubbles) by 
computing a moving median and stan-
dard deviation over non-overlapping 

FIGURE 1. Surface salinity pro-
filer (SSP). (a) Front view of the 
SSP (2017 version) with instru-
ments labeled. (b) Aerial view 
of SSP being towed from a 
research vessel (ship length 
is 84 m); note that the SSP is 
outside of the ship’s wake. 
In the 2016 deployments, 
the SSP did not include the 
Signature1000 or Vectrino-II, 
and the SBE 56 and pump 
intake were mounted to hoses 
that dragged in the water 
rather than on the sampling 
“arm” shown here.
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FIGURE 2. Statistics for the 35 rain events 
encountered while the SSP was deployed in 
2016 and 2017. (a) Maximum rain rate during the 
events. (b) Duration of the events, defined as 
the total number of raining minutes. (c) Average 
wind speed during the raining minutes.

two- to five-minute data segments. The 
median salinity was subtracted from 
each data segment to isolate the salinity 
deviations, and data points in the origi-
nal time series for which the correspond-
ing value of the deviations were more 
than three times larger than the standard 
deviation were masked out. Missing data 
points were then filled either with linear 
interpolation if the missing value existed 
between two valid points or with a mov-
ing median of non-masked points taken 
from within the original segment of data. 
Salinity and temperature data at all depths 
were then smoothed with a 30-second 
moving median filter. Offsets and drift 
between each sensor were small, typi-
cally <0.001 psu for salinity and 0.008°C 
for temperature over the course of a 
12-hour deployment. Mean differences 
in salinity and temperature between the 
CTDs, TSG, and SBE 56 were removed 
by selecting a time range for which the 
upper meter was well mixed (typically 
during night, or in non-rainy conditions 
with wind speed greater than 8 m s–1) and 
correcting mean values from all sensors 
to those of the CTD mounted at 0.54 m 
depth as a reference since it was shown to 
be the most stable sensor. 

Other Observations
The upper-ocean measurements were 
complemented by a suite of ship-based 
measurements made continuously from 
R/V Revelle. These included rain rate 
and wind speed (Clayson et  al., 2019, 
in this issue), water temperature and 
salinity from the ship’s TSG that sam-
pled water from a nominal depth of 5 m, 
and ocean currents at 20 m depth and 
below from the ship’s ADCP (provided 
by Janet Sprintall, Scripps Institution of 
Oceanography). An Eigenbrodt ODM470 
optical disdrometer was also deployed on 
the ship to measure raindrop size dis-
tributions. The meteorological sensors 
on the ship’s bow were approximately 
90 m forward of the SSP’s position. At 
2 m s–1 ship speed, this introduced a 45 s 
lag between the meteorological and SSP 
observations. All SSP measurements 

were thus offset by 45 s in time in order to 
account for this lag. 

In this paper, we also use satellite-based 
rain estimates from IMERG (Integrated 
Multi-satellitE Retrievals for GPM, the 
NASA Global Precipitation Mission; Sun 
et al., 2018), which are available at 10 km 
horizontal resolution every 30 minutes.

Sampling Considerations 
Sampling data from a moving platform in 
principle allowed us to capture the spa-
tial structure of the response of the ocean 
to rain. However, the rain cells moved 
continuously (approximately with the 
atmospheric mean flow, which was typ-
ically faster than the ship speed) and 
evolved (on timescales as short as 60 s). 
Moreover, rainwater that was depos-
ited on the ocean surface could then 
be advected horizontally by currents. 
Thus, the SSP observations represent the 
impact of the rain field, which moved and 
evolved, on the ocean surface, which also 
moved and evolved. The SSP measured 
the vertical distribution of salinity and 
temperature in a particular water parcel, 
and the ship measured the rain rate and 
wind speed that occurred over the par-
cel at the same time. However, the ver-
tical temperature and salinity profiles 
of a given parcel also depended on the 
rain and wind speed history for that par-
cel, the details of which are not always 
known. As a result, correlating a salin-
ity profile observed with the SSP to rain 
rates and wind speeds measured from the 
ship requires a cautious approach. Here, 
we assume that one-dimensional vertical 
processes (surface forcing, vertical mix-
ing) dominated the oceanic response to 
rain forcing, so that over the timescales 
of the evolving rain field, the fresh layer 
evolved in the vertical direction faster 
than the lateral dispersion occurred. We 
also explore different metrics to describe 
rain forcing and predict the response of 
salinity to this forcing: the maximum rain 
rate of an event, the total accumulated 
rainfall during an event, and the instanta-
neous rain rate at any given time. 

SSP MEASUREMENTS OF 
NEAR-SURFACE SALINITY 
During the two SPURS-2 cruises, the SSP 
was deployed for a total of 230 hours, of 
which 39 hours were characterized as 
having local rain rates above 0.5 mm hr–1. 
Within those 39 hours, 35 distinct rain 
events were identifiable: 15 in 2016 and 
20 in 2017. Here, we define a rain event 
as having (1) a rain rate, R, greater than 
0.5 mm hr–1 for at least five minutes, and 
(2) a ∆S1.1–0.05m greater than 0.01 psu 
within ±15 minutes of the peak rain rate. 
The set of rain events spans a range of 
rain and wind conditions, with a median 
R of 11 mm hr–1 and a median duration of 
27 minutes (Figure 2a,b). The associated 
wind speeds (adjusted to 10 m assum-
ing neutral stability), U10, ranged from 
2 m s–1 to 11 m s–1, with a median value of 
5 m s–1 (Figure 2c). Although not shown 
here, R was not correlated with U10 so that 

a

b

c

Wind Speed (m s–1)

Rain Event Duration (min)

Peak Rain Rate (mm hr–1)
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the set of observed events allows investi-
gation into how different rain and wind 
combinations affect the ocean salinity 
response to rainfall. 

Example Rain Event
Figure 3 shows time series for R, rain-
drop size distribution, U10, current speed 
at 20 m depth, salinity (S), temperature 
(T), and turbulent dissipation rate (ε)
for one rain event sampled by the SSP. 

In this case, the SSP was being towed 
south-southwestward at 2 m s–1, and 
both the wind and current were from the 
north-northwest (Figure 3f). Before the 
rain began, the upper 5 m of the ocean 
were well mixed in temperature and salin-
ity (Figure 3c,d). The rain event began at 
15:33 UTC and had a maximum R, Rmax, 
of 4 mm hr–1 at 15:37  UTC. A smaller 
local peak in R of 1 mm hr–1 occurred at 
15:45 UTC, and rain ceased at 15:58 UTC. 

The majority of raindrops had diameters 
less than 0.6 mm, and drops with diam-
eter >1 mm were only observed when 
R > 1 mm hr–1 (i.e., when R was maximum 
for this event; Figure 3a). Wind speed 
dropped from 4.5 m s–1 to 2.3 m s–1, then 
increased again to 4.7 m s–1 after the time 
that Rmax occurred (Figure 3b). 

The rain event generated freshen-
ing at all depths: the salinity anom-
aly followed the rain rate closely, with a 

FIGURE 3. Rain event sampled with the SSP on October 31, 2017. (a) Rain rate (black line, left axis) and number of drops of a given raindrop class size 
per minute (color, right axis) as measured by the disdrometer. (b) Wind speed (left axis) and current speed (right axis) measured from the ship. (c) Salinity 
and (d) temperature measured by the SSP and the ship’s thermosalinograph. (e) Dissipation rate at 0.37 m as derived from the microstructure conductiv-
ity sensor, with uncertainty bounds. (f) S0.05m (color) along the SSP track, with wind vectors (gray arrows; scale arrow at top is 10 m s–1) and current vec-
tors (pink vectors; scale arrow is 0.5 m s–1). Vertical profiles of (g) salinity and (h) temperature from the SSP at 15:33 (light gray) and 15:41 (dark gray) UTC; 
these times are indicated as gray dots on panels c and d.
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lag of several minutes (Figure 3c). After 
the rain started at 15:33  UTC, S0.05m 
decreased by 0.27 psu from 15:35 to 
15:41 UTC. At 15:41 UTC, four minutes 
after the time that Rmax occurred, S0.05m 
reached a minimum; immediately fol-
lowing this minimum, S0.05m increased 
by 0.16 psu. Following the second peak 
in R at 15:45 UTC, S0.05m decreased again 
by 0.04 psu, reaching a local minimum 
at 15:45 UTC (Figure 3c). From the time 
the rain started until 15:39  UTC, S0.05m 
and S0.12m were nearly equal, suggesting 
that the rainwater mixed instantaneously 
down to at least 0.12 m. This is consistent 
with laboratory experiments showing 
that turbulence generated by raindrops 
impacting on the surface penetrates to a 
depth of approximately 0.1 m and mixes 
this near- surface layer instantaneously 
(Zappa et al., 2009). Deeper than 0.12 m, 
the salinity anomalies were weaker and 
slightly lagged compared to S0.05m and 
S0.12m. For instance, S0.23m had a maxi-
mum decrease of 0.21 psu at 15:41 UTC, 
whereas S1.1m had a maximum decrease 
of 0.08 psu at 15:43 UTC. S5m measured 
by the ship’s TSG showed a maximum 
freshening of 0.07 psu at 15:51  UTC, 
indicating that the rainwater pene-
trated to at least 5 m depth (Figure 3c). 
After 15:54  UTC, a 0.07 psu freshen-
ing occurred at all depths. At this time, 
no local R was measured and no vertical 
S gradient was observed, suggesting that 
the fresh signal was measured when the 
SSP crossed a front. For instance, an ear-
lier rain event could have caused freshen-
ing in that location and the subsequent 
mixing could have eroded the salin-
ity stratification, leading to a horizontal 
salinity front but no vertical S gradient. 

Figure 3d shows that T decreased in 
concert with the observed decrease in S 
at all depths. T0.05m decreased by 0.19°C 
between 15:35 and 15:41  UTC; T5m 
decreased by 0.08°C between 15:35 and 
15:44  UTC. This rain-induced cooling 
is expected: the near-surface air is typi-
cally cooler than the ocean surface in the 
tropics, and raindrops are 1°–2°C cooler 
than the air (Gosnell et al., 1995), so rain-

drops tend to cool the ocean. As seen in 
salinity, T at all levels decreased again at 
15:54 UTC, which is consistent with the 
SSP crossing a front.

The vertical profiles of S and T show 
that the maximum rain-induced freshen-
ing and cooling signals seen at 15:41 UTC 
were both strongest above 0.54 m 
(Figure 3g,h), indicating the formation of 
a thin (<0.54 m thick) stratified layer at 
the surface. Although measurements of ε 
are unavailable after 15:43 UTC, it appears 
that ε at 0.37 m decreased after the rain 
started, for example, at 15:41 UTC when 
the vertical stratification was strongest. 
It is possible that this reduction in tur-
bulence occurred because kinetic energy 
from the wind stress was trapped within 
the stratified near-surface layer above the 
depth of the microstructure sensors. 

Statistical Characterization 
of All Rain Events
The case study shown in Figure 3 is one 
example of the 35 rain events observed 
with the SSP during SPURS-2. To charac-
terize all of the rain events and evaluate the 
parameterizations in Equations  1 and 2, 
several metrics have been defined. For 
each event, Rmax was identified as the peak 
rain rate, and the total amount of accu-
mulated rainfall during each rain event, 
ΣR, was computed. RIMERG was estimated 
as the value of R from the IMERG satellite 
product within ±30 minutes of the time 
that Rmax occurred, in the pixel that the 
SSP was in. The strength of the rain-in-
duced salinity anomaly was defined as 
the maximum value of ∆S1.1–0.05m within 
±15 minutes of when Rmax occurred, and 
is referred to as ∆Smax. Similarly, ∆Tmax 
was defined as the maximum value of 
∆T1.1–0.05m within ±15 minutes of the time 
that Rmax occurred. In order to capture the 
wind forcing affecting the development of 
∆Smax, U10

— was defined as the mean value 
of U10 over the time period spanning 
when Rmax and ∆Smax occurred. By defini-
tion, this time lag between Rmax and ∆Smax 
was <15 minutes; for the 35 rain events, it 
had a mean value of 3 minutes; that is, the 
peak vertical salinity gradient was gener-

ally observed within a few minutes of the 
peak rain rate. 

Figure 4 summarizes the various met-
rics used to quantify the rain, wind, and 
vertical salinity gradients for the rain 
events observed with the SSP. Least-
squares linear regressions to Equations 1 
and 2 were fit to these data in order to 
evaluate those relationships. Table 1 sum-
marizes the results of the fits, and includes 
the coefficients and their standard errors 
as well as the coefficient of determination 
(r2) for each fit. Figure 4a shows a scat-
terplot of ∆Smax versus Rmax, where the 
points have been sorted into two classes 
based on wind speed: U10

— > 5 m s–1 and 
U10
— ≤ 5 m s–1. Although considerable 
scatter exists in the data, it is evident 
that higher Rmax and lower U10

— are asso-
ciated with larger ∆Smax. A least-squares 
linear regression between ∆Smax and 
Rmax (Equation 1) produced a regression 
coefficient of k = 0.005 psu (mm hr–1)–1 
(Table 1). This value is over an order of 
magnitude smaller than the range of k 
shown in the review by Boutin et al. (2016) 
(from 0.07 to 0.36 psu (mm hr–1)–1). 
However, there are two major differ-
ences between the studies summarized 
by Boutin et  al. (2016) and the present 
work: differences in measurement reso-
lution and differences in the depths over 
which ∆S was calculated. First, the results 
shown by Boutin et al. (2016) were based 
on satellite-derived rain products, which 
have coarse resolution in space and time. 
The coarse satellite rain measurements 
have lower values than the in situ rain 
rates measured at the ship. This discrep-
ancy is typical over tropical oceans where 
much of the precipitation falls from 
small-scale convective events with short 
duration and high intensity (e.g., Houze 
et  al., 2015). Indeed, a scatterplot of 
∆Smax versus RIMERG demonstrates that 
the values of RIMERG are an order of mag-
nitude lower than the Rmax observed 
at approximately the same time and 
place (Figure 4a). The least-squares lin-
ear regression coefficient between ∆Smax 
and RIMERG is k = 0.03 psu (mm hr–1)–1 
(Table 1), which is closer to the mini-
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mum value of k shown by Boutin et  al. 
(2016) than the value of k estimated 
with in situ Rmax. 

Second, Boutin et  al. (2016) consid-
ered ΔS5–0.05m, while this study considers 
ΔS1.1–0.05m. Although not plotted here, the 
regression of ΔSmax to RIMERG, where ΔSmax 
was computed from ∆S5–0.05m (with S5m 
measured by the ship’s TSG), produced 
a coefficient k = 0.16 psu (mm hr–1)–1 
(Table 1), which is consistent with the 
results presented by Boutin et al. (2016). 
In other words, the measurements of indi-
vidual fresh layers made during SPURS-2 
show a relationship between rain rate and 
vertical salinity gradient that is consis-
tent with relationships developed with 

satellite-based measurements.
While Equation  1 assumes that 

∆Smax depends only on Rmax, Equation 2 
describes ∆Smax as a function of both Rmax 
and U10

—. It is evident from the SSP data 
that ∆Smax depends on both Rmax and U10

— 
(Figure 4b). Although these data exhibit 
significant variability, they demon-
strate that the highest values of ∆Smax 
occur during rain events with higher 
Rmax and smaller U10

—. A fit of Equation 2 
to the data in Figure 4a,b gives val-
ues of k = 0.1 ± 0.2 psu (mm hr–1)–1 and 
b = 1.0 ± 0.3 (Table 1). This fit is shown 
as dashed lines in Figure 4b. Though the 
uncertainty bounds (standard errors) 
of these coefficients are wide, the val-

ues are consistent with those found by 
Drushka et al. (2016) using output from 
one- dimensional modeling of idealized 
rain events. This suggests that although 
the rain events simulated with the one- 
dimensional model by Drushka et  al. 
(2016) were idealized in terms of the tem-
poral evolution of R and U10, the modeled 
dependence of ∆Smax on Rmax and U10

— is 
similar to that found with field obser-
vations. This confirms that it is reason-
able to use one-dimensional models to 
investigate the effect of rainfall on near- 
surface salinity.

Although the regression coefficients 
from fitting field data to Equation  2 are 
consistent with those found by Drushka 

FIGURE 4. (a) ∆Smax plotted against Rmax for each event. Colored dots show ship-based rain measurements, colored 
by U10

—
. Gray dots show IMERG satellite-based rain measurements. The black and gray lines show linear fits to the 

ship-based and IMERG-based rain rates, respectively. (b) ∆Smax plotted against U10
—

 for each event, colored by Rmax. 
The thin dashed lines represent the fit of the data to Equation 2, evaluated at the midpoint value of Rmax in each rain 
rate range. (c) ∆Smax plotted against ΣR for each event, colored by U10

—
. The black line shows a linear fit to the data. 

(d) ∆Tmax plotted against ∆Smax for each event. The black line shows a linear fit to the data.
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et el. (2016), the scatter in Figure 4b sug-
gests that factors other than Rmax and U10

— 
likely have significant impacts on ∆Smax. 
For instance, detailed inspection of the 
individual rain events captured with the 
SSP on a case-by-case basis reveals that 
the development of ∆S appears to be 
affected by horizontal advection in the 
upper ocean (current speeds were on 
average 0.3 m s–1) and preexisting strat-
ification from either diurnal warm layers 
or rain-generated fresh layers from previ-
ous rain events. 

To evaluate the ability of accumu-
lated rainfall to describe the strength of 
rain-formed vertical salinity gradients, 
Figure 4c shows ∆Smax plotted against 
ΣR. The r2 value for the linear regression 
between ∆Smax and ΣR (i.e.,  replacing 
Rmax with ΣR in Equation 1) is 0.77. This 
r2 value is much larger than that for the fit 
between ∆Smax and Rmax (r2 = 0.18; Table 1), 
which indicates that ΣR is a better predic-
tor of ∆Smax than Rmax is. The fit between 
∆Smax and ΣR using Equation  1 is also 
better than the fit of ∆Smax to ΣR and U10

— 
using Equation 2, which has an r2 value 
of 0.34 (Table 1). In other words, variabil-
ity in ∆Smax can mostly be explained by 
variability in ΣR without considering U10. 
This finding is counter-intuitive in light 
of the wind dependence that is seen in 
Figure 4a,b. We hypothesize that the vari-
ability of wind speed over the course of a 
rain event generates a time-variable and 
nonlinear forcing due to vertical mixing 
that is not well represented by an average 
value of wind speed. Thus, fitting ∆Smax to 
ΣR and U10

— (Equation 2) degrades the fits 

in comparison to fitting ∆Smax only to ΣR 
(Equation 1). Alternatively, it may be that 
Equation  2 is not the correct model for 
the wind dependence of ∆Smax.

The close correlation between salin-
ity and temperature variations during 
rain events (Figure 3c,d) was observed 
during all 35 rain events observed with 
the SSP. This is illustrated in Figure 4d, 
which shows a high correlation between 
∆Tmax and ∆Smax. A least-squares lin-
ear regression using data from the 
35 events produces the relationship 
∆Tmax = (0.35 ± 0.01°C psu–1) ∆Smax, and 
has an r2 value of 0.89. This strong lin-
ear relationship is consistent with results 
from the prognostic model that was 
developed by Bellenger et  al. (2016) to 
represent rain freshening and cooling. 

Instantaneous Response of Upper-
Ocean Salinity to Rain and Wind
In the two sections immediately above, 
individual rain events were isolated 
and quantified using ∆Smax and Rmax. It 
is also useful to quantify the instanta-
neous relationship of ∆S with R and U10 
at any given time. An instantaneous rela-
tionship may be particularly applicable 
to satellite data, which represent snap-
shots (e.g.,  of R, U10, or S0.01m) and thus 
may not capture the maximum R or min-
imum S0.01m for a given rain event. Here, 
we relate ∆S to R and U10 for all times 
that it was raining, without separating the 
data into discrete rain events. Figure 5a 
shows ∆S1.1–0.05m for all data points having 
R > 0.5 mm hr–1 as a function of R, where 
the data point color denotes U10. The 

dependence of ∆S1.1–0.05m on both R and 
U10 is clear: ∆S1.1–0.05m is positively cor-
related with R, with the largest ∆S1.1–0.05m 
observed when U10 is low. This can be 
seen by binning ∆S1.1–0.05m as a function 
of U10 and R (Figure 5b), which shows a 
clear correlation of ∆S1.1–0.05m with R and 
U10 when U10 < 7 m s–1. At higher wind 
speeds, ∆S1.1–0.05m is small and no longer 
shows a dependence on R, suggesting 
that salinity gradients in the upper meter 
of the ocean are rarely seen for wind 
speeds greater than about 7 m s–1 (consis-
tent with the observations of Thompson 
et al., 2019). Figure 5b demonstrates that 
the average salinity response in the upper 
1 m of the ocean to rainfall is effectively 
instantaneous, with local rain and wind 
explaining much of the variability in 
∆S1.1–0.05m. A fit of Equation 2 to all of the 
data shown in Figure 5a for U10 < 8 m s–1 
gives the coefficients k = 0.21 ± 0.01 (mm 
hr–1)–1 and b = 1.54 ± 0.01 (shown as 
thin dashed lines on Figure 5b). Thus, 
∆S1.1–0.05m observed by the SSP is lin-
early related to R and inversely propor-
tional to U10 at any given time, consis-
tent with ∆Smax for individual rain events 
(Figure 4b) and ∆S estimated with a one- 
dimensional model of idealized rain 
events (Drushka et al., 2016). 

DISCUSSION AND 
CONCLUSIONS
During the 2016 and 2017 SPURS-2 
cruises, the SSP measured vertical pro-
files of temperature and salinity from 
0.05 m to 1.1 m and dissipation rate at 
0.37 m depth for 35 distinct rain events. 

TABLE 1. Parameters used in fitting observations to Equations 1 and 2, and resulting coefficients.

Depth Range 
for ∆Smax 

Rain Data Set Equation Used for Fit Fit Coefficients r2

1.1–0.05 m In situ Rmax (mm hr–1) Eq. 1 k = 0.005 ± 0.001 psu (mm hr–1)–1 0.18

1.1–0.05 m RIMERG (mm hr–1) Eq. 1 k = 0.03 ± 0.02 psu (mm hr–1)–1 0.34

5–0.05 m RIMERG (mm hr–1) Eq. 1 k = 0.16 ± 0.07 psu (mm hr–1)–1 0.44

1.1–0.05 m In situ Rmax (mm hr–1) Eq. 2 k = 0.1 ± 0.2 psu (mm hr–1)–1 
b = 1.0 ± 0.3 0.22

1.1–0.05 m In situ ΣR (mm) Eq. 1 (with ΣR instead of R) k = 0.081 ± 0.001 psu mm–1 0.77

1.1–0.05 m In situ ΣR (mm) Eq. 2 (with ΣR instead of R) k = 0.5 ± 0.2 psu mm–1 
b = 1.1 ± 0.3 0.34
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These events represent 39 hours of data 
collected during a range of wind and 
rain conditions (Figure 2). The SSP mea-
surements produced a rich data set that 
enables detailed characterization of the 
response of the upper meter of the ocean 
to rainfall. A major focus of this paper 
was to assess two parameterizations that 
have been developed to describe the ver-
tical salinity gradients that form due to 
rainfall (Equations 1 and 2). 

Equation  1 is a linear relationship 
between ∆Smax and Rmax that was devel-
oped using satellite-based rain prod-
ucts and satellite/Argo salinities (Boutin 
et al., 2014, 2016). In situ rain rates mea-
sured from the ship were an order of 
magnitude greater than satellite-based 
rain rates from the IMERG product 
(Figure 4a). When this difference in R 
between IMERG and in situ is accounted 
for, and the depth range over which 
∆Smax is computed is taken into account, 
the SSP-based regression coefficient 
between ∆Smax and Rmax is in agreement 
with the results presented by Boutin et al. 
(2016). This result implies that applying 
or comparing parameterizations of near- 

 surface salinity stratification due to rain-
fall requires careful consideration of the 
spatial and temporal scales used.

Fitting Equation 2 using Rmax and U10
— 

to the ∆Smax (Figure 4b) produced coeffi-
cients that, within the uncertainties, were 
consistent with the results from a one- 
dimensional modeling study of idealized 
rain events (Drushka et  al., 2016). This 
agreement suggests that although the 
idealized rain events in the model over-
simplified the atmospheric forcing on 
the ocean, the modeled response of the 
upper ocean to rainfall and wind com-
pares reasonably well to that observed 
with the SSP. However, wide scatter in the 
data and large uncertainties on the fit to 
Equation 2 indicate that ∆Smax is not well 
described with a simple parameterization 
based on Rmax and U10

—. Other factors, 
such as mixing from surface and inter-
nal waves, advection, and existing near- 
surface stratification also likely affect the 
vertical salinity gradients generated by 
rain. In addition, as described in the sec-
tion on Sampling Considerations, sam-
pling a constantly evolving rain field from 
a moving platform also likely confounds 

the temporal and spatial variability of the 
impact of rainfall on ∆S. It is thus unsur-
prising that ∆Smax cannot be perfectly 
described by Rmax and U10

—. 
Equations 1 and 2 were both developed 

using rain rate as a metric to describe 
∆Smax. The data shown in Figure 4c 
demonstrate that the total accumulated 
rainfall for an event (ΣR) describes the 
strength of vertical salinity gradients bet-
ter than the peak rain rate of an event 
(Table 1). This finding is in contrast to the 
results of the modeling study of Drushka 
et al. (2016), who found Rmax to be a bet-
ter predictor of ∆Smax than ΣR. This can 
be explained by the fact that the idealized 
rain events modeled by Drushka et  al. 
(2016) were forced using constant U10 
and a smooth time series of R with a sin-
gle peak. Those forcing characteristics led 
the model to predict a single well- defined 
∆Smax for each rain event. The situation 
is rarely so simple for real-world rain 
events, in which rainfall intensity var-
ies on short timescales and small spatial 
scales. Rain accumulation thus explains 
more variability in ∆Smax than does Rmax. 
Interestingly, regressing ∆Smax to ΣR 

FIGURE 5. (a) ∆S1.1–0.05m as a function of R for all data collected with the SSP while R > 0.5 mm hr–1, where each data point has been colored by U10. 
(b) ∆S1.1–0.05m as a function of U10, colored by R. Dots and thick lines represent the raw data shown in Figure 4a that have been binned by R and U10. Thin 
dashed lines represent fit of Equation 2 to all raw data having U10 < 8 m s–1, which gives ∆S1.1–0.05m = 0.22 ⋅ R ⋅ U 10

–1.6, evaluated at the midpoint value of 
R in each rain rate range. 
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alone produces a much better fit in com-
parison to including U10

— in the fit, despite 
the clear dependence of ∆S on both 
wind speed and rain rate demonstrated 
in Figures 4b and 5b. We speculate that 
because wind speed varies significantly 
during the course of a single rain event, 
an average value of wind speed does not 
represent the nonlinear impacts of wind 
forcing on upper-ocean mixing and hence 
on ∆S. Including U10

— thus degrades the 
fit of Smax to ΣR. In addition, Equation 2 
may not be the best model to describe the 
wind speed and rain dependence of verti-
cal salinity gradients. Unraveling the rel-
ative effects of time-variable rain, wind, 
and mixing on vertical salinity anomalies 
is beyond the scope of this paper and is 
left to future studies that combine model-
ing and analysis of the SSP data collected 
during SPURS-2.

By considering ∆S at any time as an 
instantaneous salinity response to local 
wind and rain forcing, Figure 5b demon-
strates that ∆S is linearly related to R and 
inversely related to U10 (for U10 < 8 m s–1). 
This is potentially valuable for using 
instantaneous measurement of R and 
U10 (e.g.,  from satellites or infrequent in 
situ measurements) to predict the pres-
ence of near-surface salinity stratifica-
tion. The very high correlation between 
∆Tmax and ∆Smax (Figure 4d) has poten-
tial implications for using temperature 
as a proxy for salinity in order to study 
near-surface fresh layers. Near-surface 
temperature measurements (e.g.,  from 
satellites and surface drifters) are more 
prevalent than near-surface salinity mea-
surements. If rain-induced cooling can 
be identified from temperature observa-
tions, and distinguished from cooling due 
to other causes (e.g., by matching to sat-
ellite rain observations), it may be pos-
sible to estimate rain-induced ∆S from 
∆T measurements. 
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