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SPECIAL ISSUE ON THE GULF OF SAN JORGE (PATAGONIA, ARGENTINA)

Patagonian Dust as a 
Source of Macronutrients

	 in the Southwest Atlantic Ocean

ABSTRACT. The role of Patagonian wind-borne dust as a source of macronutrients 
to the surface waters of the Southwest Atlantic Ocean was evaluated for the first time. 
During spring 2016, a series of experiments with dust was conducted to evaluate 
the dynamics of macronutrient dissolution in seawater. The results showed a differ-
ential contribution of macronutrients to seawater depending on the dust source and 
the amount added. Addition of a conservative amount of Patagonian dust to the sea
water contributed nitrate (NO3

−) and silicic acid (Si(OH)4), but not phosphate (PO4
3–). 

Additional dust input to the system resulted in higher macronutrient concentrations. 
Particles collected from a nearby burned field did not contribute any macronutrients 
to the seawater. Thus, each dust event may affect biological productivity differently, 
depending on the source of the particles. Dissolution experiments suggest that macro-
nutrients from dust are available immediately after particle deposition on the sea sur-
face. The study includes field measurements of macronutrient concentrations before 
and after a dust storm at three nearshore marine stations. The data are consistent with 
macronutrient increase after the storms. Dust storms could become a very important 
source of nutrients to the ocean in future global warming scenarios. 
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INTRODUCTION
The effect of aeolian dust on ocean bio-
geochemical cycles depends on two major 
factors: the chemical composition of the 
material transported and the nutritive 
conditions of the region where it is depos-
ited. Dust composition may vary tempo-
rally because it depends on the source 
region (Krueger et al., 2004; Mendez et al., 
2010; Martino et  al., 2014) and on the 
season (Carmichael et al., 1996; Ben-Ami 
et  al., 2009). Dust composition can also 
be altered by episodic events such as vol-
canic eruptions and forest fires (Al-Taani 
et al., 2015; Bergh and Compton, 2015). 
When a dust particle reaches the sea sur-
face, a process of nutrient solubiliza-
tion begins. The effect of nutrient inputs 
depends on the composition of the sink 
area. In high nutrient, low chlorophyll 
(HNLC) areas of the ocean, micronutri-
ents such as iron are key to regulating 
primary productivity (Jickells et al., 2005; 
Maher et al., 2010). In contrast, in oligo-
trophic coastal areas, primary productiv-
ity benefits from the input of macronutri-
ents such as nitrate and phosphate (Herut 
et  al., 1999; Pulido-Villena et  al., 2010). 
Because aeolian dust can be transported 
thousands of kilometers before it is 
deposited, the plume of a particular event 
may simultaneously influence coastal 
and oceanic regions, leading to complex 
marine ecosystem interactions. Globally, 
several regions are considered to be dom-
inant sources of dust. For instance, dust 
from the arid regions of North Africa 
and the Arabian Peninsula, known as the 
dust belt, is deposited over vast areas far 
from its source (Washington et al., 2003; 
Mahowald et al., 2005).

Patagonia, Argentina, displays partic-
ular environmental conditions that pro-
mote the transport of aeolian dust toward 
the Southwest Atlantic Ocean (Johnson 
et  al., 2010; Gaiero, 2007; Crespi-Abril 
et  al., 2016, 2018a). These conditions 
include frequent, strong westerly winds 
(average wind gusts of 36 m s–1; Labraga, 
1994), a semi-arid climate (annual pre-
cipitation regime below 300 mm and 
relative humidity below 5%), and low 

vegetation coverage (10%–60%; Bertiller 
and Bisigato, 1998). The transport of 
dust from Patagonia to the sea is con-
stant but highly variable in intensity 
(Gaiero et  al., 2003; Crespi-Abril et  al., 
2018b). Although wind drives dust 
events (i.e.,  short-duration episodes of 
increased wind-borne dust particles), 
factors related to the source of particle 
emission, such as soil moisture or vegeta-
tion coverage, determine whether a dust 
event will occur. In other words, strong 
winds are a necessary but not sufficient 
condition for inducing a dust transport 
event (i.e.,  not all windstorms produce 
dust events, but all dust events are driven 
by intense winds). During extreme dust 
storms and sporadic volcanic eruptions, 
dust plumes can cover large areas of the 
Southwest Atlantic Ocean (Simonella 
et  al., 2015; Crespi-Abril et  al., 2016). 
As Patagonian dust represents a major 
source of micronutrients (particularly 
iron) to the Southwest Atlantic Ocean 
(Jickells el al., 2005; Simonella et  al., 
2015), dust may intensify the biological 
pump there, increasing carbon sequestra-
tion, and potentially affecting global cli-
mate (Maher et al., 2010). 

Despite its relevance to marine eco-
system productivity, the potential con-
tributions of Patagonian dust to increas-
ing macronutrient concentrations, and its 
biogeochemical pathways into the system, 
remain uncertain (Crespi-Abril et  al., 
2018a). The goal of this work is to evaluate 
the contribution of Patagonian dust to the 
concentrations of nitrate (NO3

−), phos-
phate (PO4

3–), and silicic acid (Si(OH)4) 
in seawater. We performed a series of lab-
oratory experiments and collected in situ 
measurements before and after a dust 
storm. The working hypothesis is that 
dust emitted from Patagonia injects mac-
ronutrients into the marine ecosystem.

METHODS
Laboratory Experiments
Laboratory trials included a dissolution 
experiment to determine the variation of 
macronutrient concentration over time 
after the addition of field-collected dust 

to seawater as well as a washing experi-
ment to determine whether the compo-
sition of dust particles changes after con-
tact with water.

DISSOLUTION EXPERIMENTS
Three different dust stocks and one con-
trol were tested. For the first two stocks, 
S1 and S2, dust was collected during two 
different storms by means of an active col-
lector placed at the western margin of 
Nuevo Gulf, Patagonia, Argentina. For the 
third stock, S3, dust was collected from a 
nearby burned shrubland by means of a 
passive collector. For each experiment and 
one control, 12 L microcosms were filled 
with 1 µm filtered, UV-treated seawater. 
The dust-treated microcosms were placed 
on a rotating plate (~3 rpm) to prevent 
dust particles from settling, and incubated 
in a culture chamber at 15°C ± 1°C for a 
12:12 photoperiod (~ 600 Lux, measured 
with a digital luxometer UNI-T Ut382). 
An aliquot of dust of 0.05 mg  L–1 was 
added to each microcosm. This amount 
of dust is a proxy of the minimum theo-
retical amount that could reach the sea, 
assuming a deposition rate of 1 g  m–2 
and a 20 m deep mixed layer (Mendez 
et  al., 2010; Anderson et  al., 2016). For 
macronutrient analysis, duplicate sam-
ples of seawater from each microcosm 
and the control were collected at 0, 24, 48, 
72, and 96 hours.

Because the amount of dust used 
in the low concentration experiment 
was the minimum expected for a wind-
storm, a second experiment was con-
ducted following the same methodology 
but increasing the dust concentration to 
5 mg L–1, 50 mg L–1, and 500 mg L–1 with 
S2 and S3 dust stocks.

WASHING EXPERIMENTS
Two treatments were considered using 
the S2 dust stock. Assays were made by 
washing the dust aliquot with distilled 
water (DW) or seawater (SW), and one 
control was made without washing (U). 
The washing procedure consisted of 
adding 0.5 mg of dust to 1 L of water 
(either distilled or seawater according 
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to the treatment) and shaking it for 10 min-
utes. Then, the solution was centrifuged, the 
supernatant was removed, and the remain-
ing material was dried in an oven (60°C for 
48 hours). Macronutrients were analyzed 
using the same techniques as used in the dis-
solution experiments. Dust particles were 
analyzed using an X-ray (EDX) spectrometer 
coupled to a scanning electron microscope 
(SEM) to determine changes in the elemental 
composition of particles before and after the 
washing treatment.

FIELD MEASUREMENTS
To evaluate the variation in macronutrient 
concentrations after dust storms, an in  situ 
study was conducted in Nuevo Gulf (Figure 1), 
a semi-enclosed basin connected to the adja-
cent shelf by a narrow mouth. Two small 
urban centers (~100,000 habitants in total) 
are located in the margins of the gulf; how-
ever, the effects of the two cities on nutrient 
concentrations are negligible because they 
are equipped with sewage treatment plants 
that do not discharge wastewater into the 
gulf. Rainfall is low (~200 mm yr–1; Paruelo 
et al., 1995), and no rivers flow into the gulf. 
Atmospheric dust is the main source of con-
tinental material into Nuevo Gulf, making 
it a good place to study the effect of dust as 
seawater fertilizer. 

Three fixed stations were established in 
order to acquire seawater samples at the 
surface and at 20 m depth. Samples were 
obtained from an inflatable boat by means 
of a Niskin bottle. Each sample was stored 
in duplicate in ultra-cleaned 250 ml bot-
tles for each nutrient. At the moment of sea-
water sample collection, temperature, con-
ductivity, O2, and pH were recorded using a 
YSI 556 probe. Seawater samples were taken 
after a calm period (wind speed <4 m s–1 on 
October 22, 2016), and after a west wind-
storm (wind speed ~8–16 m s–1, November 5, 
2016) (Figure 2a,b). On November 3, 2016, 
a large dust plume was observed from satel-
lite imagery coincident with the maximum 
wind velocity measured (Figure 2c). The aeo-
lian dust plume covered more than 320 km of 
marine coastal area, prevailing over San Jorge 
Gulf and reaching the Argentine continental 
shelf break.

FIGURE 1. Seawater sampling sta-
tions off the west coast of Nuevo 
Gulf, Patagonia, Argentina.

FIGURE 2. (a) Wind intensity during the study period. C = Calm period sampling. 
PS = Post-storm sampling. SI = Satellite imagery shown in (c). (b) Wind direction during 
the sampled windstorm. (c) Satellite image from November 3, 2016, showing the dust 
plume over the Argentine Sea (https://earthdata.nasa.gov/earth-observation-data/
near-real-time/rapid-response/modis-subsets).
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Dust Collection
Dust was collected following two meth-
odologies: (1) passive collection and man-
ual recovery from 20 l PVC cylindrical-​ 
conical containers with 300 cm2 col-
lecting mouths, and (2) active collec-
tion using a high-volume active collec-
tor (air filtering capacity up to 60 m3 h–1) 
with a high-purity quartz microfiber filter 
(Merck Millipore AQFA) over a 24-hour 
period. Microfiber filters were previ-
ously weighed using an analytical balance 
(Sartorius CPA124S) before and after the 
sampling period. 

Chemical Analyses
Analytical determinations of NO3

−, PO4
3–, 

and Si(OH)4 concentrations were carried 
out using a Skalar San Plus autoanalyzer 

(Skalar Analytical® V.B., 2005). All sea-
water samples were stored in 250 ml 
ultra-cleaned bottles at −20°C until lab-
oratory analysis.

RESULTS 
Laboratory Experiments
DISSOLUTION EXPERIMENTS
The results obtained in dissolution exper-
iments using 0.05 mg dust per liter 
of filtered, UV-treated seawater var-
ied according to the type of dust used. 
Using the S1 dust stock, an immediate 
increase in NO3

− (~1.25 μM) and Si(OH)4 
(~3.10 μM) over the control samples 
was observed (Figure 3a). For S2 and S3 
stocks, no macronutrient contributions 
were observed (Figure 3b,c). 

Based on these results, dust from the 

stocks S2 and S3 were used in higher con-
centrations to determine the amount of 
dust necessary to produce increases in 
nutrient concentrations. In the case of 
S2, nutrient addition was detected in dust 
concentrations higher than 50 mg L–1, 
while S3 dust did not release nutrients at 
any of the concentrations used (Table 1).

WASHING EXPERIMENT
Our analysis indicated that all the dust 
particles used in this experiment had the 
same elemental composition (Figure 4). 
However, in the washing experiment, 
washed (with distilled water or seawater) 
dust particles did not release macro-
nutrients, while in contrast, the unwashed 
particles (control) contributed a large 
amount of macronutrients (Table 2). 

FIGURE 3. Nutrient concen-
trations measured during 
the dissolution experiments 
after adding 0.05 mg L–1 
of dust to seawater. Dust 
stocks from different storms 
provide different concen-
trations of macronutrients. 
(a) First experiment, S1 dust 
storm stock. (b) Second 
experiment, S2 dust storm 
stock. (c) Third experiment, 
S3 stock collected after a 
large shrubland fire. Brown 
circles indicate nutrient 
concentrations after dust 
was added. Light blue tri-
angles indicate no dust 
added (control). The black 
lines indicate the mini-
mum nutrient concentration 
necessary for the normal 
development of primary 
producers (Millero, 2013). 

TABLE 1. Nutrients supplied by S2 and S3 dust stocks in 
filtered, UV-treated seawater.

S2 Stock NO3
– (µM) PO4

3– (µM) Si(OH)4 (µM)

5 mg L–1 0.20 ± 0.01 0.25 ± 0.01 0.00

50 mg L–1 1.15 ± 0.04 0.33 ± 0.01 0.19 ± 0.01

500 mg L–1 11.70 ± 0.04 1.12 ± 0.11 1.61 ± 0.23

S3 Stock NO3
– (µM) PO4

3– (µM) Si(OH)4 (µM)

5 mg L–1 0.02 ± 0.01 0.07 ± 0.04 0.00

50 mg L–1 0.00 0.12 ± 0.01 0.00

500 mg L–1 0.22 ± 0.01 0.28 ± 0.09 0.33 ± 0.03

FIGURE 4. Elemental composition of dust par-
ticles obtained by energy-dispersive X-ray 
spectroscopy. No differences were observed 
despite the different treatments that were used 
to modify the contributions of macronutrients 
to seawater. 

a

b
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Field Measurements
After the calm period, seawater showed small differ-
ences between stations (Table 3). On average, down 
to 20 m water depth, conditions were homogeneous 
(O2 close to saturation, salinity 34 psu, and pH 8.1). 
Temperature was between 12° and 13°C at 20 m depth, 
and two degrees higher on surface. The NO3

− concen-
tration was low at the surface (<0.5 µM) and higher at 
20 m depth (~1.4 µM). The PO4

3– concentration was 
~1.0 µM, with higher values at 20 m depth. Si(OH)4 
was ~2.5 µM (Figure 5). The stoichiometric conditions 
during this period showed a PO4

3–:NO3
−:Si(OH)4 ratio 

of 1.0:0.6:2.2.
After the windstorm, oxygen, salinity, and pH did 

not vary compared to the calm period; however, the 
temperature dropped 1°C at almost all the stations 
(Table 3). Compared with the calm period, the concen-
tration of macronutrients during the windstorm was 
higher in all cases. The NO3

− concentration was dou-
ble that of the calm period. PO4

3– and Si(OH)4 con-
centrations mainly increased at 20 m depth, reaching 
a concentration ~2.0 µM and ~4.5 µM, respectively, 
and maintaining their proportions. The post-storm 
PO4

3–:NO3
−:Si(OH)4 ratio was 1.0:1.2:2.2.

DISCUSSION
The results of the dissolution experiments indicate for 
the first time that Patagonian dust can be considered a 
significant source of NO3

– and Si(OH)4, but not of PO4
3–, 

to surface waters in the Southwest Atlantic Ocean. 
These results imply that, in the Argentine Sea, if PO4

3– 
is deficient in atmospheric dust particles, increases in 
primary productivity result from the atmospheric sup-
ply of NO3

− and Si(OH)4 (and possibly iron; Simonella 
et al., 2015) as well as some residual excess PO4

3– avail-
able in the surface waters (Martino et al., 2014). Given 
that in the Argentine Sea the limiting nutrient is NO3

− 
(N/P < 1 is frequently observed; Paparazzo et al., 2010, 
2017), fertilization by dust would complement the 
region’s other nutritional sources. In fact, the exper-
iment with S1 shows that such a contribution can 
quickly restore NO3

− availability to a system limited 
by that nutrient. 

In a global context, compared to dust studies from 
other geographical areas, this nutritional release (NO3

– 
and Si(OH)4 without PO4

3–) is a common feature in the 
fertilization of the sea by means of dust (Baker et al., 
2003; Martino et al., 2014). In the Mediterranean Sea, 
dust storms contribute considerable amounts of PO4

3– 
to surface waters (Özsoy, 2003), but concentrations are 
possibly mediated by acid processing of P in the atmo-
sphere (Stockdale et al., 2016), which occurs frequently 

TABLE 2. Washing treatments of S2 dust stock and 
their effect on nutrient supply. U = Unwashed sample. 
DW = Distilled water-washed sample. SW = Seawater-
washed sample. 

Dust 
Treatment NO3

– (µM) PO4
3– (µM) Si(OH)4 (µM)

U 11.65 ± 0.06 1.63 ± 0.09 2.19 ± 0.22

DW 0.24 ± 0.08 0.77 ± 0.06 0.00

SW 0.16 ± 0.04 0.72 ± 0.01 0.00

FIGURE 5. Nutrient concentrations at 0 m and 20 m depth under calm and 
post-storm wind conditions. All macronutrients increased after the dust storm. 
The black line indicates the minimum nutrient concentration necessary for the 
normal development of primary producers (Millero, 2013). 

TABLE 3. In situ data collected during calm period and post dust storm period 
on surface and subsurface layers.

Calm 
Oct. 22, 2016

Station 1 Station 2 Station 3

0 m 20 m 0 m 20 m 0 m 20 m

Temp. (°C) 14.7 13.1 14.4 12.1 14.2 12.0

Salinity (psu) 34.0 33.8 34.0 34.0 34.0 34.0

O2 (%) 97 101 105 105 105 100

O2 (mg L–1) 7.97 8.52 8.70 9.13 8.76 8.54

pH 8.16 8.05 8.21 8.17 8.19 8.15

Post Storm 
Nov. 5, 2016

Station 1 Station 2 Station 3

0 m 20 m 0 m 20 m 0 m 20 m

Temp. (°C) 13.1 12.1 13.1 12.8 13.2 12.9

Salinity (psu) 34.1 34.1 34.1 34.1 34.1 34.1

O2 (%) 98 91 104 99 118 108

O2 (mg L–1) 8.34 7.88 8.86 8.49 10.00 9.25

pH 8.14 8.10 8.15 8.13 8.18 8.14
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in that region. More studies are needed 
in the Patagonian region to determine 
whether this is the case or whether dust 
settling there simply lacks PO4

3– due 
to its origin.

Our experiments also demonstrate 
the great variability in the contribution 
of nutrients from different dust stocks. 
This variability could be due to the dif-
ferent chemical composition of the stocks 
(which likely results from varying contri-
butions of several emission sources) asso-
ciated mainly with climatic and environ-
mental events before deposition on the 
sea surface. The results obtained with dust 
from the S2 stock show that the concen-
tration required to release a significant 
amount of nutrients is at least 1,000 times 
the concentration of S1 stock. This large 
amount of dust is often observed during 
intense windstorms in the study area 
(Crespi-Abril et al., 2018b). On the other 
hand, the experiment with S3 did not 
result in release of nutrients. Because that 
dust was collected from a burned field, 
it is very likely that the particles were 
mostly ash, which lacks macronutrients 
(Christensen, 1994). 

The results of the washing experi-
ments suggest that in terms of macro-
nutrients, dust particles remain insoluble 
(or dissolve very slowly) even after releas-
ing nutrients to the water. This assump-
tion is reinforced by the fact that washed 
dust particles do not provide macronutri-
ents to the water despite having the same 
elemental composition as unwashed par-
ticles. Similar to what was observed in 
Saharan dust (Ridame et  al., 2014), our 
results show that dust contributes macro-
nutrients to the ocean immediately and 
completely upon contact with water. This 
would indicate that dust particles act as 
carriers of macronutrients from land 
to the sea.

Washing experiments are also rel-
evant from a methodological point of 
view. We recommend avoiding the fre-
quently used technique of extracting dust 
from filters by washing with ultrapure 
water (e.g.,  Guo et  al., 2014). This prac-
tice modifies the external layer of dust by 

removing nutrients and thus affecting the 
results of the analysis. 

Field measurements in Nuevo Gulf 
show that the magnitude of a windstorm 
can modify seawater macronutrient con-
centrations in this region. During the 
calm period, the surface concentration 
of NO3

− (< 0.5 μM) was limiting, based 
on minimum environmental require-
ments (0.7 μM for NO3

−, 0.3 μM for PO4
3–, 

and 1.8 μM for Si(OH)4) for the devel-
opment of primary producers (Millero, 
2013). After the storm, the concentration 
of NO3

− (~1.5 µM) was no longer limit-
ing for primary producers. Two pro-
cesses, dust deposition and water col-
umn mixing, could mainly explain this 
event. However, what could be the dom-
inant process, if there is one, that gov-
erns the increase in macronutrient con-
centrations? To address this question, 
further studies are needed. Regardless, 
the present work suggests that dust input 
must be considered as a relevant factor in 
Atlantic Patagonia.

CONCLUSION
Patagonian dust deposition can increase 
macronutrient concentration in seawater 
after events involving intense westerly 
winds. The magnitude of this fertiliza-
tion depends on the composition of the 
dust, which is mainly associated with 
emission sources and climatic and envi-
ronmental events that act upon the dust 
particles before they reach the sea. Each 
dust event may contribute different con-
centrations and proportions of macro-
nutrients that may in turn affect stoichi-
ometry and biological processes in the 
upper mixed layer. Due to the instanta-
neous dissolution of macronutrients in 
seawater, fertilization would occur in the 
uppermost thin layer of the sea surface, 
and thus, dust particles would act as car-
riers that transport continental chemical 
compounds to the sea. 

Due to global warming, the pre-
vailing winds in Patagonia are inten-
sifying (e.g.,  Thompson et  al., 2011), 
and ocean stratification is expected to 
strengthen (e.g.,  Russell et  al., 2006). If 

these conditions translate into larger dust 
storms and greater nutrient limitation at 
the sea surface, in a future scenario, dust 
storms could have a great impact on ocean 
fertilization and primary production. 

SUPPLEMENTARY MATERIALS
Supplementary materials are available online at  
https://doi.org/10.5670/oceanog.2018.408.

REFERENCES
Al-Taani, A.A., M. Rashdan, and S. Khashashneh. 

2015. Atmospheric dry deposition of mineral dust 
to the Gulf of Aqaba, Red Sea: Rate and trace ele-
ments. Marine Pollution Bulletin 92(1):252–258, 
https://doi.org/10.1016/j.marpolbul.2014.11.047. 

Anderson, R.F., H. Cheng, R.L. Edwards, M.Q. Fleisher, 
C.T. Hayes, K.-F. Huang, D. Kadko, P.J. Lam, 
W.M. Landing, Y. Lao, and others. 2016. How 
well can we quantify dust deposition to the 
ocean? Philosophical Transactions of the Royal 
Society A 374(2081):20150285, https://doi.org/​
10.1098/​rsta.2015.0285.

Baker, A.R., S.D. Kelly, K.F. Biswas, M. Witt, and 
T.D. Jickells. 2003. Atmospheric deposition of nutri-
ents to the Atlantic Ocean. Geophysical Research 
Letters 30(24):2296, https://doi.org/​10.1029/​
2003GL018518.

Ben-Ami, Y., I. Koren, and O. Altaratz. 2009. 
Patterns of North African dust transport over the 
Atlantic: Winter vs. summer, based on CALIPSO 
first year data. Atmospheric Chemistry and 
Physics 9(20):7,867–7,875, https://doi.org/10.5194/
acp-9-7867-2009.

Bergh, E.W., and J.S. Compton. 2015. A one-year post-
fire record of macronutrient cycling in a mountain 
sandstone fynbos ecosystem, South Africa. South 
African Journal of Botany 97:48–58, https://doi.org/​
10.1016/​j.sajb.2014.11.010.

Bertiller, M., and A. Bisigato. 1998. Vegetation dynam-
ics under grazing disturbance. The state-and-​
transition model for the Patagonian steppes. 
Ecología Austral 8:191–199.

Carmichael, G.R., Y. Zhang, L.L. Chen, M.S. Hong, 
and H. Ueda. 1996. Seasonal variation of aerosol 
composition at Cheju Island, Korea. Atmospheric 
Environment 30(13):2,407–2,416. 

Christensen, N.L. 1994. The effects of fire on physical 
and chemical properties of soils in Mediterranean-
climate shrublands. Pp. 79–95 in The Role of Fire 
in Mediterranean-Type Ecosystems. J.M. Moreno 
and W.C. Oechel, eds, Springer Ecological Studies 
Springer 107, New York, NY, https://doi.org/​10.1007/​
978-1-4613-8395-6_5.

Crespi-Abril, A.C., E.S. Barbieri, L. Gracia Villalobos, 
G. Soria, F.E. Paparazzo, J.M. Paczkowska, and 
R.J. Gonçalves. 2018a. Perspective: Continental 
inputs of matter into planktonic ecosystems of the 
Argentinean continental shelf—the case of atmo-
spheric dust. Pp. 87–99 in Plankton Ecology of 
the Southwestern Atlantic: From the Subtropical 
to the Subantarctic Realm. M.S. Hoffmeyer, 
M. Sabatini, F. P. Brandini, D.L. Calliari, and 
N.H. Santinelli, eds, Springer, https://doi.org/​
10.1007/​978-3-319-77869-3_5.

Crespi-Abril, A.C., A.M.I. Montes, G.N. Williams, and 
M.F. Carrasco. 2016. Uso de sensores remo-
tos para la detección de eventos de transporte 
eólico de sedimentos hacia ambientes mari-
nos en Patagonia. Meteorologica 41(2):33–47, 
http://www.scielo.org.ar/​​pdf/​meteoro/v41n2/
v41n2a02.pdf.

https://doi.org/10.5670/oceanog.2018.408
https://doi.org/10.1016/j.marpolbul.2014.11.047
https://doi.org/10.1098/rsta.2015.0285
https://doi.org/10.1098/rsta.2015.0285
https://doi.org/10.1029/2003GL018518
https://doi.org/10.1029/2003GL018518
https://doi.org/10.5194/acp-9-7867-2009
https://doi.org/10.5194/acp-9-7867-2009
https://doi.org/10.1016/j.sajb.2014.11.010
https://doi.org/10.1016/j.sajb.2014.11.010
https://doi.org/10.1007/978-1-4613-8395-6_5
https://doi.org/10.1007/978-1-4613-8395-6_5
https://doi.org/10.1007/978-3-319-77869-3_5
https://doi.org/10.1007/978-3-319-77869-3_5
http://www.scielo.org.ar/pdf/meteoro/v41n2/v41n2a02.pdf
http://www.scielo.org.ar/pdf/meteoro/v41n2/v41n2a02.pdf


Oceanography  |  December 2018 39

Crespi-Abril, A.C., G. Soria, A. De Cian, and C. López-
Moreno. 2018b. Roaring forties: An analysis of 
a decadal series of data of dust in Northern 
Patagonia. Atmospheric Environment 177:111–119, 
https://doi.org/10.1016/j.atmosenv.2017.11.019.

Gaiero, D.M. 2007. Dust provenance in Antarctic ice 
during glacial periods: From where in southern 
South America? Geophysical Research Letters 34, 
L17707, https://doi.org/10.1029/2007GL030520.

Gaiero, D.M., J.-L. Probst, P.J. Depetris, S.M. Bidart, 
and L. Leleyter. 2003. Iron and other transition 
metals in Patagonian riverborne and windborne 
materials: Geochemical control and transport to 
the southern South Atlantic Ocean. Geochimica 
et Cosmochimica Acta 67(19):3,603–3,623, 
https://doi.org/​10.1016/​S0016-7037(03)00211-4.

Guo, L., Y. Chen, F. Wang, X. Meng, Z. Xu, and 
G. Zhuang. 2014. Effects of Asian dust on the atmo-
spheric input of trace elements to the East China 
Sea. Marine Chemistry 163:19–27, https://doi.org/​
10.1016/j.marchem.2014.04.003.

Herut, B., M.D. Krom, G. Pan, and R. Mortimer. 1999. 
Atmospheric input of nitrogen and phospho-
rus to the Southeast Mediterranean: Sources, 
fluxes, and possible impact. Limnology and 
Oceanography 44(7):1,683–1,692, https://doi.org/​
10.4319/lo.1999.44.7.1683.

Jickells, T.D., Z.S. An, K.K. Andersen, A.R. Baker, 
G. Bergametti, N. Brooks, J.J. Cao, P.W. Boyd, 
R.A. Duce, K.A. Hunter, and others. 2005. 
Global iron connections between desert 
dust, ocean biogeochemistry, and climate. 
Science 308(5718):67–71, https://doi.org/10.1126/
science.1105959.

Johnson, M.S., N. Meskhidze, F. Solmon, S. Gassó, 
P.Y. Chuang, D.M. Gaiero, R.M. Yantosca, S. Wu, 
Y. Wang, and C. Carouge. 2010. Modeling dust 
and soluble iron deposition to the South Atlantic 
Ocean. Journal of Geophysical Research 115, 
D15202, https://doi.org/10.1029/2009JD013311.

Krueger, B.J., V.H. Grassian, J.P. Cowin, and A. Laskin. 
2004. Heterogeneous chemistry of individual 
mineral dust particles from different dust source 
regions: The importance of particle mineralogy. 
Atmospheric Environment 38(36):6,253–6,261, 
https://doi.org/10.1016/j.atmosenv.2004.07.010.

Labraga, J.C. 1994. Extreme winds in the Pampa 
del Castillo Plateau, Patagonia, Argentina, 
with reference to wind farm settlement. 
Journal of Applied Meteorology 33(1):85–95, 
https://doi.org/10.1175/1520-0450(1994)033​
<0085:EWITPD>2.0.CO;2.

Maher, B.A., J.M. Prospero, D. Mackie, D. Gaiero, 
P.P. Hesse, and Y. Balkanski. 2010. Global connec-
tions between aeolian dust, climate and ocean bio-
geochemistry at the present day and at the last gla-
cial maximum. Earth-Science Reviews 99(1):61–97, 
https://doi.org/10.1016/j.earscirev.2009.12.001.

Mahowald, N.M., A.R. Baker, G. Bergametti, 
N. Brooks, R.A. Duce, T.D. Jickells, N. Kubilay, 
J.M. Prospero, and I. Tegen. 2005. Atmospheric 
global dust cycle and iron inputs to the ocean. 
Global Biogeochemical Cycles 19(4), GB4025, 
https://doi.org/​10.1029/​2004GB002402.

Martino, M., D. Hamilton, A.R. Baker, T.D. Jickells, 
T. Bromley, Y. Nojiri, B. Quack, and P.W. Boyd. 2014. 
Western Pacific atmospheric nutrient deposition 
fluxes, their impact on surface ocean productiv-
ity. Global Biogeochemical Cycles 28(7):712–728, 
https://doi.org/10.1002/2013GB004794.

Mendez, J., C. Guieu, and J. Adkins. 2010. 
Atmospheric input of manganese and iron to 
the ocean: Seawater dissolution experiments 
with Saharan and North American dusts. Marine 
Chemistry 120(1):34–43, https://doi.org/10.1016/​
j.marchem.2008.08.006.

Millero, F.J. 2013. Chemical Oceanography, 4th ed. 
CRC Press, 571 pp.

Özsoy, T. 2003. Atmospheric wet deposition of 
soluble macro-nutrients in the Cilician Basin, 
north-​eastern Mediterranean Sea. Journal 
of Environmental Monitoring 5(6):971–976, 
https://doi.org/​10.1039/​b309636j.

Paparazzo, F.E., L. Bianucci, I.R. Schloss, 
G.O. Almandoz, M. Solís, and J.L. Esteves. 2010. 
Cross-frontal distribution of inorganic nutrients 
and chlorophyll-a on the Patagonian Continental 
Shelf of Argentina during summer and fall. Revista 
de Biología Marina y Oceanografía 45(1):107–119, 
https://doi.org/10.4067/s0718-19572010000100010.

Paparazzo, F.E., G.N. Williams, J.P. Pisoni, M. Solís, 
J.L. Esteves, and D.E. Varela. 2017. Linking phyto-
plankton nitrogen uptake, macronutrients and 
chlorophyll-a in SW Atlantic waters: The case 
of the Gulf of San Jorge, Argentina. Journal of 
Marine Systems 172:43–50, https://doi.org/10.1016/​
j.jmarsys.​2017.02.007.

Paruelo, J.M., W. Lauenroth, H.E. Epstein, 
I.C. Burke, M.R. Aguiar, and O.E. Sala. 1995. 
Regional climatic similarities in the temper-
ate zones of North and South America. Journal 
of Biogeography 22:915–925, https://doi.org/​
10.2307/2845992.

Pulido-Villena, E., V. Rérolle, and C. Guieu. 2010. 
Transient fertilizing effect of dust in P-deficient 
LNLC surface ocean. Geophysical Research 
Letters 37(1), https://doi.org/10.1029/2009GL041415.

Ridame, C., J. Dekaezemacker, C. Guieu, S. Bonnet, 
S. L’Helguen, and F. Malien. 2014. Contrasted 
Saharan dust events in LNLC environments: Impact 
on nutrient dynamics and primary production. 
Biogeosciences 11(17):4,783–4,800, https://doi.org/​
10.5194/​bg-11-4783-2014.

Russell, J.L., K.W. Dixon, A. Gnanadesikan, 
R.J. Stouffer, and J.R. Toggweiler. 2006. The 
Southern Hemisphere westerlies in a warming 
world: Propping open the door to the deep ocean. 
Journal of Climate 19:6,382–6,390, https://doi.org/​
10.1175/​JCLI3984.1.

Schindelin, J., I. Arganda-Carreras, E. Frise, V Kaynig, 
M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, 
S. Saalfeld, B. Schmid, and others. 2012. Fiji: An 
open-source platform for biological-image anal-
ysis. Nature: Methods, https://doi.org/10.1038/
nmeth.2019.

Simonella, L.E., M.E. Palomeque, P.L. Croot, 
A. Stein, M. Kupczewski, A. Rosales, M.L. Montes, 
F. Colombo, M.G. García, G. Villarosa, and 
D.M. Gaiero. 2015. Soluble iron inputs to 
the Southern Ocean through recent andes-
itic to rhyolitic volcanic ash eruptions from the 
Patagonian Andes. Global Biogeochemical 
Cycles 29(8):1,125–1,144, https://doi.org/​10.1002/​
2015GB005177.

Skalar Analytical® V.B. 2005. Skalar Methods - 
DIAMOND Issue 081505/MH/99235956. Breda, 
The Netherlands.

Stockdale, A., M.D. Krom, R.J. Mortimer, L.G. Benning, 
K.S. Carslaw, R.J. Herbert, and A. Nenes. 2016. 
Understanding the nature of atmospheric acid pro-
cessing of mineral dusts in supplying bioavailable 
phosphorus to the oceans. Proceedings of the 
National Academy of Sciences of the United States 
of America 113(51):14,639–14,644, https://doi.org/​
10.1073/pnas.1608136113.

Tinevez, J.-Y., N. Perry, J. Schindelin, G.M. Hoopes, 
G.D. Reynolds, E. Laplantine, S.Y. Bednarek, 
S.L. Shorte, and K.W. Eliceiri. 2017. TrackMate: 
An open and extensible platform for single-parti-
cle tracking. Methods 115:80–90, https://doi.org/​
10.1016/j.ymeth.2016.09.016

Thompson, D.W.J., S. Solomon, P.J. Kushner, 
M.H. England, K.M. Grise, and D.J. Karoly. 2011. 
Signatures of the Antarctic ozone hole in Southern 
Hemisphere surface climate change. Nature 
Geoscience 4:741–749, https://doi.org/10.1038/
ngeo1296.

Washington, R., M. Todd, N.J. Middleton, and 
A.S. Goudie. 2003. Dust-storm source areas 
determined by the Total Ozone Monitoring 
Spectrometer and surface observations. 
Annals of the Association of American 
Geographers 93(2):297–313, https://doi.org/​
10.1111/1467-8306.9302003.

ACKNOWLEDGMENTS
We thank two anonymous reviewers for revis-
ing and providing helpful comments. We acknowl-
edge the use of Rapid Response imagery from the 
Land, Atmosphere Near real-time Capability for EOS 
(LANCE) system operated by the NASA/GSFC/Earth 
Science Data and Information System (ESDIS) with 
funding provided by NASA/HQ. This work was par-
tially funded by FONCYT (PICT-2015-1837 to A.C.-A.) 
and CONICET (PIP 6447-2016 to R.J.G.). We thank 
ALUAR S.A.I.C. for their laboratory support to analyze 
samples under cooperation agreement N° 6213/15.

AUTHORS
Flavio E. Paparazzo (paparazzo@cenpat-conicet.
gob.ar) is Assistant Researcher, Laboratorio de 
Oceanografía Biológica (LOBio) and Laboratorio 
de Oceanografía Química y Contaminación de 
Aguas (LOQyCA), Centro para el Estudio de 
Sistemas Marinos (CESIMAR), Consejo Nacional de 
Investigaciones Científicas y Técnicas (CONICET), 
and Adjunct Professor, Universidad Nacional de 
la Patagonia San Juan Bosco (UNPSJB), Puerto 
Madryn, Chubut, Argentina. Augusto C. Crespi-Abril 
is Adjunct Researcher, LOBio, CESIMAR-CONICET, 
and Adjunct Professor, UNPSJB, Puerto Madryn, 
Chubut, Argentina. Rodrigo J. Gonçalves is Adjunct 
Researcher, LOBio, CESIMAR-CONICET, Puerto 
Madryn, Chubut, Argentina. Elena S. Barbieri is 
Assistant Researcher, LOBio, CESIMAR-CONICET, 
and Teaching Assistant, UNPSJB, Puerto Madryn, 
Chubut, Argentina. Leilén L. Gracia Villalobos is 

Postdoctoral Researcher, LOBio, CESIMAR-CONICET, 
Puerto Madryn, Chubut, Argentina. Miriam E. Solís 
is Technician, LOQyCA, CESIMAR-CONICET, and 
Adjunct Professor, UNPSJB, Puerto Madryn, Chubut, 
Argentina. Gaspar Soria is Adjunct Researcher, 
LOBio, CESIMAR-CONICET, and Adjunct Professor, 
UNPSJB, Puerto Madryn, Chubut, Argentina.

ARTICLE CITATION
Paparazzo, F.E., A.C. Crespi-Abril, R.J. Gonçalves, 
E.S. Barbieri, L.L. Gracia Villalobos, M.E. Solís, and 
G. Soria. 2018. Patagonian dust as a source of 
macronutrients in the Southwest Atlantic Ocean. 
Oceanography 31(4):33–39, https://doi.org/10.5670/
oceanog.2018.408.

https://doi.org/10.1016/j.atmosenv.2017.11.019
https://doi.org/10.1029/2007GL030520
https://doi.org/10.1016/S0016-7037(03)00211-4
https://doi.org/10.1016/j.marchem.2014.04.003
https://doi.org/10.1016/j.marchem.2014.04.003
https://doi.org/10.4319/lo.1999.44.7.1683
https://doi.org/10.4319/lo.1999.44.7.1683
https://doi.org/10.1126/science.1105959
https://doi.org/10.1126/science.1105959
https://doi.org/10.1029/2009JD013311
https://doi.org/10.1016/j.atmosenv.2004.07.010
https://doi.org/10.1175/1520-0450(1994)033<0085:EWITPD>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0085:EWITPD>2.0.CO;2
https://doi.org/10.1016/j.earscirev.2009.12.001
https://doi.org/10.1029/2004GB002402
https://doi.org/10.1002/2013GB004794
https://doi.org/10.1016/j.marchem.2008.08.006
https://doi.org/10.1016/j.marchem.2008.08.006
https://doi.org/10.1039/b309636j
https://doi.org/10.4067/s0718-19572010000100010
https://doi.org/10.1016/j.jmarsys.2017.02.007
https://doi.org/10.1016/j.jmarsys.2017.02.007
https://doi.org/10.2307/2845992
https://doi.org/10.2307/2845992
https://doi.org/10.1029/2009GL041415
https://doi.org/10.5194/bg-11-4783-2014
https://doi.org/10.5194/bg-11-4783-2014
https://doi.org/10.1175/JCLI3984.1
https://doi.org/10.1175/JCLI3984.1
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1002/2015GB005177
https://doi.org/10.1002/2015GB005177
https://doi.org/10.1073/pnas.1608136113
https://doi.org/10.1073/pnas.1608136113
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1038/ngeo1296
https://doi.org/10.1038/ngeo1296
https://doi.org/10.1111/1467-8306.9302003
https://doi.org/10.1111/1467-8306.9302003
https://doi.org/10.5670/oceanog.2018.408
https://doi.org/10.5670/oceanog.2018.408

