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	 Simplified Models for

Equatorial Waves with Vertical Structure
By Miles H. Wheeler

SPECIAL ISSUE ON MATHEMATICAL ASPECTS OF PHYSICAL OCEANOGRAPHY

ABSTRACT. Explicitly solvable models have recently been 
developed for the interaction of waves with the Equatorial 
Undercurrent in an f-plane approximation. We observe that 
these analyses can be dramatically simplified by a Boussinesq-
type approximation, and that the additional errors introduced 
are for the most part negligible. The approximate formulas are 
easier to interpret and show that critical layers occur if and only if 
the disturbances of the thermocline and free surface are in phase.

INTRODUCTION
One of the distinguishing features of the equatorial Pacific is 
the Equatorial Undercurrent (EUC), a strong eastward current 
that extends some 200 m below the surface and attains speeds 
of 1 m s–1 or more (Johnson et  al., 2001). This is in contrast 
to the surface current, which is westward and driven by trade 
winds. Vertical stratification plays an important role, with a 
sharp pycnocline/thermocline at around 120 m depth. The sim-
plest oceanographic models, based on so-called 1½-layer shal-
low water equations, assume that there is no motion below the 
thermocline, and completely neglect the vertical structure of the 
EUC (McCreary, 1985). Nevertheless, they have been quite suc-
cessful, for instance as components of larger models for El Niño 
and La Niña (Fedorov and Brown, 2009).

While detailed theories including the EUC are typically 
numerical (McPhaden et  al., 1986), Constantin and Johnson 
(2015) introduced a linear model that can be solved explic-
itly. Focusing on the vertical structure of the EUC, they work 
in a nontraditional f-plane approximation rather than the usual 
β-plane and set all meridional velocities and variations to zero. 
This limits the validity of the theory to a band of at most 2° lat-
itude about the equator. By approximating the EUC as a purely 
zonal flow with piecewise-linear dependence on depth, they 
are able to obtain an algebraic relation between the speed c and 
zonal wavenumber k of a traveling wave. While explicit, this 

and other formulas in the model are quite complicated, and so 
the authors use various limiting procedures in different cases to 
produce more tractable formulas that are easier to interpret and 
compare with available data.

Subsequent mathematical research into related two-​
dimensional models has centered on obtaining nonlinear 
Hamiltonian equations for the thermocline and free surface 
(Compelli and Ivanov, 2015; Constantin et al., 2016; Compelli 
and Ivanov, 2017; Ionescu-Kruse and Martin, 2017). These 
equations can be used to give Hamiltonian derivations of vari-
ous nonlinear long-wave models such as the Korteweg-de Vries 
equation. See Craig et al. (2005) and the references cited therein 
for earlier results on irrotational flows, where only uniform 
currents are possible. For more on the modeling of zonal cur-
rents with flow reversal in absence of waves, see Constantin and 
Johnson (2016) as well as the article by Basu (2018) in this issue.

By including the vertical structure of the EUC, both 
Constantin and Johnson (2015) and McPhaden et  al. (1986) 
allow for critical layers where the speed of the EUC coincides 
with the wave speed. In inviscid models, these open up into dra-
matic “Kelvin’s cat’s eye” patterns (see Figure 1). Critical layers 
are known to be important mechanisms for instability, and a full 
accounting of their properties requires the introduction of vis-
cous and/or nonlinear effects (Maslowe, 1986).

In this note we consider a two-layer model along the lines of 
Constantin and Johnson (2015), but perform an expansion in 
the density variation across the thermocline. Such Boussinesq-
type approximations are commonplace in oceanography, but 
do not appear to have been considered for this particular fam-
ily of models. An immediate advantage is that the formulas for 
the wave speed and relative amplitudes of the free surface and 
thermocline are drastically simplified. Questions about critical 
layers, the validity of the rigid-lid approximation, and the effect 
of Coriolis forces can then be more easily understood. Unlike 
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FIGURE 1. Streamlines for two waves with critical layers, shown in 
red. The thick black lines are the surface and the thermocline, the 
latter having an amplitude of 4 m. The wave on the left travels at 
c = −7 cm s–1, and the wave on the right at c = 9 cm s–1. Following 
the general pattern, the critical layer in the longer wave is closer 
to the surface.

the limiting procedures employed by Constantin and Johnson 
(2015), the approximation does not involve additional assump-
tions on the wavelength, and indeed appears to be extremely 
accurate for wavelengths anywhere from 5 m to 100 km. We do 
filter out fast-moving gravity waves concentrated near the sur-
face, but it is not clear that such waves have significant inter-
actions with the EUC in the first place.

MODEL AND APPROXIMATION
A Constantin-Johnson Type Model
We begin with the incompressible Euler equations in a non-
traditional f-plane approximation at the equator that retains 
Coriolis terms associated with the meridional component of 
Earth’s angular velocity Ω. This allows us to restrict to purely 
two-​dimensional motion with no meridional dependence and 
no meridional velocity, but limits the applicability of the model 
to a band of perhaps 2° around the equator (Johnson et al., 2001; 
Constantin and Johnson, 2015). To model the thermocline, we 
assume that there are two layers of constant density: a lower layer 
with density ρ and mean depth h1 and an upper layer with den-
sity ρ − Δρ and mean depth h2 (see Figure 2). The pressure and 
normal fluid velocity are continuous across the thermocline, but 
waves in this inviscid model will have a (small) jump in normal 
velocity. The upper boundary of the ocean is assumed to be a 
free surface held at constant pressure (and not a rigid lid), while 
the bottom of the lower layer is a flat and impermeable ocean 
floor. We take the typical values h1 = 120 m and h1 + h2 = 4 km 
(Fedorov and Brown, 2009).

We approximate the EUC by a piecewise linear zonal veloc-
ity profile, illustrated schematically in Figure 3. At the surface 
there is a negative/westward velocity usurf , at the thermocline 
there is a positive/eastward velocity utherm, and at the bottom 
there is no motion. We take the typical values usurf = −.25 m s–1 
and utherm = 1 m s–1 (Johnson et al., 2001). The advantage of a 
piecewise linear model is that the meridional component of the 
vorticity is constant in each layer, γ2 = (usurf − utherm) /h2 in the 
upper layer and γ1 = utherm /h1 in the lower layer. This in turn 
allows us to consider irrotational perturbations, greatly simpli-
fying the analysis. By taking a more complicated velocity profile, 
one could of course make a much better approximation to the 
EUC; Constantin and Johnson (2015) for instance use five lay-
ers. However, the algebra becomes significantly more compli-
cated with each additional layer, and so for simplicity we restrict 
ourselves here to the two-layer case.

A Boussinesq-Type Approximation
We simplify the above model by recognizing
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to have been considered for this particular family of
models. An immediate advantage is that the various
formulas, e.g. for the wave speed and relative ampli-
tude of the free surface and thermocline, are drastically
simplified. Questions about critical layers, the validity
of the rigid lid approximation, and the effect of Corio-
lis forces can then be more easily understood. Unlike
the limiting procedures employed by Constantin and
Johnson (2015), the approximation does not involve
additional assumptions on the wavelength, and indeed
appears to be extremely accurate for wavelengths any-
where from 5m to 100km. We do filter out fast-moving
gravity waves concentrated near the surface, but it is
not clear that such waves have significant interactions
with the EUC in the first place.

2 Model and approximation

2.1 A Constantin–Johnson type model

We begin with the incompressible Euler equations in
a non-traditional f -plane approximation at the equa-
tor which retains Coriolis terms associated with the
meridional component of the earth’s angular velocity
Ω. This allows us to restrict to purely two-dimensional
motion with no meridional dependence and no merid-
ional velocity, but limits the applicability of the model
to a band of perhaps 2° around the equator (Johnson
et al., 2001; Constantin and Johnson, 2015). To model
the thermocline, we assume that there are two layers
of constant density: a lower layer with density ρ and
mean depth h1 and an upper layer with density ρ−∆ρ
and mean depth h2; see Figure 1. The pressure and
normal fluid velocity are continuous across the ther-
mocline, but waves in this inviscid model will have
a (small) jump in normal velocity. The upper bound-
ary of the ocean is assumed to be a free surface held
at constant pressure (and not a rigid lid), while the
bottom of the lower layer is a flat and impermeable
ocean floor. We take the typical values h1 = 120m and
h1 + h2 = 4km (Fedorov and Brown, 2009).

We approximate the EUC by a piecewise linear zonal
velocity profile; see Figure 2 for a schematic illustra-
tion. At the surface there is a negative/westward ve-
locity usurf , at the thermocline there is a positive/east-
ward velocity utherm, and at the bottom there is no
motion. We take the typical values usurf = −.25m s−1

and utherm = 1ms−1 (Johnson et al., 2001). The ad-
vantage of a piecewise linear model is that the merid-
ional component of the vorticity is constant in each
layer, γ2 = (usurf − utherm)/h2 in the upper layer and
γ1 = utherm/h1 in the lower layer. This in turn allows
us to consider irrotational perturbations, which greatly
simplifies the analysis. By taking a more complicated
velocity profile, one could of course make a much bet-
ter approximation to the EUC; Constantin and Johnson
(2015) for instance use five layers. However, the al-
gebra becomes significantly more complicated with
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Figure 1: The thermocline is represented as a sharp interface
between two regions of constant density, a lower
layer with density ρ and mean depth h1, and an
upper layer with density ρ −∆ρ and mean depth
h2. The deviation of the thermocline is η1 while the
deviation of the free surface is η2.
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Figure 2: The EUC is represented by a piecewise linear zonal ve-
locity profile. The surface velocity usurf is westward
due to trade winds, while at the thermocline there
is an eastward current with strength utherm, and
at the bottom there is no motion. The (meridional)
vorticities γ1 and γ2 in each layer are invariants of
the motion.

each additional layer, and so for simplicity we restrict
ourselves here to the two-layer case.

2.2 A Boussinesq-type approximation

We simplify the above model by recognizing

∆ρ

ρ
� 1

as a small parameter. Typical values range between
4× 10−3 and 6× 10−3 (Constantin and Johnson, 2015;
Fedorov and Brown, 2009); we take ∆ρ/ρ = 5× 10−3.
Using U = 1ms−1 as a velocity scale for the EUC and
L = 1km a length scale, the Richardson number is then

Ri =
g′L

U2
= 49,

where g′ = g∆ρ/ρ is the reduced gravity. The Richard-
son number is certainly not a small parameter here,
and we will consider it fixed.
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as a small parameter. Typical values range between 4 × 10–3 and 
6 × 10–3 (Fedorov and Brown, 2009; Constantin and Johnson, 
2015); we take Δρ /ρ = 5 × 10–3. Using U = 1 m s–1 as a velocity 
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FIGURE 3. The Equatorial Undercurrent (EUC) is represented by 
a piecewise linear zonal velocity profile. The surface velocity usurf 
is westward due to trade winds, while at the thermocline there is 
an eastward current with strength utherm, and at the bottom there 
is no motion. The (meridional) vorticities γ1 and γ2 in each layer are 
invariants of the motion.
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FIGURE 2. The thermocline is represented as a sharp interface 
between two regions of constant density, a lower layer with den-
sity ρ and mean depth h1, and an upper layer with density ρ − Δρ 
and mean depth h2. The deviation of the thermocline is η1 while 
the deviation of the free surface is η2.
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FIGURE 5. The wave speed c versus wave period for the disper-
sion relation (1). Positive values of c correspond to eastward prop-
agating waves. The shortest waves travel at nearly the velocity 
1 m s–1 of the thermocline. Points on the curve that lie in the red 
shaded region represent waves with critical layers.

FIGURE 4. Streamlines for a wave calculated using the approx-
imate model, with wavelength 1 km, westward wave speed 
c = 2.25 m s–1, and amplitude 10 m at the thermocline. The thick 
lines are the free surface and the thermocline.

FIGURE 6. Absolute error between the wave speeds in Figure 5 
and the corresponding wave speeds in the Constantin-Johnson-
type model, as a function of the period. Note that the vertical scale 
is in cm s–1; these represent relative errors of less than 0.3%. 

scale for the EUC and L = 1 km a length scale, the Richardson 
number is then
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to have been considered for this particular family of
models. An immediate advantage is that the various
formulas, e.g. for the wave speed and relative ampli-
tude of the free surface and thermocline, are drastically
simplified. Questions about critical layers, the validity
of the rigid lid approximation, and the effect of Corio-
lis forces can then be more easily understood. Unlike
the limiting procedures employed by Constantin and
Johnson (2015), the approximation does not involve
additional assumptions on the wavelength, and indeed
appears to be extremely accurate for wavelengths any-
where from 5m to 100km. We do filter out fast-moving
gravity waves concentrated near the surface, but it is
not clear that such waves have significant interactions
with the EUC in the first place.

2 Model and approximation

2.1 A Constantin–Johnson type model

We begin with the incompressible Euler equations in
a non-traditional f -plane approximation at the equa-
tor which retains Coriolis terms associated with the
meridional component of the earth’s angular velocity
Ω. This allows us to restrict to purely two-dimensional
motion with no meridional dependence and no merid-
ional velocity, but limits the applicability of the model
to a band of perhaps 2° around the equator (Johnson
et al., 2001; Constantin and Johnson, 2015). To model
the thermocline, we assume that there are two layers
of constant density: a lower layer with density ρ and
mean depth h1 and an upper layer with density ρ−∆ρ
and mean depth h2; see Figure 1. The pressure and
normal fluid velocity are continuous across the ther-
mocline, but waves in this inviscid model will have
a (small) jump in normal velocity. The upper bound-
ary of the ocean is assumed to be a free surface held
at constant pressure (and not a rigid lid), while the
bottom of the lower layer is a flat and impermeable
ocean floor. We take the typical values h1 = 120m and
h1 + h2 = 4km (Fedorov and Brown, 2009).

We approximate the EUC by a piecewise linear zonal
velocity profile; see Figure 2 for a schematic illustra-
tion. At the surface there is a negative/westward ve-
locity usurf , at the thermocline there is a positive/east-
ward velocity utherm, and at the bottom there is no
motion. We take the typical values usurf = −.25m s−1

and utherm = 1ms−1 (Johnson et al., 2001). The ad-
vantage of a piecewise linear model is that the merid-
ional component of the vorticity is constant in each
layer, γ2 = (usurf − utherm)/h2 in the upper layer and
γ1 = utherm/h1 in the lower layer. This in turn allows
us to consider irrotational perturbations, which greatly
simplifies the analysis. By taking a more complicated
velocity profile, one could of course make a much bet-
ter approximation to the EUC; Constantin and Johnson
(2015) for instance use five layers. However, the al-
gebra becomes significantly more complicated with
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Figure 1: The thermocline is represented as a sharp interface
between two regions of constant density, a lower
layer with density ρ and mean depth h1, and an
upper layer with density ρ −∆ρ and mean depth
h2. The deviation of the thermocline is η1 while the
deviation of the free surface is η2.
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Figure 2: The EUC is represented by a piecewise linear zonal ve-
locity profile. The surface velocity usurf is westward
due to trade winds, while at the thermocline there
is an eastward current with strength utherm, and
at the bottom there is no motion. The (meridional)
vorticities γ1 and γ2 in each layer are invariants of
the motion.

each additional layer, and so for simplicity we restrict
ourselves here to the two-layer case.

2.2 A Boussinesq-type approximation

We simplify the above model by recognizing

∆ρ

ρ
� 1

as a small parameter. Typical values range between
4× 10−3 and 6× 10−3 (Constantin and Johnson, 2015;
Fedorov and Brown, 2009); we take ∆ρ/ρ = 5× 10−3.
Using U = 1ms−1 as a velocity scale for the EUC and
L = 1km a length scale, the Richardson number is then

Ri =
g′L

U2
= 49,

where g′ = g∆ρ/ρ is the reduced gravity. The Richard-
son number is certainly not a small parameter here,
and we will consider it fixed.
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where g' = gΔρ /ρ is the reduced gravity. The Richardson num-
ber is certainly not a small parameter here, and we will con-
sider it fixed.

After using the above scales to nondimensionalize, we develop 
the unknowns as series in Δρ /ρ while holding the Richardson 
number Ri constant. In principle, this expansion can be carried 
out to any order, but here we will keep only the leading-order 
terms so that we arrive at linear equations.

RESULTS
The model described in the previous section and its approxi-
mation yield two sets of explicit formulas for the wave speed, 
velocity field, free surface, thermocline, and pressure in a wave 
with zonal wavenumber k. This allows us to, for instance, plot 
the streamlines of the 2 km wave in Figure 4. In this section we 
discuss some of the more interesting formulas for the approx-
imate model. Unfortunately, the corresponding formulas from 
the Constantin-Johnson type model are too long to reproduce 
here, but we do perform numerical comparisons for the param-
eter values from the previous section.

Dispersion Relation
The leading-order dispersion relation between the speed c and 
zonal wavenumber k in the Boussinesq approximation is
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Figure 3: Streamlines for a wave calculated using the approxi-
mate mode, with wavelength 1km, a westward wave
speed c = 2.25m s−1, and an amplitude of 10m at
the thermocline. The thick lines are the free surface
and thermocline.

After using the above scales to non-dimensionalize,
we develop the unknowns as series in∆ρ/ρ while hold-
ing the Richardson number Ri constant. In principle
this expansion can be carried out to any order, but here
we will keep only the leading-order terms so that we
arrive at linear equations which can be solved explicitly.

3 Results

The above model and its approximation yield two sets
of explicit formulas for the wave speed, velocity field,
free surface, thermocline, and pressure in a wave with
zonal wavenumber k. This allows us to, for instance,
plot the streamlines of the 2km wave in Figure 3. In
this section we discuss some of the more interesting for-
mulas for the approximate model. Unfortunately, the
corresponding formulas from the Constantin–Johnson-
type model are too long to reproduce here, but we
do perform numerical comparisons for the parameter
values from the previous section.

3.1 Dispersion relation

The leading-order dispersion relation between the
speed c and zonal wavenumber k in the Boussinesq
approximation is

k(coth kh1 + coth kh2)(c− utherm)
2

+ (γ1 − γ2)(c− utherm)− g′ = 0,
(1)

where utherm is the velocity of the EUC at the thermo-
cline and γ1, γ2 are the vorticities in the two layers;
see Figure 2. This is a quadratic equation in c, with
the two branches of solutions shown in Figure 4. The
upper (lower) branch moves eastward (westward) rel-
ative to the thermocline, and extremely short waves

Figure 4: The wave speed c versus wave period for the disper-
sion relation (1). Positive values of c correspond to
eastward propagating waves. The shortest waves
travel at nearly the velocity 1m s−1 of the thermo-
cline. Points on the curve that lie in the red shaded
region represent waves with critical layers; see Sec-
tion 3.3 below.

Figure 5: Absolute error between the wave speeds in Fig-
ure 4 and the corresponding wave speeds in the
Constantin–Johnson-type model, as a function of
the period. Note that the vertical scale is in cm s−1;
these represent relative errors of less than 0.3%.

on both branches travel near the speed utherm at the
thermocline.
This dispersion relation (1) is quadratic in c and

hence trivial to solve explicitly. The k-dependence oc-
curs only through the monotone function k(coth kh1 +
coth kh2), and so solving for k numerically is also
straightforward. The dispersion relation for the
Constantin–Johnson model is quartic in c with a much
more involved dependence on k and, without making
any further simplifying assumptions, its resolution is
quite delicate.

Despite its relative simplicity, (1) is extremely accu-
rate. In Figure 4, for instance, the error in using (1)
rather than the Constantin–Johnson dispersion rela-
tion to calculate the wave speed is less than 0.6cm s−1

or about 0.3%; see Figure 5. In this comparison we
have left out waves shorter than 5m because our naive
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(1)

where utherm is the velocity of the EUC at the thermocline and γ1, 
γ2 are the vorticities in the two layers. This is a quadratic equa-
tion in c, with the two branches of solutions shown in Figure 5. 
The upper (lower) branch moves eastward (westward) relative to 
the thermocline, and extremely short waves on both branches 
travel near the speed utherm at the thermocline.

This dispersion relation (1) is quadratic in c and hence triv-
ial to solve explicitly. The k-dependence occurs only through the 
monotone function k(coth kh1 + coth kh2), and so solving for k 
numerically is also straightforward. The dispersion relation for 
the Constantin-Johnson model is quartic in c with a much more 
involved dependence on k and, without making any further sim-
plifying assumptions, its resolution is quite delicate.

Despite its relative simplicity, (1) is extremely accurate. In 
Figure 5, for instance, the error in using (1) rather than the 
Constantin-Johnson dispersion relation to calculate the wave 
speed is less than 0.6 cm s–1 or about 0.3% (see Figure 6). In this 
comparison we have left out waves shorter than 5 m because our 
naive evaluation of the Constantin-Johnson formula encoun-
ters overflow errors. For longer waves there is no such difficulty, 
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and indeed the above error bounds are valid for wavelengths of 
100 km and above.

It is interesting to note that (1) is the Boussinesq limit of the 
dispersion relation for a two-layer fluid with a rigid lid reported 
by Compelli and Ivanov (2017). However, we do not assume the 
free surface is completely flat.

Surface and Thermocline
While our dispersion relation (1) could have come from a rigid- 
lid model, we are nevertheless able to predict the nonzero, albeit 
small, displacements of the free surface. Similar formulas exist 
for 1½-layer shallow water equations, and are used to estimate 
the depth of the thermocline from satellite observations of sea 
level height (Fedorov and Brown, 2009). Our formula, however, 
contains information about the vertical structure of the EUC 
and in particular about the presence of critical layers.

Letting η1, η2 be the displacement of the thermocline and the 
free surface as in Figure 2, our approximation gives
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Figure 6: The ratio η2/η1 between the amplitude of the surface
and the amplitude of the thermocline. As predicted
by dimensional analysis, these ratios are on the order
of ∆ρ/ρ = 5× 10−3. Positive values indicate that
crests and troughs are in phase, while negative values
indicate that they are perfectly out of phase. The
upper branch here corresponds to the lower branch
in Figure 4.

evaluation of the Constantin–Johnson formula encoun-
ters overflow errors. For longer waves there is no such
difficulty, and indeed the above error bounds are valid
for wavelengths of 100km and above.
It is interesting to note that (1) is the Boussinesq

limit of the dispersion relation for a two-layer fluid with
a rigid lid reported by Compelli and Ivanov (2017).
However, we do not assume the free surface is com-
pletely flat.

3.2 Surface and thermocline

While our dispersion relation (1) could have come from
a rigid-lid model, we are nevertheless able to predict
the nonzero, albeit small, displacements of the free
surface. Similar formulas exist for 1 1

2 -layer shallow
water equations, and are used to estimate the depth of
the thermocline from satellite observations of the sea-
level height (Fedorov and Brown, 2009). Our formula,
however, contains information about the vertical struc-
ture of the EUC and in particular about the presence
of critical layers.

Letting η1, η2 be the displacement of the thermocline
and free surface as in Figure 1, our approximation gives

η2
η1

= − (c− utherm)(c− usurf)k

g sinh kh2
. (2)

While the right hand side of (2) is small on the order
∆ρ/ρ = 5× 10−3, it can in principle take on both posi-
tive and negative values. When it is positive, the crests
and troughs of the free surface and thermocline are
in phase, and when it is negative, they are 180° out of
phase; see Figure 10 below. From Figure 6 we see that
(2) is almost always negative, but the zoom in Figure 8
shows that it can be positive for wavelengths between
100m and 200m.

Figure 7: Absolute error between the values of η2/η1 in
Figure 6 and the corresponding values in the
Constantin–Johnson-type model. Note the differ-
ence in scales.

Figure 8: Zooms of Figures 4 and 6 for shorter waves. Waves
in the red shaded region on the left have critical
layers, and the two blue points correspond to the
waves shown in Figure 9.

As with the dispersion relation, the analogous for-
mula for the Constantin–Johnson-type model is slightly
too long to comfortably reproduce here. Like the dis-
persion relation, it is extremely well-approximated by
(2), differing by less than 5× 10−6; see Figure 7.

3.3 Critical layers

As mentioned in the introduction, critical layers occur
when the wave speed c coincides with the velocity
of the EUC. In our model the EUC has a maximum
velocity of utherm = 1ms−1 and a minimum velocity
of usurf = −.25m s−1 (see Figure 2), and so this is
equivalent to usurf < c < utherm. For the parameter
values we have taken, this occurs only for waves shorter
than 300m; see Figure 8. As usual for an inviscid model,
these critical layers expand into the “Kelvin’s cat’s eye”
patterns shown in red in Figure 9.

Looking at (2), we see that critical layers are present
if and only if η2/η1 > 0, i.e. if the crests and troughs
of the free surface and thermocline are in phase. Said
another way, the lack of a phase shift between the
surface and thermocline is a signature of the presence
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(2)

While the right-hand side of (2) is small, on the order of Δρ /ρ 
= 5 × 10–3, it can in principle take on both positive and negative 
values. When it is positive, the crests and troughs of the free sur-
face and thermocline are in phase, and when it is negative, they 
are 180° out of phase (see Figure 7). From Figure 8, we see that 
(2) is almost always negative, but the zoom in Figure 9 shows 
that it can be positive for wavelengths between 100 m and 200 m.

As with the dispersion relation, the analogous formula for the 
Constantin-Johnson-type model is slightly too long to comfort-
ably reproduce here. Like the dispersion relation, it is extremely 
well approximated by (2), differing by less than 5 × 10–6 
(see Figure 10).

Critical Layers
As mentioned in the introduction, critical layers occur when wave 
speed c coincides with the velocity of the EUC. In our model the 
EUC has a maximum velocity of utherm = 1 m s–1 and a minimum 
velocity of usurf = −.25 m s–1 (see Figure 3), and so this is equiva-
lent to usurf < c < utherm. For the parameter values we have taken, 
this occurs only for waves shorter than 300 m (see Figure 9). As 
usual for an inviscid model, these critical layers expand into the 
“Kelvin’s cat’s eye” patterns shown in red in Figure 1.

Looking at (2), we see that critical layers are present only if 
η2 /η1 > 0, that is, if and only if the crests and troughs of the free 
surface and the thermocline are in phase. Said another way, the 
lack of a phase shift between the surface and thermocline is a 
signature of the presence of critical layers. Because the extremely 
small free-surface deviations are not visible in Figures 1 or 4, we 
have illustrated this property schematically in Figure 7. It would 
be interesting to have a physical explanation of this phenome-
non, and to do a more detailed comparison with available data.

FIGURE 8. The ratio η2 /η1 between the amplitude of the surface 
and the amplitude of the thermocline. As predicted by dimensional 
analysis, these ratios are on the order of Δρ / ρ = 5 × 10–3. Positive 
values indicate that crests and troughs are in phase, while nega-
tive values indicate that they are perfectly out of phase. The upper 
branch here corresponds to the lower branch in Figure 5.

FIGURE 10. Absolute error between the values of η2 /η1 in 
Figure 8 and the corresponding values in the Constantin-Johnson-
type model. Note the difference in scales.

FIGURE 9. Zooms of Figures 5 and 8 for shorter waves. Waves in 
the red shaded region on the left have critical layers, and the two 
blue points correspond to the waves shown in Figure 1.

FIGURE 7. (left) The free surface and the thermocline are in phase, 
so by (2) there is a critical layer, sketched in red. (right) The free 
surface and the thermocline are out of phase, and so there is no 
critical layer.
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as small; indeed we have treated it as an order one quan-
tity. Instead, it is explained by the following observation: For 
a two-dimensional traveling wave on the equatorial f-plane, 
including Coriolis forces is essentially equivalent to replacing 
the gravitational constant g by g − 2Ωc. The more appropriate 
dimensionless measure of Ω is therefore

Simplified models for equatorial waves with vertical structure

Figure 9: Streamlines for two waves with critical layers, shown
in red. The thick black lines are the surface and
thermocline, the latter having an amplitude of 4m.
The wave on the left travels at c = −7cm s−1, and
the wave on the right at c = 9cm s−1. Following the
general pattern, the critical layer in the longer wave
is closer to the surface.

Figure 10: Left: the free surface and thermocline are in phase,
so by (2) there is a critical layer, sketched in red.
Right: the free surface and thermocline are out of
phase, and so there is no critical layer.

of critical layers. Since the extremely small free surface
deviations are not visible in Figures 3 or 9, we have
illustrated this property schematically in Figure 10. It
would be interesting to have a physical explanation of
this phenomena, and to do a more detailed comparison
with available data.

3.4 Surface modes
One feature of the Constantin–Johnson-type model
that our approximation completely misses is the ex-
istence of fast waves concentrated near the surface.
These come from the other two branches of the full
quartic dispersion relation, plotted in Figure 11. As
the wavelength increases, the wave speeds continue to
increase and approach limits close to the shallow water
speed ±

√
g(h1 + h2) ≈ ±200m s−1. See Constantin

(2011) for a discussion of applications to tsunamis.
These fast waves are filtered out by our model be-

cause their wave speeds are much larger than the ve-
locity scale U = 1ms−1 for the EUC. Performing a di-

Figure 11: All four branches of the Constantin–Johnson dis-
persion relation. The middle two branches of more
slowly traveling waves are approximated to within
0.3% by (1). For waves longer than 200m, the re-
maining two branches are approximated to within
0.8% by the even simpler dispersion relation (3).

mensional analysis with 100m s−1 as the velocity scale,
we expect that these waves are only slightly affected
by stratification and the EUC. It is therefore reasonable
to initially approximate them as gravity waves in a
homogeneous fluid otherwise at rest, which have the
well-known dispersion relation

c2 = g
tanh((h1 + h2)k)

k
. (3)

Indeed, for wavelengths larger than 200m, (3) approx-
imates these branches of the full dispersion relation in
Figure 11 with an error of less than 0.8%.

3.5 The role of the Coriolis forces
While Coriolis forces, and hence the angular velocity Ω
of the Earth, do appear in our model, they are absent
from formulas such as (1) and (2). This is not because
we have treated the dimensionless parameter

ΩL

U
≈ 7× 10−2

as small; indeed we have treated it as an order one
quantity. Instead, it is explained by the following ob-
servation: For a two-dimensional traveling wave on the
equatorial f -plane, including Coriolis forces is essen-
tially equivalent to replacing the gravitational constant
g by g−2Ωc. Thus the more appropriate dimensionless
measure of Ω is

Ωc

g
∼ ΩL

U

∆ρ/ρ

Ri
≈ 5× 10−6.

At the current level of approximation, this is treated
as zero because it contains a factor of ∆ρ/ρ. We em-
phasize that the above argument does not general-
ize to time-dependent solutions or indeed to three-
dimensional waves of any kind.
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At the current level of approximation, this is treated as zero 
because it contains a factor of Δρ /ρ. We emphasize that the 
above argument does not generalize to time-dependent solu-
tions or indeed to three-dimensional waves of any kind.

CONCLUSION
We have considered a model in the spirit of Constantin and 
Johnson (2015) for the interaction of waves and the EUC, 
together with its Boussinesq approximation. Unlike the various 
long and short wave limits discussed by Constantin and Johnson 
(2015), this approximation is extremely accurate for all wave-
lengths larger than 5 m. Armed with much simpler formulas, we 
can more easily address important issues such as the validity of 
rigid-lid approximations, the presence or absence of critical lay-
ers, and the influence of Coriolis forces. For simplicity, we have 
used a piecewise-linear model of the EUC with only two layers, 
but the method generalizes to any number of layers (at the cost 
of increasingly complicated formulas).

The main phenomenon that is lost in the approximation is 
the presence of fast waves concentrated near the surface. On the 
other hand, these are not particularly influenced by the EUC 
or by the presence of the thermocline. It is also important to 
emphasize that, unlike in a rigid-lid model, we do retain infor-
mation about the small free-surface disturbances associated 
with large disturbances of the thermocline.

Boussinesq approximations sometimes lead to erroneous 
conclusions (Long, 1965), and in our case the limit is in some 
sense singular. It would therefore be worthwhile to justify our 
formal calculations with a rigorous existence proof. This would 
necessitate going further into the expansion in Δρ /ρ to include 
nonlinear terms, and is the subject of ongoing work. 
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k
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Right: the free surface and thermocline are out of
phase, and so there is no critical layer.
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