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SPECIAL ISSUE ON SCIENTIFIC OCEAN DRILLING: LOOKING TO THE FUTURE

Listening Down the Pipe
By Evan A. Solomon, Keir Becker, Achim J. Kopf, and Earl E. Davis

ODP/IODP BOREHOLE 
OBSERVATORY DESIGNS AND 
INSTRUMENTATION
Nearly all of the designs for ODP/IODP 
subseafloor observatories1 require some 
sort of reentry cone and casing to stabi-
lize the upper part of the hole, and a plug 
to seal the inside of the borehole against 
hydraulic interference from the over-
lying ocean and to allow reestablishment 
of equilibrium in situ conditions post- 
drilling. The original observatory design 
(Figure 1a) was called the Circulation 
Obviation Retrofit Kit (CORK), and the 
term “CORK” is often loosely used to 
refer to all subsequent designs. Since 
2001, CORK observatories have become 
more sophisticated, with multiple sub-
seafloor seals that isolate intervals of 
interest, and they can now host a range of 
increasingly advanced instrumentation 
for geophysical, geochemical, and micro-
biological experiments (Figure 1b–e). For 
example, many of the CORKs deployed 
by IODP in the last two decades included 
OsmoSamplers that continuously col-
lect formation fluid for several years 
and can be configured for fluid flow rate 
monitoring, microbiological sampling, 

and microbial colonization experiments 
(Figure 2; e.g., Wheat et al., 2003, 2011; 
Jannasch et al., 2004; Solomon et al., 2009; 
Orcutt et al., 2011; Cowen et al., 2012). 

With the deployment of cabled ocean 
observatory systems in the United States, 
Japan, and Canada in the last decade, 
providing power to some of the installa-
tions is no longer a limitation, and a new 
generation of CORK observatories are 
transmitting subseafloor geophysical data 
to land-based laboratories in real time 
(e.g., Araki et al., 2017; Saffer et al., 2017; 
McGuire et al., 2018). “CORK-Lite” mod-
els that can be deployed by remotely oper-
ated vehicles allow installation of instru-
mentation in existing reentry boreholes 
without the aid of a drillship (e.g., Wheat 
et al., 2012), and some designs include the 
simple Smart and Genius plugs that per-
mit temporary monitoring of a zone of 
interest (Kopf et al., 2011). With portable 
rock drills now used as mission-specific 
platforms in IODP, deployment of sub-
seafloor observatories will also be possi-
ble from ships of opportunity (e.g., Kopf 
et  al., 2015) and in regions where the 
drillships JOIDES Resolution and Chikyu 
cannot operate.

SELECTED SCIENTIFIC 
HIGHLIGHTS
Some of the most exciting achievements 
enabled by ODP/IODP observatories 
to date are listed below. They showcase 
the diversity of research endeavors and 
the breadth of the community involved 
in investigations of IODP’s “Earth in 
Motion” theme, including the pro-
cesses and natural hazards occurring on 
human timescales.
• Long-term sealed-hole pressure and 

temperature records have demon-
strated that the uppermost young oce-
anic basement is highly hydraulically 
transmissive over regional (tens of kilo-
meters or more) scales, supports exten-
sive lateral fluid flow associated with 
small pressure differentials, and thus 
functions as an immense subseafloor 
aquifer (e.g., Becker and Davis, 2004; 
Davis and Becker, 2004; Fisher and 
Wheat, 2010).

• Cross-hole tracer experiments indi-
cate significant structural control of 
ridge-parallel fluid flow and very low 
effective porosity in the upper oceanic 
crust (e.g., Neira et al., 2016).

• In situ monitoring of the radiocarbon 
content of dissolved inorganic carbon at 
the Mid-Atlantic Ridge flank revealed 
that seawater residence times in the 
oceanic crust can be 10 to 100 times 
longer than regional heat flow-based 
estimates, reflecting the heterogenous 
nature of fluid flow paths (Shah Walter 
et al., 2018).

• In situ monitoring of fluid composi-
tion and flow rates in young oceanic 

1 It is beyond the scope of this short article to describe the evolution of ODP/IODP observatory designs and subseafloor instrumentation in detail; for 
technical reviews, we refer the reader to Becker and Davis (2005) and Davis et al. (2018).

ABSTRACT. Since 1991, over 30 borehole observatories have been installed by the 
Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program, and the 
International Ocean Discovery Program (IODP), mostly in young oceanic crust and 
in subduction zones. These installations have provided a sustained presence in the 
subseafloor environment, enabling collection of a new generation of long-term, time- 
series data sets of temperature, pressure, and deformation, as well as continuous fluid 
sampling and in situ active experimentation. These multidisciplinary observations have 
pushed the frontiers of knowledge about Earth’s linked geodynamic, hydrological, geo-
chemical, and biological processes.
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crust has enabled evaluation of the role 
of off-axis hydrothermal circulation in 
global geochemical cycles (e.g., Wheat 
et al., 2003; Fisher and Wheat, 2010).

• CORK fluid sampling has shown that 
dissolved organic carbon is removed 
from cool circulating fluids at the Mid-
Atlantic Ridge flank, driven by micro-
bially mediated oxidation, and that this 
removal mechanism may account for at 
least 5% of the global loss of dissolved 
organic carbon in the deep ocean (Shah 
Walter et al., 2018).

• In situ collection of microbial samples 
and cultivation experiments in CORKs 
installed in young oceanic crust show 
significant changes in microbial com-
munity structure between hydro-
thermal systems and through time 
(e.g., Cowen et  al., 2003; Orcutt and 
Edwards, 2014; Jungbluth et al., 2016). 
Results from North Pond on the Mid-
Atlantic Ridge show a diverse bac-
terial community engaged in both 
heterotrophy and autotrophy at poten-
tial rates that may exceed those in ocean 

bottom water (Meyer et al., 2016).
• Recent improvements in CORK design 

and CORK-compatible in situ fluid 
sampling equipment have enabled col-
lection of large volumes of pristine 
basement fluid whose analysis shows 
that basalt-hosted ridge-flank fluids 
harbor a distinct assemblage of novel 
viruses, including many that infect 
archaea, pushing the known geograph-
ical limits of the virosphere into the 
oceanic basement (Nigro et al., 2017).

• Active and passive experiments at dif-
ferent spatial scales using CORKs have 
documented variation in fault perme-
ability with fluid pressure in subduc-
tion zones (e.g., Screaton et  al., 2000; 
Kinoshita and Saffer, 2018).

• Sealed-hole pressure records of the 
response of a surrounding rock forma-
tion to tidal loading yields information 
on the formation’s in situ hydrologic 
and elastic properties, which inform 
hydromechanical models of a range 
of processes, such as pore pressure 
response to coseismic ground motion 

(e.g., Becker and Davis, 2004; Davis 
and Becker, 2004).

• Subseafloor pressure recorded in well-
sealed borehole observatories provides 
an extraordinarily sensitive proxy for 
plate-scale strain on timescales rang-
ing from years to coseismic slip, with 
the most sensitive strain monitoring 
done in hydrologically isolated low- 
porosity formations (e.g., Davis et  al., 
2004, 2013; Araki et  al., 2017). These 
measurements have led to the discov-
ery of a range of deformation events, 
from small earthquakes and dike intru-
sions, to shallow slow slip events that 
may accommodate a large fraction of 
the plate motions in subduction zones 
(see Wallace et al., 2019, in this issue).

• CORK pressure records show that 
fault slip in shallow portions of sub-
duction zones can occur sponta-
neously, be triggered by dynamic stress 
changes (e.g., earthquakes), and can 
occur with little or no seismic expres-
sion (e.g., Davis et al., 2013; Araki et al., 
2017; Wallace et al., 2019, in this issue).
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FIGURE 1. Schematic of the evolution of ODP/IODP borehole observatory designs. (a) The original CORK. (b) Advanced CORK (ACORK). (c) CORK II. 
(d) Genius Plug (Kopf et al., 2011). (e) Long-Term Borehole Monitoring System (LTBMS; Saffer et al., 2017). UMC = underwater mateable connector. See 
Davis et al. (2018) for a recent technical summary.
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• High-resolution borehole tempera-
ture monitoring after the 2011 Tōhoku-
oki earthquake at the Japan Trench 
enabled near-real-time estimation of 
the frictional shear stress and apparent 
friction coefficient, showing very low 
shear resistance to fault slip at shallow 
depth (Fulton et  al., 2013, and 2019, 
in this issue)

• CORKs provided the first in situ mea-
surements of fluid flow rates along a 
subduction zone megathrust at depth 
(Figure 2), documenting enhanced 
fluid flow in response to fault slip 
(e.g., Solomon et al., 2009; Fulton and 
Brodsky, 2016). Results also show that 
dewatering in the forearc of subduction 

zones occurs not only through the 
upper plate but also within the sub-
ducting igneous crust, with implica-
tions for pore pressure development 
and effective stress along the plate 
boundary (e.g., Solomon et al., 2009).

• Broadband seismic borehole observa-
tories in the Western Pacific obtained 
direct and unexpected seismologi-
cal evidence of the age-dependent 
lithosphere- asthenosphere boundary 
(Kawatsu et al., 2009).

CONCLUDING REMARKS
CORK borehole observatories track 
Earth’s “pulse” at spatial and temporal 
scales that are not possible with traditional 

IODP coring techniques. Progressive 
improvements in CORK design and per-
formance and in situ geochemical and 
microbiological sampling equipment have 
made probing the biogeochemistry of the 
crustal deep biosphere a more consistent 
and pristine research avenue in scientific 
ocean drilling (e.g., Jungbluth et al., 2016). 
Recent cross-hole experiments have pro-
vided direct measurements of formation 
properties at scales larger than can be 
obtained with conventional core-based 
analyses, and have illuminated how these 
properties may vary in time. Continuous 
monitoring with CORK observatories 
has improved the quantification of natu-
ral forces driving off-axis hydrothermal 
circulation and transformed our under-
standing of the role this circulation plays 
in marine biogeochemical cycles and in 
sustaining the deep biosphere. The ability 
to directly monitor the subseafloor envi-
ronment removed from the influences of 
ocean phenomena at the seafloor has led 
to robust records of regional crustal strain 
associated with tectonic events both at 
mid-ocean ridges and in subduction 
zones. More recently, CORKs installed 
to document and understand the pat-
terns of strain accumulation and release 
along subduction thrusts have the sensi-
tivity and bandwidth to detect very small 
deformation at timescales from seconds 
to months. This has led to the detection of 
shallow slow slip events and illuminated 
their relationship to larger, more destruc-
tive subduction zone earthquakes. 

The multidisciplinary progression 
in CORK design and instrumentation 
over the last few decades has given us a 
more holistic understanding of the sub-
seafloor environment. Because CORKs 
can accommodate a wide range of exper-
iments and instrumentation and respond 
to the rapid pace at which these technolo-
gies evolve, CORK-based monitoring and 
active experimentation should continue 
to play an important role in scientific 
ocean drilling over the next few decades. 
These multidisciplinary observations will 
continue to transform our understanding 
of Earth and how it evolves. 
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