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SPECIAL ISSUE ON MATHEMATICAL ASPECTS OF PHYSICAL OCEANOGRAPHY

The Value of Asymptotic Theories 
in Physical Oceanography By Robin Stanley Johnson

INTRODUCTION
Modern physical oceanography—the 
study of the physical processes that 
underpin the motion of the ocean—
can be traced back to at least the time of 
Ekman’s seminal work (Ekman, 1905) on 
his spiral and its role in explaining the 
observed movement of icebergs. Since 
that time, many aspects of the flow of 
our ocean have been examined and inter-
preted, based, typically, on suitable math-
ematical models that aim to represent the 
relevant physical processes; see, for exam-
ple, Gill (1982), Apel (1987), Tomczak 
and Godfrey (2003), Segar (2012), and 
Garrison (2014). Furthermore, starting 

about the time of the Second World War, 
a vast amount of quality data have been 
collected that have provided a signifi-
cant driver for these investigations. The 
availability of these data has prompted an 
upsurge in modeling the various physical 
processes that are involved in ocean cir-
culation but, perhaps more significantly, 
also encouraged a much greater role 
of, and reliance upon, numerical solu-
tions and simulation (Proehl et al., 1986; 
Lagerloef et al., 1999; Wang et al., 2000; 
Bell et al., 2016).

Unquestionably, the motion of 
the ocean in its totality constitutes a 
very complicated flow system, mainly 

because so many factors are involved. 
These include: wind-driven circula-
tion (McCreary, 1985); upwelling and 
downwelling (G.C. Johnson et al., 2001); 
effects of Coriolis forces and of associated 
Ekman transport (Tomczak and Godfrey, 
2003; Segar, 2012); atmosphere-ocean 
interactions (Wu, 1975; Yelland and 
Taylor, 1996; Davies, 2013; Stewart et al., 
2014); temperature, density, and salin-
ity variations (Kessler, 2005); and effects 
of climate change (Faghmous and Vipin, 
2014). In addition, heat balance and 
transfer in the ocean are important ingre-
dients (Boccaletti et al., 2004; Wallcraft 
et al., 2008), as are the effects of variable 
depth and the existence of landmasses 
that bound the ocean. Superimposed 
on all this structure are tides and ocean 
waves (of various types; LeBlond and 
Mysak, 1978), and the observation that 
the ocean is predominantly turbulent. All 
of the above combine to produce a very 
complex physical system that, it might 
be thought, can be understood only by 
numerical and/or physical modeling. 
That such approaches play a role can-
not be denied, but we will argue these 
should be considered only as a last resort 
after all the conventional and classical 

ABSTRACT. Physical oceanography is an exciting, fruitful and important field of study, 
particularly relevant to the current discourse on, and the effects of, climate change. 
However, the tried and tested techniques of (and wealth of knowledge available from) 
classical fluid mechanics seem to have been sidelined, in favor of an emphasis on mod-
eling and numerical methods. In this article, we make the case for returning to funda-
mental ideas, explaining the essentials of this approach in the context of the Euler (or 
Navier-Stokes) equation written in a rotating, spherical coordinate system. We support 
our contention that this is the way forward by presenting (descriptively only) a number 
of examples that show what can be done, and suggesting that much more is possible. 
Indeed, we argue that this is the route to be taken before recourse to other, more ad hoc, 
methods. We will use this approach to provide new insight (and new results) related to 
the Pacific Equatorial Undercurrent, the Antarctic Circumpolar Current (including the 
role of exact solutions), and large gyres.
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methods have been exhausted; this gen-
eral philosophy is developed in the essay 
by Constantin and Johnson (2016a).

Of course, numerical solutions, and 
numerical simulations, are useful as a 
means for adding fine detail to flow con-
figurations that are well defined and well 
understood. Neither numerical solutions 
nor data analysis can be used as a reason-
able basis for developing a fundamen-
tal understanding, or reliable interpreta-
tion, of such complex flows. Indeed, all 
the experience gained in fluid mechan-
ics over the last 200 years or so is evi-
dence that we should proceed from sim-
ple solutions of the governing equations 
to more sophisticated developments 
and extensions. Let us be clear: it would 
be perverse to ignore the vast body of 
knowledge (and techniques) relevant to 
the study of the motion of fluids based 
on the general governing equations of 
fluid mechanics. Correspondingly, any 
recourse to numerical methods or phys-
ical modeling should be considered only 
when all the traditional avenues have 
been explored and shown to fall short in 
very significant ways.

The aim of this review is to explain the 
philosophy behind the approach based 
on classical fluid mechanics, as it relates 
to oceanic flows, and to highlight (in out-
line) some of the successes of these ideas. 
Further, we will indicate how such meth-
ods can be extended and developed, 
and at what stage (and in what circum-
stances) numerical and modeling ideas 
may be useful.

BACKGROUND IDEAS 
AND METHODS
Any problem involving the motion of 
a fluid (such as water or air) starts from 
the general, governing equations of fluid 
mechanics. These comprise an equation 
of mass conservation, together with either 
the Euler equation (for inviscid, but rota-
tional, flows) or the Navier-Stokes equa-
tion (for a viscous fluid). Note that we do 
not have available a reliable theoretical 
basis for a complete description of fully 
turbulent flows, but we can incorporate 

suitable turbulent modeling, if required. 
In practice, it is usually sufficient to 
work with the Euler equation for ocean 
flows, with vorticity included as neces-
sary, because the effects of viscosity are 
often weak, operating on time and dis-
tance scales that are far larger than those 
associated with the dynamical motions 
of interest (McCreary, 1985; Maslowe, 
1986). Although the dynamic conditions 
at the free surface should be represented 
by suitable viscous (wind-stress) action, 
this can often be modeled by a combina-
tion of variable pressure and the transfer 
of momentum to the inclined face of any 
surface wave. Furthermore, it is often pos-
sible to replace the conditions well below 
the free surface by decay conditions. 
Thus, for many discussions of oceanic 
flows, the Euler equation will suffice, but 
we must be aware that some special flows 
do require a significant contribution from 

the viscous terms in the governing equa-
tions; knowledge and experience, and the 
problem under consideration, will indi-
cate which underlying model for the fluid 
should be selected. To the chosen system 
of governing equations we add the appro-
priate boundary conditions and, for time- 
dependent problems, a suitable set of ini-
tial data; it will be assumed in this con-
text (the ocean) that the resulting prob-
lem has a solution and one that is unique. 
(In some cases, for example, water waves 
described by the Euler equation, we have 
theorems that prove that solutions with 

suitable smoothness properties exist; see, 
for example, Toland, 1996; Constantin 
and Strauss, 2004; Constantin and Escher, 
2011.) In addition, we should note that 
a number of explicit solutions, devel-
oped within the Lagrangian framework 
and not involving any approximations, 
have recently been found; see, for exam-
ple, Constantin (2012, 2014), Constantin 
and Monismith (2017), and Henry (2013, 
2016). Of course, we would much prefer 
to obtain an exact solution to our prob-
lem, but this is not going to be possible 
for the type of flows under consideration 
(except in some very rare and special sit-
uations, which we will mention later). So 
how do we proceed?

The overall plan is to obtain a consistent 
simplification of the full problem, guided 
by some general principles. At their sim-
plest, these problems might be based on 
what we believe is important in the sys-

tem and what is reasonably accessible in 
a technical sense. However, this approach 
is useful only if it can be accomplished in 
a mathematically consistent way, and this 
is best done by nondimensionalizing and 
introducing suitable parameters: the well-
tried approach in fluid mechanics. Thus 
we select, for example, suitable speed and 
length scales appropriate to the problem 
to be examined; for unsteady problems, 
this also provides a time scale. The full 
system of differential equations, bound-
ary and initial conditions (if relevant), is 
then written in nondimensional variables 

 “Indeed, all the experience gained in fluid 
mechanics over the last 200 years or so is evidence 

that we should proceed from simple solutions of 
the governing equations to more sophisticated 

developments and extensions.

”
. 
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and the (nondimensional) parameters are 
identified. The unknowns (the velocity 
field, the pressure field, and the free sur-
face) are functions of the independent 
variables and also of the parameters. In 
most cases, one (or more) of these param-
eters will be small (or large); indeed, 
the choice of scales is made—wherever 
possible—to ensure that this is the result 
of the nondimensionalization. The pro-
cedure is then to construct an asymp-
totic solution, using the small (or large) 
parameter as the basis for the asymptotic 
sequence that defines the asymptotic 
expansions. Of course, it is often the case 
that asymptotic solutions are not uni-
formly valid (i.e., the validity is not across 
the full time or spatial domain) and so a 
rescaling of the variables might be neces-
sary. A classic example in fluid mechan-
ics is the boundary-layer scaling near a 
fixed, solid boundary for large-Reynolds- 
number flows. (In the rare situation that 
the parameter we want to use is not small 
[or large], then the standard procedure 
is to construct, in the first instance, an 
asymptotic solution for small/large values 
of the parameter. This then presents an 
important role for a numerical approach: 
starting from the asymptotic solution, 
the method involves iteration, gradu-
ally increasing/decreasing the parame-
ter value.) One final general observation: 
most problems in oceanography involve 
more than one parameter, for exam-
ple, ocean depth/Earth radius, a rotation 
parameter, and, perhaps, wave amplitude/  
wavelength. All such parameters are nec-
essarily independent. The mathematically 
robust and consistent approach involves 
fixing all the parameters but one, and 
seeking an asymptotic solution based on 
just this one parameter. The procedure—
the result of a limiting process that 
underpins the construction of the asymp-
totic solution—is easily explained; we will 
describe what this involves and what pos-
sible pitfalls might be encountered.

As just mentioned, the simplest proce-
dure is to fix all the parameters but one, 
labeled, say, ε, and consider the prob-
lem of generating a solution valid for 

ε  0. The first important point to make 
is that the sizes of all the other (indepen-
dent) parameters are immaterial when 
we invoke ε  0: whether they are, typi-
cally, 10–5, 1, or 105, they remain fixed as 
the limit process ε  0 is imposed. The 
important outcome is that the sequence 
of reduced problems, generated by the 
limiting process, is physically mean-
ingful and mathematically accessible. 
The resulting solution so obtained is, 
by definition, asymptotic, and so it may 
not be convergent in the familiar sense. 
(This is not a serious drawback on two 
counts: the asymptotic approach aims 
to extract the mathematical structure of 
the problem—and it certainly does this—
and if numerical estimates are required, 
then the standard techniques applicable 
to the interpretation and use of divergent 
series can be employed; see, for example, 
Hardy, 1949, and Dingle, 1973.) The quite 
exceptional successes of this approach to 
the solution of complex problems, and 
especially those in fluid mechanics, are 
well documented; see, for example, Cole 
(1968), Van Dyke (1975), Chang and 
Howes (1984), D.R. Smith (1985), Hinch 
(1991), Holmes (1995), Kevorkian and 
Cole (1996), and R.S. Johnson (2004).

At this stage in the development of 
these ideas, we must present a fundamen-
tal principle that underpins any attempt 
to produce model equations. A system of 
model equations (for some phenomenon) 
is acceptable, we submit, only if it can be 
derived from some underlying equations 
or guiding principle. In some fields of 
study, we may have only general guide-
lines, but in others—and anything associ-
ated with the motion of fluids is certainly 
in this category—we have a set of over-
arching, governing equations. In this sit-
uation, any model equations, if they are to 
be reliable and to be believable, must be 
derived by following some precise math-
ematical procedure. Because we have 
parameters, and a necessary functional 
dependence on variables and parameters, 
the only convincing and robust way for-
ward is to produce an approximate sys-
tem, carefully constructed and consistent 

with all the equations and boundary con-
ditions. Any model equations that cannot 
be so constructed carry no weight, and 
deserve no consideration, and certainly 
any conclusions based on such equations 
must be treated with some skepticism.

APPLICATION TO OCEAN FLOWS
The development of the nondimensional 
form of the Navier-Stokes (or Euler) equa-
tion, written in a rotating, spherical coor-
dinate frame, follows the ideas outlined in 
the preceding section. This results in a sys-
tem of governing equations that involves 
a number of nondimensional parameters, 
typically: suitable ocean depth/Earth’s 
radius, rotation parameter (measuring the 
rate of Earth’s rotation), and two Reynolds 
numbers (based on a vertical and a hor-
izontal eddy viscosity). The boundary 
conditions might add to this a parame-
ter that measures the strength of the wind 
stress at the free surface, and initial data 
might add a parameter associated with the 
motion’s wavelength. The existence of a 
pycnocline/ thermocline also introduces a 
density-ratio parameter. This formulation 
and associated definitions lead to a num-
ber of side issues. 

Firstly, no matter what we choose as 
the ocean depth, the ratio of ocean depth 
to Earth’s radius is always very small, and 
this ratio is the fundamental parameter in 
this type of problem; let us label it ε. If we 
take an average ocean depth as, say, 4 km, 
then this parameter is about 6 × 10–4. On 
the other hand, it might be more appro-
priate to use the depth scale that pro-
duces a vertical-eddy-viscosity Reynolds 
number of 1 (which is relevant to Ekman 
flows, for example), and then we have 
ε ≈ 10–5. In this latter case, it follows that 
the other eddy viscosity (horizontal) gives 
(Reynolds number)–1  ε2; correspond-
ingly, for Ekman-flow problems, we must 
have (for consistency) a wind-stress forc-
ing that is independent of ε (recent work 
of author Johnson and A. Constantin). 
Another choice for the depth scale might 
be the average depth of a thermocline. 
Secondly, for small ε, consistency with 
the equation of mass conservation (and 
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also with the kinematic condition at the 
free surface) requires that the vertical 
component of the fluid velocity is propor-
tional to ε, or possibly smaller. (The case 
of a smaller velocity component arises in 
flows that are almost purely rotational, 
as in large ocean gyres, for example; see 
Constantin and Johnson, 2017b, and 
R.S. Johnson, 2017.) It turns out that these 
various problems—obviously simpler if 
we work with an inviscid fluid—can be 
solved to obtain relevant solutions simply 
by imposing the single asymptotic limit-
ing process: ε  0, keeping all the other 
parameters fixed. This is the shallow- 
water or thin- shell approximation.

Most importantly, we argue that there 
is no need to choose an “approximate” 
coordinate system (such as the tangent 
plane), nor to invoke any assumptions 
about the size of the other parameters 
(including the wavelength of any wave 
motions; see Constantin and Johnson, 
2015, and R.S. Johnson, 2015). Of course, 
there may be situations (for comparison 
with earlier work, for example) where a 
simplified coordinate system (perhaps 
in conjunction with the f- or β-plane 
approximation) is appropriate, but other-
wise we employ the techniques and ideas 
precisely as outlined above. Certainly, if 
an analysis based on the correct represen-
tation (rotating, spherical coordinates) of 
the equations of fluid mechanics is possi-
ble, then this should always be the start-
ing point. If this fails to produce reason-
able or suitable solutions, then we might 
revert to some appropriate (ad hoc) mod-
eling or numerical method; we will write 
more on this later.

Finally, the fundamental approxi-
mation (ε  0) that we advocate (and 
the only necessary one, although we 
might find additional ones useful in 
order to simplify some of the calcula-
tions) is particularly significant. All the 
coefficients in the governing equations 
(and boundary conditions) that depend 
on r' (the radial coordinate; see below) 
become polynomial approximations for 
small ε, and these terms remain strictly 
bounded: the asymptotic expansions are 

uniformly valid. However, each deriv-
ative in r' becomes proportional to ε–1 
and this has important consequences for 
the structure of the problem. For exam-
ple, it shows that the variation in pres-
sure in the radial direction is proportional 
to ε—a familiar hallmark of the shallow- 
water approximation—and this property 
controls the types of solutions that are 
available and admissible. Although the 
small-ε asymptotic approximation plays 
a very important role, we still retain the 
essential geometry of the problem (i.e., as 
a spherical shell) with variations in both 
the azimuthal and meridional directions. 
An important corollary of this approach 
is that there is usually no need to impose 
any further simplifications or restrictions 
on the underlying geometric structure 
that describes oceanic flows. With all of 
these background ideas in place, we now 
present a few examples, but described 
in outline only, avoiding any of the 
technical detail. 

EXAMPLES OF OCEANIC FLOWS
We will examine three very different 
types of flow problems, with the intention 
of showing how the standard approach 
in fluid mechanics is readily applicable 
to different flow configurations; indeed, 

this is one of the great strengths of the 
application of such conventional meth-
ods. In summary, we will look at a three- 
dimensional flow of the type observed 
in the neighborhood of the Equatorial 
Undercurrent (EUC), two exact (but 
rather special) solutions that are 
related to the EUC and to the Antarctic 
Circumpolar Current (ACC), and a rep-
resentation of large gyres. In these exam-
ples, we present the simplest description 
by working solely from the Euler equa-
tion; we will briefly mention, later, some 
more recent work based on the Navier-
Stokes equation. Because we will need 
to refer to the coordinates, we start with 
a defining figure: the spherical coordi-
nate system (Figure 1). Thus, we have the 
radial coordinate, r' (the prime denoting 
a physical—dimensional—variable), ϕ 
the azimuthal angle, and θ the meridio-
nal angle (measured from the South Pole, 
at θ = 0, to the North Pole at θ = π). 

Example 1
The first example (the three-dimensional 
EUC) is intended to show how the stan-
dard approach used in fluid mechan-
ics can extend a fairly familiar model 
problem: the EUC described within the 
β-plane approximation. In this case, we 

FIGURE 1. The spherical coordinate system. Earth 
rotates about the north-south axis from west to east.
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take as the small parameter the ratio of the depth scale (a 
typical depth of the thermocline) to the length scale over 
which variations occur in the azimuthal direction. Thus, we 
are examining the problem of “slow” variation in the equato-
rial direction (labeled x here), with a limited region of valid-
ity either side of the equator (by virtue of the β-plane approx-
imation). The corresponding leading-order problem (of 
what turns out to be a uniformly valid asymptotic solution) 
is still fairly involved, although it is not impossible to ana-
lyze it. However, its complications tend to obscure the essen-
tial properties of the flow, and so some (reasonable) simpli-
fying assumptions are introduced, including the choice that 
the free surface and the thermocline both follow the curva-
ture of Earth away from the line of the equator, there is small 
density change across the thermocline (which is always the 
case), and there is a (relatively) weak rotation rate for Earth’s 
spin; for more details, see Constantin and Johnson (2017a) 
and R.S. Johnson (2017). Surprisingly, even with these sim-
plifications, the remaining system of equations allows a lot of 
choice, producing many different types of three-dimensional 
flow patterns in the regions close to, and either side of, the 
line of the equator. In particular, we may choose the velocity 
profile from the surface downward, and so we can accommo-
date the westward flow near the surface and a higher-speed 
flow deeper down, centered more or less at the level of the 
thermocline, moving eastward (modeling the observed prop-
erties of the EUC); see the sketch in Figure 2. In addition, we 
may choose the path of maximum speed in the undercurrent 
(to the east), and also adjust the various parameters and free 
constants to produce any number of cells on either side of the 
line of the equator. Figure 3 shows an example of the result-
ing three-dimensional flow, and Figure 4 shows an example 
of the path of the thermocline, from west to east. (A related 
problem, based on the f-plane approximation, analyzes the 
properties of linear waves of arbitrary wavelength on the 
EUC; see Constantin and Johnson, 2015, and R.S. Johnson, 
2017.) This three-dimensional solution cannot, as it stands, 
accommodate the inclusion of the landmasses at the eastern 
and western ends of the Pacific equator; this would involve, 
we suggest, some form of boundary layer near these ends. 
Furthermore, because this solution has been generated in the 
β-plane approximation, we are unable to close the cells at any 
considerable distance away from the line of the equator.

Example 2
As is sometimes the case, the construction of an asymptotic 
solution indicates the existence of exact solutions; that is 
what occurred here. We should comment that exact solutions 
in fluid mechanics, although of quite exceptional usefulness 
when the basis for further development, relate to very spe-
cial (and very idealized) flows. We describe two examples of 
exact solutions of the original, governing equations (inviscid 

FIGURE 3. Plots depicting the three-dimensional nature of the flow field. 
The thick vertical line is the equator; to the left of this is the chosen veloc-
ity profile; to the right (repeated to the left in the flow field) are the stream-
lines for a three-cell solution projected on to the y-ζ plane. The arrows 
denote the direction of the flow; the resulting flow is a combination of 
these two elements.

FIGURE 4. The chosen path of the maximum azimuthal speed (green) 
and the resulting path of the thermocline (magenta). The x-axis is the free 
surface, plotted from west (x = 0) to east (x = 1).

FIGURE 2. Sketch of the flow in the neighborhood of the Pacific equator. 
EUC = Equatorial Undercurrent.
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version); in these two cases we can allow any physically realistic velocity 
profile, varying with depth, and also an appropriate surface pressure dis-
tribution that can be adjusted to accommodate any suitable surface profile.

In the first case, which is driven by the usual body force (gravity), we 
have a vertical velocity component w' that takes the form w' = F(r' sin θ) 
for the arbitrary function F. We can therefore choose F so that the pro-
file corresponds to that observed in the EUC (and so this would be a solu-
tion appropriate near the equator); an example is shown in Figure 5. Of 
course, such an exact solution relates to a flow that moves around the whole 
globe (with unchanging form), and to embed this solution within the flows 
observed on Earth we would need to add some transition regions to allow 
the landmasses at the ends of the Pacific equator. (More details are given in 
Constantin and Johnson, 2016b, and R.S. Johnson, 2017.)

In the second example of an exact solution, we apply the general approach 
(as above for the EUC) to the ACC (Figure 6); this case is, however, differ-
ent in a number of respects. This flow encircles the globe around the polar 
axis—the only flow of this type that does—but it also comprises a small 
number of high-speed jets (see, e.g., Ivchenko and Richards, 1996; Rintoul 
et al., 2001; Olbers et al., 2004; Firing et al., 2011). A jet of restricted (but 
arbitrary) meridional extent, with a profile that decays with depth, is possi-
ble only if the body force is nonconservative (Gallego et al., 2004; K.S. Smith 
and Marshall, 2009; Stewart et al., 2014); a conservative body force can 
never produce a physically realistic solution. Figure 7 shows a typical veloc-
ity profile, which has been constructed by making a suitable choice of the 
surface profile and of the (nonconservative) body force; see Constantin and 
Johnson (2016c), R.S. Johnson (2017).

Example 3
Our final example, and arguably the most exciting and successful to date, 
is the construction of solutions of the full Euler system that corresponds 
to large gyres as observed in our ocean. Only one overarching assumption 
is required: the shallow-water (thin-shell) approximation. However, asso-
ciated with this assumption, and a choice available to us, is the require-
ment that the flow (at leading order as ε  0) be purely rotational, imply-
ing that the vertical velocity component is smaller than O(ε). In addition, 
the small (O(ε)) derivative of the pressure in the vertical direction pro-
duces (again, at leading order) no variation of pressure in this direction. 
The resulting reduced (steady) problem is fully nonlinear, and retains all 
the Coriolis terms; complete analytical solutions of this new system can be 
constructed (Constantin and Johnson, 2017b; R.S. Johnson, 2017). There is 
sufficient freedom in the solutions to admit rotational flows (gyres) that sit 
in either hemisphere and possess bounding streamlines, outside which we 
may impose zero motion. These flows exist in the spherical shell on the sur-
face of a rotating Earth; we show two examples in Figure 8.

FURTHER AND FUTURE DEVELOPMENTS 
The ideas and examples presented here, based on the general, governing 
equations of fluid mechanics, show what is possible using classical meth-
ods. It is, we suggest, quite surprising (and gratifying) that so much can be 
achieved using this well-tried approach, even for complicated flows of the 
type observed in our ocean. This evidence would suggest that our original 
claim carries some weight: to treat these oceanic problems as exercises in 

FIGURE 5. A schematic of an EUC-type velocity profile 
at the equator in an ocean on a rotating Earth.

FIGURE 6. Sketch indicating the path of the Antarctic 
Circumpolar Current.

FIGURE 7. Two views of the same exact solution 
of a jet-like velocity profile (drawn in the Southern 
Hemisphere) and represented as a surface. The near-
est edges are the zeros on the bottom (which follows 
Earth’s curvature) and along the outer edges of the jet; 
the flow at the surface is chosen as a parabolic-like 
profile with the maximum speed at the center.
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classical fluid mechanics before resorting 
to modeling or the application of numer-
ical methods. In particular, we described 
how the standard asymptotic approach, 
used in conjunction with the Euler equa-
tion, has produced solutions that relate to 
the EUC (both a three-dimensional struc-
ture and an exact solution for the velocity 
profile), an exact solution for an ACC jet-
like flow, and gyres of any size sitting on 
a rotating sphere. Further, these solutions 
appear to be new and certainly add to our 
knowledge of these flow fields. We also 
note that these problems have been solved 
by constructing a reduced system (which 
is strictly asymptotic) from the original 
equations; indeed, higher approximations 
are readily accessible, if they are required. 
There can be no doubt that other solu-
tions, describing various types of oceanic 
phenomena, are readily accessible by fol-
lowing the same general route. (Indeed, 
some current work involves using the 
Navier-Stokes equation to examine the 
role of viscosity in large gyres, and also 
to obtain more general solutions, with a 
coherent and consistent description, of 
Ekman-type; three-dimensional flows of 
EUC-type are being reconsidered with-
out recourse to the β-plane approxima-
tion.) The important question, though, 
is how we can build on these solutions, 
and so extend their applicability and rele-
vance to oceanic flows.

The inclusion of some additional 
effects, such as variable depth or den-
sity variations, are fairly easily accom-
plished by invoking multiple-scale meth-
ods (i.e., allowing these changes to 
evolve on some appropriate slow scale). 
This technique is particularly useful in 
extending the applicability and relevance 
of exact solutions. In the case of a more 
rapid change in depth, for example, we 
have a natural opening for a numerical 
approach: start with the multiple-scale 
(asymptotic) solution and then grad-
ually adjust (iterate) to accommodate 
more rapid changes. Thermoclines pres-
ent no difficulties, as they can be included 
in the type of formulation already men-
tioned (see, e.g., Constantin and Johnson, 
2015; R.S. Johnson, 2017). Wind-driven 
waves, on the other hand, generally 
require a broader approach. This is the 
type of problem where an element of 
modeling is very useful—possibly essen-
tial. The mechanisms for the action of 
the wind come in many different forms, 
although for a classical viscous fluid we 
could simply be given a surface shear 
stress. This, however, may not satisfac-
torily describe the transfer of energy to 
the water: we may wish to represent the 
complexity of this (turbulent) motion by 
a suitable model that describes the pro-
cesses involved. Furthermore, the inclu-
sion of variable eddy viscosities should 

not prove too difficult, possibly using 
multiple scales again. All the above—
and no doubt others could be added to 
the list—either use the conventional flu-
ids approach directly (invoking multiple 
scales as expedient) or incorporate some 
element of modeling. It is clear that this 
approach never starts from a set of model 
equations. At most we have a reduced 
system that has been derived from, and is 
consistent with, a set of general, govern-
ing equations.

The analytical (asymptotic) ideas, 
including the method of multiple scales, 
are very useful and very powerful (and 
also very reliable and robust), but they 
struggle if many different additional ele-
ments are brought together. When one or 
two are included, we can expect to obtain 
detailed analytical results, but if more are 
added, then a numerical approach (direct 
integration or simulation), guided by a 
combination of these results, might give 
a broader and more comprehensive solu-
tion of complex oceanic flows.

In conclusion, we have attempted to 
make a case for using classical and con-
ventional fluid mechanics to a far greater 
extent than appears to be the case hith-
erto. Let us be clear: we do not advocate 
the rejection of modeling or numerical 
methods—that would be unthinkable—
but they should be relegated to a subsid-
iary role, following careful (and exten-
sive) analytical investigations. Analytical 
(asymptotic) methods should rightly 
be set aside if they do not generate use-
ful results, or because the mathemati-
cal technicalities are insurmountable, but 
the evidence presented here suggests that 
much can be done with them. Indeed, 
we have barely scratched the surface of 
what is possible: there will be many other 
oceanic flows that can be analyzed and 
described using classical fluid mechanics. 
The investigations are ongoing. 
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