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Finding Dry Spells in 
Ocean Sediments

By Stephen J. Gallagher and Peter B. deMenocal

SPECIAL ISSUE ON SCIENTIFIC OCEAN DRILLING: LOOKING TO THE FUTURE

INTRODUCTION
Terrestrially derived sediment and dust 
are ultimately stored in oceanic basins. 
Gradual, yet continuous, accumula-
tion of these sediments through geolog-
ical time has created superb archives of 
global climate variability, transitions, and 
events in Earth history. Plumes of min-
eral dust carried by prevailing winds are 
the main terrigenous sediment source off 
subtropical hyperarid areas such as the 
Arabian, Australian, Saharan, Kalahari, 
and Patagonian deserts. Charles Darwin 
commented on these African dust storms 
in 1846 during the first leg of his Beagle 
voyage: “During our stay of three weeks 
at St. Jago [Cape Verde], the wind was 
N.E. as is always the case this time of 

year; the atmosphere was often hazy, and 
very fine dust was almost constantly fall-
ing, so that the astronomical instruments 
were roughened and a little injured.” This 
paper reviews the dust and aridification 
archives accumulated off the African 
continent and finishes with a look to 
future revelations to be obtained from 
recent scientific ocean drilling records off 
western Australia.

OUT OF AFRICA AND ARABIA: 
OCEANIC DUST ARCHIVES 
REVEAL ARIDIFICATION AND 
DESERT HISTORY
Downcore changes in eolian sediment 
abundance are used to chart the (geo)his-
torical variability of northwest African 

aridity. Nearly 180 million tons of African 
dust are transported by the winds to the 
ocean each year from Saharan source areas 
(Yu et  al., 2015). The potential utility of 
mineral dust fluxes for recording hydro-
climate is supported by strong histori-
cal correlations between Sahelian rainfall 
anomalies and eolian dust flux measure-
ments recorded in Barbados (Prospero 
and Lamb, 2003) and in a marine core just 
offshore from the Senegal River near the 
Mauritania canyon (16°50'N, 16°44'W, 
Mulitza et al., 2010).

Noting a close correspondence between 
glacial cycles and elevated dust concen-
trations, Parkin and Shackleton (1973) 
influenced decades of researchers by pro-
posing links between high-latitude ice 
cover and low-latitude aridity. Scientific 
ocean drilling off Africa and Arabia 
has recorded consistent glacial-stage 
increases in eolian dust fluxes through-
out the Pliocene-Pleistocene (Figure 1a,b; 
Clemens and Prell, 1991; Tiedemann 
et  al., 1994; deMenocal, 1995). Elevated 
dust flux values during glacial periods 
and stadia (relatively cold periods within 
a glacial period) have been interpreted 
as reflecting real hydroclimate changes 
toward greater glacial aridity.

Recent advances in grain size data 
analysis document that the glacial sedi-
ments not only have higher dust concen-
trations and burial fluxes but also have 
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FIGURE 1. (A) Benthic oxy-
gen isotope stack (Lisiecki and 
Raymo, 2005). (B) Mineral dust 
flux record from ODP Site  722, 
Arabian Sea (Clemens and Prell, 
1991). (C) Stable hydrogen isoto-
pic composition of plant waxes at 
core site RC9-166 in the Gulf of 
Aden (Tierney et al., 2017a), with 
orbital precession (red dashed 
line, negative values upward). 

much coarser grain size distributions. 
By “unmixing” grain size spectra into 
finer-grained fluvial and coarser eolian 
end-members, Tjallingii et  al. (2008) 
noted that glacial stages and shorter sta-
dial (Heinrich) events were character-
ized by much coarser and more abundant 
eolian grain sizes, consistent with stron-
ger, more competent transporting wind 
speeds during cooler periods. Current 
views suggest that the observed two- 
to fourfold increases in glacial-age dust 
fluxes observed across the global trop-
ics and subtropics (Clemens and Prell, 
1991; Tiedemann et al., 1994; deMenocal, 
1995; Winckler et  al., 2008) reflect gla-
cial increases in dust transport due to 
stronger, more gusty winds associated 
with increased glacial pole-equator tem-
perature gradients (McGee et al., 2010). 

A fundamental challenge to interpret-
ing sedimentary dust fluxes solely in terms 
of changes in aridity has emerged from 
hydrogen isotopic measurements of plant 
leaf waxes preserved in the same sediment 
cores where dust fluxes are measured. 
This organic geochemical paleohydrolog-
ical proxy tracks regional rainfall gradi-
ents today and in the past (Tierney et al., 
2017b). Analysis of northwest African 
sediment cores documents paleohydro-
logical cycles paced principally by orbital 
precession, with only weak expression 
of glacial-interglacial 100,000-year and 
41,000-year cycles observed in dust flux 
records (Figure 1c; Tierney et al., 2017a; 
Kuechler et al., 2018). These precessional 
plant wax wet-dry cycles match similar 
pacing observed in Mediterranean sap-
ropel (organic sediment rich) cycles that 
extend back to the late Miocene. 

Together, the eolian dust and plant 
wax isotopic data clarify interpretations 
of the deep-sea sedimentary record of 
continental climate change. Consistent 
with orbital theory, subtropical conti-
nental wet-dry cycles were mainly paced 
by orbital precession, whereas the glacial 
dust flux increases are mainly reflective 
of more effective dust transport due to 
stronger, gustier subtropical wind fields, 
not greater aridity (McGee et  al., 2013). 

Hence, there is an opportunity to use these 
differential proxy responses to simultane-
ously explore monsoonal hydroclimate 
responses to orbital precession forcing 
within the Pliocene-Pleistocene context 
of increasing glacial climate variability 
after 2.8 million years ago. To date, stud-
ies indicate that the amplitude of mon-
soonal hydroclimate response to orbital 
forcing appears to have been large and 
persistent with no secular change over 
the last 5 million years (Rose et al., 2016; 
Kuechler et al., 2018). 

A PORTRAIT OF AN ARID 
LAND: OCEAN DRILLING TO 
UNCOVER 50 MILLION YEARS 
OF AUSTRALIAN CLIMATE 
EXTREMES
International Ocean Discovery Program 
(IODP) Expeditions 356, 363, and 369 
conducted from 2015 to 2017 cored up to 
1 km into the seabed from 14°S to 34°S off 
western Australia (Figure 2). These expe-
ditions recovered excellent records of cli-
mate and ocean conditions as Australia 
drifted northward by 25° latitude over 
the last 50 million years. Fossil and sed-
iment information trapped in these 

layers contain a marine record of conti-
nental aridity, Australian monsoons, and 
westerly winds, permitting investigation 
of how the present climate extremes of 
Australia evolved (Figure 2).

The Australian Monsoon
North Australia is influenced by strong 
summer westerly and southwesterly 
winds that source warm, moist equato-
rial air, resulting in the monsoonal rains 
and cyclonic activity north of the mon-
soon shear line. Monsoonal seasonal run-
off delivers large amounts of river sedi-
ment to the Australian continental shelf 
via the Fitzroy, De Grey, Ashburton, and 
Fortescue Rivers (Figure 2). In contrast, 
the trade winds off northwest Australia 
transport continental wind-blown dust 
when the trade winds dominate during 
the winter dry season (Figure 2; see also 
Stuut et al., 2014).

The Westerlies Regime 
Strong westerly winds dominate the 
mid-latitude regions south of 26°S on the 
western margin of Australia. The north-
to-south movement of the westerlies 
results in significant seasonal precipitation 
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changes (winter wet, summer dry) in 
the southern half of Australia (McLaren 
et al., 2014; Groeneveld et al., 2017).

The Paleomonsoon and Northwest 
Australian Climate 
Northern and interior Australia had sea-
sonally wetter monsoonal precipitation 
23 to 14 million years ago when the mon-
soonal front was in a similar position to 
today’s (Herold et al., 2011). Arid condi-
tions that persisted from 16 to 6 million 
years ago in northwest Australia (IODP 
Expedition 356; Groeneveld et al., 2017) 
transitioned to a wetter period, with year-
round rainfall, at ~5.5 million years ago 
(IODP Expedition 356; Christensen et al., 
2017; De Vleeschouwer et  al., 2018), 
and then to seasonal (monsoonal) rain-
fall at ~3.3 million years ago. Indonesian 
Throughflow restriction and falling con-
tinental humidity culminated in arid con-
ditions at ~2.4 million years ago, result-
ing in a seasonal (monsoonal) regime. 
Over the last 2 million years, inter-
glacial wetter (strong monsoon) and arid 

glacial (weak monsoon) conditions per-
sisted in Australia’s northwest (Gallagher 
et  al., 2014). Arid conditions intensified 
in a stepwise manner, with drying after 
~1.5 million years ago and 0.6 million 
years ago coinciding with the contrac-
tion of megalakes in southeast Australia 
at ~1.5 million years ago (McLaren et al., 
2014) and the expansion of the Simpson 
Desert at ~1 million years ago (Fujioka 
and Chappell, 2010).

Southwest Australian Climate and 
the History of the Westerlies 
Compared to the northwest Australian 
region, little is known of the long-term 
history of the southwest Australian cli-
mate. Fossil and modern sand dunes and 
dust pathways reflect past wind strength 
and the relative strength of the west-
erly winds (Hesse et  al., 2004). During 
the Last Glacial Maximum (18,000 years 
ago), the westerlies shifted ~3° north-
ward, then returned to their present posi-
tion after 8,000 years (Hesse et al., 2004), 
with a pattern similar to that of today. 

Forty to 25 million years ago, wetter con-
ditions created extensive river systems 
(Martin, 2006). After 15 million years 
ago, these river systems dried up, suggest-
ing more arid conditions. Floral fossils in 
lake sediment suggest a wetter climate 
compared to today in southwest Australia 
~4 million years ago and a transition to 
arid conditions after 3 million years ago 
that ultimately led to the drying out of 
most lakes at around 600,000 years ago 
(Martin, 2006).

CONCLUSIONS
Analyses of oceanic dust archives off 
Africa and Arabia show the extremes of 
climate in these regions over the last sev-
eral million years. These scientific ocean 
drilling cores record in great detail the 
variation in extent of the Sahara Desert 
and the African monsoon over glacial 
and interglacial periods. Analyses of 
recently obtained IODP drilling records 
off western Australia reveal over 50 mil-
lion years of monsoonal and oceanic his-
tory and ultimately provide an account of 
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Australian aridification. These offshore 
ocean archives yield well-constrained his-
tories that are rarely preserved in harsh 
arid terrestrial environments of conti-
nental regions and that will continue 
to bring key information on global cli-
mate evolution, allowing us to under-
stand how deserts and monsoonal 
systems have evolved. 
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