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 APPLYING THE

STEREOGRAPHIC PROJECTION 
TO MODELING OF THE FLOW OF

THE ANTARCTIC CIRCUMPOLAR CURRENT

 By Susanna V. Haziot and Kateryna Marynets

SPECIAL ISSUE ON MATHEMATICAL ASPECTS OF PHYSICAL OCEANOGRAPHY

ABSTRACT. We discuss the use of stereographic projec-
tion for studying recent models of the flow of the Antarctic 
Circumpolar Current.

INTRODUCTION
For studies of large-scale oceanic flows, assuming a spherical 
Earth is appropriate because, while Earth’s shape is that of an 
oblate sphere with an equatorial bulge, the difference between 
the equatorial and polar radii (about 22 km out of 7,378 km) 
is irrelevant (Constantin, 2012; Wunsch, 2015; Henry, 2018). 
Nevertheless, the equations governing fluid flow on a rotating 
sphere present considerable mathematical challenges, partly 
arising from effects of Earth’s sphericity. For this reason, it is 
common in oceanographic studies to transform a specific geo-
physical flow problem into a simpler problem for planar flow, 
obtained from a suitable approximation. The commonly used 
approximations are the f-plane and β-plane approximations. If 
L is the length scale of the specific flow and R is Earth’s radius, 
the f-plane equations are derived from the limit L/R ®  0 in the 
equations governing rotating spherical coordinates (Navier-
Stokes equations if dissipative effects are accounted for and Euler 
equations for inviscid flows; see Grimshaw, 1975). The resulting 
equations are expressed in terms of Cartesian coordinates orig-
inating on Earth’s surface (tangent plane approximations), and 
all terms associated with Earth’s curvature are neglected. This 
makes the f-plane equation unsuitable for modeling large-scale 
ocean flows, so that the β-plane approximation is the basis for 
large-scale ocean dynamics. 

The core idea of the β-plane approximation goes back to heu-
ristic reasoning by Rossby (1939). Given that the average depth 
of the ocean is about 4 km, with the deepest point at 11 km in 

the Mariana Trench, Rossby argued that for a shallow fluid on a 
rotating sphere, only the local normal component of the angu-
lar velocity vector is relevant. Furthermore, if the scale of the 
motion is sufficiently small in the meridional direction, then 
the only effect of the sphericity to be retained is the variation 
of the normal component of the angular velocity with latitude 
(see the discussion in Drotos and Tel, 2015). These consider-
ations lead to the β-plane equations, valid under the assumption 
of flat-space geometry with a linearly latitude-dependent angu-
lar velocity component (see Vallis, 2006). Despite being widely 
used, the β-plane equations do not provide a consistent approx-
imation of the governing equations in non-equatorial regions 
(for a detailed discussion, see Dellar, 2011). Note that equato-
rial ocean dynamics exhibits features that are not encountered 
in mid-latitude flows or in flows at high latitudes. In particu-
lar, stratification is greater in equatorial regions than anywhere 
else in the ocean (Fedorov and Brown, 2009), and more impor-
tantly, the meridional component of the Coriolis force van-
ishes at the equator, implying that the equator works as a (ficti-
tious) natural boundary, facilitating azimuthal flow propagation 
(see the discussions in Johnson et  al., 2001; Constantin and 
Johnson, 2015, 2016a, 2017a; Henry, 2016). Thus, alternatives to 
the β-plane equations should be sought for studying large-scale 
non- equatorial ocean flows.

The Antarctic Circumpolar Current (ACC) is perhaps the 
most important flow of this type when considering global ocean 
circulation and global climate. The planet’s most powerful cur-
rent (Talley et al., 2011), the ACC isolates Antarctica from warm 
subtropical waters (see Figure 1). Situated roughly between 40°S 
and 60°S, the ACC is created by the action of very strong west-
erly winds combined with the Coriolis force. It transports about 
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140 million cubic meters of water per second, more than one 
hundred times the transport of all the world’s rivers combined, 
over a distance of about 24,000 km. While the ACC does not 
exhibit high current velocities (the average surface velocity is 
about 30–40 cm s−1 within the Subantarctic and Polar Fronts; 
e.g., Firing et al., 2011), the current extends to the ocean floor 
(varying between 2 km and 4 km depth), where occasional 
irregular topographical features deflect the course of the flow 
from its predominantly zonal characteristic. Being the major 
means of exchange of water between the Atlantic, Pacific, and 
Indian ocean basins, the ACC plays an important role in global 
climate (Herbei et al., 2009). 

Just as jet streams can form in atmospheric flows, oceanic 
flows are of sufficient spatial scale to spawn zonal jets (Sokolov 
and Rintoul, 2007). However, these jets are rare because land-
masses typically interrupt their continuity. The ACC, being 
unobstructed by any land, is an exception to this general pat-
tern. It is concentrated into several jets, typically about 40 km 
wide with speeds exceeding 1 m s–1, that are separated by low-
speed zones flowing at less than 20 cm s–1 (see the discussion 
in Constantin and Johnson, 2016b). As a measure of the might 
of the ACC flow, we note that in the southeast Atlantic Ocean, 
where the ACC meets the warm Agulhas current, it forces the 

Agulhas to retroflect (turn back on itself; see Figure 2) so that 
it becomes the Agulhas Return Current, rejoining the Indian 
Ocean. This occurs despite the fact that the Agulhas current, 
flowing down the east coast of Africa from about 27°S to 40°S, is 
one of the ocean’s strongest currents.

Due to the sheer size of the ACC, it is desirable to take the 
effects of Earth’s sphericity into account while deriving mod-
els for its flow. The fundamental problem of cartography is that 
no map from the sphere to the plane can accurately represent 
both angles and areas. In general, area-preserving map pro-
jections are preferred for statistical applications, while angle- 
preserving (conformal) map projections are preferred for nav-
igation. Stereographic projection falls into the second category 
and turns out to be quite useful for modeling ACC flow.
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FIGURE 1. Map showing the sea ice extent around Antarctica on 
September 26, 2012, when ice, typically 1–2 m thick, covered more of 
the Southern Ocean than usual; almost all of the sea ice formed during 
the Antarctic winter melts during the summer. Because the Antarctic 
Circumpolar Current (ACC) isolates Antarctica from warmer waters to the 
north, ice forms in a nearly symmetric circular pattern around the South 
Pole. Image credit: NASA Earth Observatory image by Jesse Allen, using 
DMPS SSMIS ice concentration data provided courtesy of the National 
Snow and Ice Data Center

FIGURE 2. Satellite photograph showing the ocean region around the 
southern tip of Africa. While individual phytoplankton are tiny, when they 
bloom by the billions, resulting high concentrations of chlorophyll and 
other light-catching pigments change the way the surface reflects light 
and enhance visualization of flow patterns. Here, abundant phytoplank-
ton help to delineate the current pattern in the region where the Agulhas 
current retroflection occurs—upon meeting the ACC, the Agulhas Current 
makes a nearly right-angled turn. These currents induce an upwelling of 
cold, nutrient-rich water from the deep, fertilizing the surface waters to 
create phytoplankton blooms in the open ocean, which is otherwise rel-
atively barren compared to coastal waters. Image credit: Provided by the 
SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
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STEREOGRAPHIC PROJECTION
Stereographic projection, the oldest form of map projection, 
dates to the second century BCE (the oldest known record is 
from Ptolemy about 150 CE). It represents Earth’s surface in two 
dimensions, which is projected from the observation point onto 
a plane parallel to the equatorial plane, typically the equatorial 
plane itself or a plane tangent to the sphere at the pole that is 
opposite to the pole from which the projection is done.

The benefits of stereographic projection are that Earth 
appears as if viewed from space and landmass shapes are gener-
ally well preserved, although extreme distortions occur toward 
the edge of the image created (Figure 3). Stereographic pro-
jection is particularly useful for plotting angular relationships 
because great circles are always arcs of circles and are easily con-
structed. Note that the lines of longitude and latitude are always 
orthogonal. When the projection is centered at Earth’s North or 
South Pole, as is commonly the case, stereographic projection 
has additional desirable properties: meridians emanate in rays 
from the pole and in circles parallel to the pole, thus facilitating 
the mapping of astronomical observations. However, because 
the projection originates from the South or the North Pole, it 
cannot represent the surface of that territory. For this reason, 
stereographic projection is typically used for specific regions but 
rarely for maps of the world (Phillips, 1960; Leyshon and Lisle, 
1996; Daners, 2012). 

Images captured by geostationary satellites are import-
ant examples of stereographic projections. These images are 

centered at a point S on the equator (rather than at one of the 
poles, as in the previous discussion) and mapped onto the plane 
tangent to Earth at the point S' on the equator, diametrically 
opposite S and located directly under the satellite. Geostationary 
satellites orbit Earth eastward above the equator at an altitude 
of about 35,790 km, so that their period equals the period of 
Earth’s rotation. Thus, the satellite remains stationary above one 
point of the equator relative to Earth. Such a satellite is capa-
ble of scanning Earth up to 70° of latitude or longitude in each 
direction from the point S', making regular sequential observa-
tions in the form of stereographic images. The imaging occurs in 
the visible and infrared parts of the light spectrum, commonly at 
resolutions of 1 km and 4 km, respectively. Among other appli-
cations, these satellites are used to monitor sensitive changes to 
ocean environments.

An alternative to stereographic projection is the Mercator 
projection (Figure 4). This projection, originating from the 
Flemish cartographer Gerardus Mercator in 1569, is the most 
used map in the world. It projects Earth from a sphere onto a 
plane. This projection has certain key characteristics: it pre-
serves angles (hence, it is conformal), the north-south direction 
is the vertical direction, and the east-west direction is the hori-
zontal direction. It does not, however, preserve areas: as the lat-
itude increases from the equator, the size of objects is increas-
ingly distorted to finally reach infinite scale at the poles. As a 
result, the world is mapped into an infinitely tall rectangle with 
constant width (see Daners, 2012).

FIGURE 3. Stereographic projection of Earth from the South Pole to the 
plane tangent to the sphere at the North Pole. Increasing distance from 
the North Pole leads to increasing distortions, with the South Pole repre-
sented at an infinite distance Image source: https://en.wikipedia.org/wiki/
File:Stereographic_projection_SW.JPG#filelinks

FIGURE 4. Mercator projection map of Earth. Mercator distortions are 
illustrated by comparing the sizes of Australia and Greenland: Australia 
is actually more than three times the size of Greenland. Image source: 
https://commons.wikimedia.org/wiki/File:Mercator_projection_SW.jpg
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Stereographic projection of the unit sphere centered at origin, from the 
North Pole to the equatorial plane (Figure 5), is given by

 ξ = r ei φ with r = cot
(θ
2

)
=

sin θ

1− cos θ
, (1)

1
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 to the equator.
In contrast, the Mercator projection is what is known as a cylindrical 

projection (Figure 6): a point P on the sphere is projected onto a point 
P' on the cylinder tangential to the sphere at the equator. Upon unroll-
ing the cylinder, we then obtain a projection of the sphere onto the plane. 
This new plane has the equator as the x-axis and the central meridian as 
the y-axis, and all latitudes and longitudes are mapped onto the plane as 
straight lines parallel to the y- and to the x-axis, respectively (Figure 7). 
However, we want the map to be conformal, and therefore, we must have 
that the north-south distortion rate is the same as the east-west distor-
tion rate. Because the radius of every parallel is given by sin(θ), the cor-
responding parallel on the plane must be stretched by a factor of csc(θ). 
Consequently, we slide P' down the generator of the cylinder to the point 
P'' (Figure 6) with coordinates

x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

Note that y tends to infinity at the poles (see the discussion in Daners, 2012).

MODELS OF THE ACC FLOW
The main driving force behind surface currents in the ocean is wind. 
Other factors such as topography, density differences caused by tem-
perature and salinity variations, and the gravitational pull of the moon 
and sun also generate ocean currents. Horizontal currents represent the 
strongest large-scale ocean flows, and can have spatial scales of up to sev-
eral hundreds of kilometers and temporal scales of many weeks to years 
(see Talley et al., 2011). These currents are deflected by the Coriolis force 
due to Earth’s rotation, producing large-scale clockwise circular motions 
in the Northern Hemisphere and counterclockwise ones in the Southern 
Hemisphere. These large-scale circulating ocean currents form gyres that 
are found in every major ocean basin. Their movement drives what is 
referred to as the ocean conveyor belt, which in turn moves ocean water 
containing heat, chemicals, and nutrients around the planet.

Constantin and Johnson (2017b) derive a model for gyre flows in spheri-
cal coordinates by taking advantage of one of the fundamental properties of 
large-scale ocean flows: their vertical velocities are negligible with respect 
to the horizontal ones, being smaller by a factor of about 104. Because the 
ACC is a large-scale ocean current that makes a full circle around the globe, 
and the above property also applies, we study it by adapting its setting to the 
aforementioned approach in rotating spherical coordinates.

Consider spherical coordinates as in Figure 5, with θ Î  [0, π) the polar 
angle and φ Î  [0, 2π) the angle of longitude. In terms of the stream func-
tion ψ (θ, φ), a horizontal ocean flow on the spherical Earth has azimuthal 
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Figure 5: The stereographic projection of the unit
sphere from the North Pole to the equatorial

plane.
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Figure 6: Mercator projection: the point P on the
sphere is projected onto a point P′ on the cylinder
tangential to the sphere, that in turn slides down
the cylinder till P′′, the point at which the distor-
tion rate is equal in both directions.
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FIGURE 5. Stereographic projection of 
the unit sphere from the North Pole to the 
equatorial plane.

FIGURE 6. Mercator projection. The point 
P on the sphere is projected onto a point 
P' on the cylinder tangential to the sphere, 
that in turn slides down the cylinder to P'', 
the point at which the distortion rate is 
equal in both directions.

FIGURE 7. Unrolled cylinder.
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and polar velocity components given by
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By associating Ψ(θ, φ) with the vorticity of the ocean motion (as 
distinct from the Earth’s rotation), given by

 
ψ(θ, ϕ) = −ω cos θ +Ψ(θ, ϕ) , (3)

1
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where ω > 0 is the nondimensional form of the Coriolis parame-
ter, the governing equation for the horizontal flow on the sphere 
takes the form
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in which the term F (Ψ −ω cos θ) is the oceanic vorticity and 
2ω cos θ is the planetary vorticity generated by the rotating 
Earth (see Constantin and Johnson, 2017b). The (total) vortic-
ity of a geophysical fluid flow is the sum of the oceanic vorticity 
contribution F(Ψ − ω cos θ) and of the spin vorticity contribu-
tion 2ω cos θ, the oceanic vorticity F being typically one order 
of magnitude larger than ω > 0. While the planetary vorticity 
is prescribed, the oceanic vorticity depends on the type of geo-
physical flow that is under consideration, for example F 

The stereographic projection in the modeling of the flow of the
Antarctic Circumpolar Current

By associating Ψ(θ, ϕ) with the vorticity of the ocean
motion (not accounting for the effects of the Earth’s
rotation), given by

ψ(θ, ϕ) = −ω cos θ + Ψ(θ, ϕ) , (3)

where ω > 0 is the non-dimensional form of the Cori-
olis parameter, the governing equation for the hori-
zontal flow on the sphere takes the form

1
sin2 θ

Ψϕϕ + Ψθ cot θ + Ψθθ = F(Ψ − ω cos θ) , (4)

in which the term F(Ψ−ω cos θ) is the oceanic vortic-
ity, while 2ω cos θ is the planetary vorticity, generated
by the rotating Earth; see (Constantin and Johnson,
2017b). The (total) vorticity of a geophysical fluid
flow is the sum of the oceanic vorticity contribution,
F(Ψ − ω cos θ), and of the spin vorticity contribution
2ω cos θ, the oceanic vorticity F being typically one
order of magnitude larger than ω > 0. While the
planetary vorticity is prescribed, the oceanic vorticity
depends on the type of geophysical flow that is un-
der consideration, for example F ≡ 0 for irrotational
flow fields. The main sources of oceanic vorticity are
wind and the gravitational forces due to the relative
motions of the Moon, the Sun and the Earth, whose ef-
fects are noticeable in the form of tidal currents (flood
and ebb); see the discussions in (Constantin, 2011).
Both these types of oceanic vorticities can be modeled
as non-zero constants (Constantin et al., 2016; Silva
and Peregrine, 1988; Ewing, 1990), with constants that
may be positive or negative, depending on the preva-
lent wind direction, and, respectively, on whether the
flow is in an ebb or flood tidal mode. However, non-
constant oceanic vorticities are more realistic, even
if the mathematical complexity of the problem is in-
creased. Note that the strongest winds in the world
blow over the Southern Ocean, with the average wind
speed about 45 km/h. Therefore one expects wave-
current interactions in the Southern Ocean to give
rise to intricate wave patterns, some of which are not
fully elucidated; see the discussion in (Constantin
and Monismith, 2017). Also, in certain areas of the
Southern Ocean, for example at the southern tip of
Africa, monster waves with wave heights in excess of
35 m occur quite frequently; see (Walton, 2013). For
discussions of analytical aspects of waves propagat-
ing at the surface of water in a flow with underlying
non-uniform currents we refer to (Constantin et al.,
2016; Henry, 2013); see also (Silva and Peregrine, 1988;
Moreira and Chacaltana, 2015; Thomas, 1990) for nu-
merical simulations and (Constantin, 2011; Ewing,
1990) for field data. However, in the context of large-
scale ocean flows, these waves are of no significance,
given that the spatial scales that are involved are of
the order of 10 km or more.

The stereographical and Mercator projections per-
mit us to transform the model (4) for the horizontal
ocean flow in spherical coordinates into a planar el-

liptic partial differential equation with appropriate
boundary conditions.

3.1 Using the stereographic projection

The region of the Southern Ocean, where the
Antarctic Circumpolar Current (ACC) flows, is
mapped by the stereographic projection from the
North Pole into an annular region O of the equatorial
plane, given by

O = {(x, y) : r− < r =
√

x2 + y2 < r+} (5)

for suitable constants r1 and r2 with 0 < r− < r+ < 1,
since circles of latitude in the southern hemisphere
are mapped into concentric circles contained within
the unit circle of the equatorial plane.

The equation (4) is transformed into

ψξξ̄ + 2ω
1 − ξξ̄

(1 + ξξ̄)3 − F(ψ)
(1 + ξξ̄)2 = 0 ,

which, in terms of the Cartesian coordinates (x, y) in
the complex ξ-plane, is equivalent to the semilinear
elliptic equation

∆ψ + 8ω
1 − (x2 + y2)

(1 + x2 + y2)3 − 4F(ψ)
(1 + x2 + y2)2 = 0 , (6)

where ∆ = ∂2
x + ∂2

y is the Laplace operator. The hori-
zontal flow is determined in the new coordinates by
the solution to (6) inside the planar region delimited
by two level sets of the stream function, so that one
has to solve (6) in a planar region O with Dirichlet
boundary data.

A flow with no variation in the azimuthal direction,
a feature that the ACC presents at leading order, cor-
responds to a radially symmetric solution ψ = ψ(r)
of the problem (6). With

0 < t1 = − ln(r+) < t2 = − ln(r−) ,

the change of variables r = e−t/2 and

ψ(r) = u(t) , t1 < t < t2 , (7)

transforms the partial differential equation (6) to the
second-order ordinary differential equation

u′′(t)− et

(1 + et)2 F(u(t)) +
2ωet(1 − et)

(1 + et)3 = 0 (8)

for t1 < t < t2, with the associated boundary condi-
tions {

u(t1) = α1 ,
u(t2) = α2 , (9)

expresing the fact that r = r± are streamlines, with
ψ = α1 on r = r− and ψ = α2 on r = r+.

In the case of linear stream functions F one can ob-
tain some explicit solutions of the boundary–value
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 0 for 
irrotational flow fields. 

With exception of tidal currents (flood and ebb; see discus-
sion in Constantin, 2011), the main source of oceanic vorticity 
is the wind. Both these types of oceanic vorticities can be mod-
eled as non-zero constants (Da Silva and Peregrine, 1988; Ewing, 
1990; Constantin et al., 2016) that may be positive or negative, 
depending on the prevalent wind direction, and on whether 
the flow is in an ebb or flood tidal mode, respectively. However, 
nonconstant oceanic vorticities are more realistic, even if the 
mathematical complexity of the problem is increased. Note that 
the strongest average surface winds of any open ocean area in 
the world blow over the Southern Ocean, with an annual aver-
age wind speed of about 28–45 km h–1 (Yuan, 2004; Smith et 
al., 2018). Therefore, it is expected that surface wave-current 
interactions in the Southern Ocean will give rise to intricate 
wave patterns, some of which are not fully elucidated (see the 
discussion in Constantin and Monismith, 2017). Also, in cer-
tain areas of the Southern Ocean, for example, at the southern 
tip of Africa, wave heights in excess of 35 m occur quite fre-
quently (Walton, 2013). For discussions of analytical aspects of 
waves propagating at the surface of water in a flow with under-
lying non-uniform currents, see Henry (2013) and Constantin 
et  al., (2016); also see Da Silva and Peregrine (1988), Thomas 
(1990), and Moreira and Chacaltana (2015) for numerical sim-
ulations, and Ewing (1990) and Constantin (2011) for field data. 
The stereographic and Mercator projections permit us to trans-
form the model (4) for the horizontal ocean flow in spherical 
coordinates into a planar elliptic partial differential equation 
with appropriate boundary conditions.

Using Stereographic Projection
The region of the Southern Ocean where the ACC flows is 
mapped by a stereographic projection from the North Pole into 
an annular region O = {(x, y) : r− < r =

√
x2 + y2 < r+} (5)

1

 of the equatorial plane, given by

 O = {(x, y) : r− < r =
√

x2 + y2 < r+} (5)

1
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for suitable constants r1 and r2 with 0 < r− < r+ < 1, because 
circles of latitude in the Southern Hemisphere are mapped 
into concentric circles contained within the unit circle of the 
equatorial plane.

Equation (4) is transformed into

ψξξ̄ + 2ω
1− ξξ̄

(1 + ξξ̄)3
− F (ψ)

(1 + ξξ̄)2
= 0 ,
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which, in terms of the Cartesian coordinates (x, y) in the com-
plex 
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-plane, is equivalent to the semilinear elliptic equation
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− 4F (ψ)
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where Δ = ∂2
x + ∂2

y is the Laplace operator. The horizontal flow 
is determined in the new coordinates by the solution to (6) 
inside the planar region delimited by two level sets of the stream 
function, so that (6) has to be solved in a planar region O with 
Dirichlet boundary data.

A flow with no variation in the azimuthal direction, a feature 
that the ACC presents at leading order, corresponds to a radially 
symmetric solution, ψ = ψ(r), of the problem (6). With

0 < t1 = − ln(r+) < t2 = − ln(r−) ,

1

the change of variables r = e–t/2 and

 
ψ(r) = u(t) , t1 < t < t2 , (7)

1

 
(7)

transforms the partial differential equation (6) to the second- 
order ordinary differential equation

 u′′(t)− et

(1 + et)2
F (u(t)) +

2ωet(1− et)

(1 + et)3
= 0 (8)

1

 (8)

for t1 < t < t2, with associated boundary conditions

 
{

u(t1) = α1 ,
u(t2) = α2 ,

(9)

1

 (9)

expressing the fact that r = r± are streamlines, with ψ = α1 on 
r = r− and ψ = α2 on r = r+.

In the case of linear stream functions F, some explicit solu-
tions of the boundary-value problem (8), (9) can be obtained; 
see (Marynets, 2017a; Marynets, 2017b). Some of these 
results follow.

For
 F(u, t) = p(t)u + q(t), (10)

where p, q : [t1, t2] ®  k ∈ R \ Z

1

 are continuous functions, the differen-
tial equation (8) can be written as
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u′′(t)− a(t)u(t) = b(t), t1 < t < t2 ,

u(t1) = α1 ,
u(t2) = α2 ,

(11)

1

 (11)

where

a(t) :=
p(t) et

(1 + et)2
, b(t) :=

q(t) et

(1 + et)2
− 2ωet(1− et)

(1 + et)3

1

for t Î  [t1, t2].
The boundary-value problem (11) has a unique solution if and 

only if the associated homogeneous boundary-value problem,

 

{
u′′(t)− a(t)u(t) = 0, t1 < t < t2 ,

u(t1) = u(t2) = 0,
(12)

1

 (12)

has only a trivial solution. Indeed, if {u1(t), u2(t)}tÎ [t1, t2] is a fun-
damental system of solutions of the second-order differential 
equation in (12), and if u0(t) is a particular solution of the differ-
ential equation in (11), then the general solution of the differen-
tial equation in (11) has the form

 
u(t) = u0(t) + c1u1(t) + c2u2(t), (13)

1

 
(13)

t Î  [t1, t2], for some constants c1, c2 Î  k ∈ R \ Z

1

. Using this general 
result, we consider some examples:

EXAMPLE 1
If F 

The stereographic projection in the modeling of the flow of the
Antarctic Circumpolar Current

By associating Ψ(θ, ϕ) with the vorticity of the ocean
motion (not accounting for the effects of the Earth’s
rotation), given by

ψ(θ, ϕ) = −ω cos θ + Ψ(θ, ϕ) , (3)

where ω > 0 is the non-dimensional form of the Cori-
olis parameter, the governing equation for the hori-
zontal flow on the sphere takes the form

1
sin2 θ

Ψϕϕ + Ψθ cot θ + Ψθθ = F(Ψ − ω cos θ) , (4)

in which the term F(Ψ−ω cos θ) is the oceanic vortic-
ity, while 2ω cos θ is the planetary vorticity, generated
by the rotating Earth; see (Constantin and Johnson,
2017b). The (total) vorticity of a geophysical fluid
flow is the sum of the oceanic vorticity contribution,
F(Ψ − ω cos θ), and of the spin vorticity contribution
2ω cos θ, the oceanic vorticity F being typically one
order of magnitude larger than ω > 0. While the
planetary vorticity is prescribed, the oceanic vorticity
depends on the type of geophysical flow that is un-
der consideration, for example F ≡ 0 for irrotational
flow fields. The main sources of oceanic vorticity are
wind and the gravitational forces due to the relative
motions of the Moon, the Sun and the Earth, whose ef-
fects are noticeable in the form of tidal currents (flood
and ebb); see the discussions in (Constantin, 2011).
Both these types of oceanic vorticities can be modeled
as non-zero constants (Constantin et al., 2016; Silva
and Peregrine, 1988; Ewing, 1990), with constants that
may be positive or negative, depending on the preva-
lent wind direction, and, respectively, on whether the
flow is in an ebb or flood tidal mode. However, non-
constant oceanic vorticities are more realistic, even
if the mathematical complexity of the problem is in-
creased. Note that the strongest winds in the world
blow over the Southern Ocean, with the average wind
speed about 45 km/h. Therefore one expects wave-
current interactions in the Southern Ocean to give
rise to intricate wave patterns, some of which are not
fully elucidated; see the discussion in (Constantin
and Monismith, 2017). Also, in certain areas of the
Southern Ocean, for example at the southern tip of
Africa, monster waves with wave heights in excess of
35 m occur quite frequently; see (Walton, 2013). For
discussions of analytical aspects of waves propagat-
ing at the surface of water in a flow with underlying
non-uniform currents we refer to (Constantin et al.,
2016; Henry, 2013); see also (Silva and Peregrine, 1988;
Moreira and Chacaltana, 2015; Thomas, 1990) for nu-
merical simulations and (Constantin, 2011; Ewing,
1990) for field data. However, in the context of large-
scale ocean flows, these waves are of no significance,
given that the spatial scales that are involved are of
the order of 10 km or more.

The stereographical and Mercator projections per-
mit us to transform the model (4) for the horizontal
ocean flow in spherical coordinates into a planar el-

liptic partial differential equation with appropriate
boundary conditions.

3.1 Using the stereographic projection

The region of the Southern Ocean, where the
Antarctic Circumpolar Current (ACC) flows, is
mapped by the stereographic projection from the
North Pole into an annular region O of the equatorial
plane, given by

O = {(x, y) : r− < r =
√

x2 + y2 < r+} (5)

for suitable constants r1 and r2 with 0 < r− < r+ < 1,
since circles of latitude in the southern hemisphere
are mapped into concentric circles contained within
the unit circle of the equatorial plane.

The equation (4) is transformed into

ψξξ̄ + 2ω
1 − ξξ̄

(1 + ξξ̄)3 − F(ψ)
(1 + ξξ̄)2 = 0 ,

which, in terms of the Cartesian coordinates (x, y) in
the complex ξ-plane, is equivalent to the semilinear
elliptic equation

∆ψ + 8ω
1 − (x2 + y2)

(1 + x2 + y2)3 − 4F(ψ)
(1 + x2 + y2)2 = 0 , (6)

where ∆ = ∂2
x + ∂2

y is the Laplace operator. The hori-
zontal flow is determined in the new coordinates by
the solution to (6) inside the planar region delimited
by two level sets of the stream function, so that one
has to solve (6) in a planar region O with Dirichlet
boundary data.

A flow with no variation in the azimuthal direction,
a feature that the ACC presents at leading order, cor-
responds to a radially symmetric solution ψ = ψ(r)
of the problem (6). With

0 < t1 = − ln(r+) < t2 = − ln(r−) ,

the change of variables r = e−t/2 and

ψ(r) = u(t) , t1 < t < t2 , (7)

transforms the partial differential equation (6) to the
second-order ordinary differential equation

u′′(t)− et

(1 + et)2 F(u(t)) +
2ωet(1 − et)

(1 + et)3 = 0 (8)

for t1 < t < t2, with the associated boundary condi-
tions {

u(t1) = α1 ,
u(t2) = α2 , (9)

expresing the fact that r = r± are streamlines, with
ψ = α1 on r = r− and ψ = α2 on r = r+.

In the case of linear stream functions F one can ob-
tain some explicit solutions of the boundary–value
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 0, then the general solution (13) of the differential equation

u′′(t) +
2ωet(1− et)

(1 + et)3
= 0,

1

is given by the formula

u(t) = c1 + c2t+ ω tanh(t/2) + q ln(1 + et),

1

t Î  (t1, t2), where c1 and c2 are some suitably chosen constants 
that accommodate the two–point boundary conditions in (11).

EXAMPLE 2
For F(u) = −2u, the differential equation has the form of

u′′ +
2et

(1 + et)2
u+

2ωet(1− et)

(1 + et)3
= 0,

1

and the explicit solution is given by expression

u(t) =
2ω

3
tanh(t/2) ln[cosh(t/2)]

+ c1 tanh(t/2) + c2

(
2− t tanh(t/2)

)

1

for which the constants c1 and c2 are chosen to accommodate the 
two boundary conditions in (11).

We also observe that since (1) yields

u′(t) = −1

2
r ψr = −1

2
ψθ sin θ ,

1

and sin θ Î  (0, 1) throughout the Southern Ocean, (2) shows 

that the flow in a jet component of the ACC, between the par-
allels of latitude defined by an appropriate choice of r± Î  (0, 1), 
is modeled by coupling the differential equation (8) with the 
boundary conditions

 u′(t1) = u′(t2) = 0 . (14)

1

 
(14)

which express the fact that there is no flow across the bound-
ary of the jet. The boundary value problem (8)–(14) is therefore 
a model for a jet component of the ACC (see Marynets, 2017c).

Using the Mercator Projection
In this section, in order for our final partial differential equa-
tion to be easier to work with, rather than projecting our gov-
erning equation onto the sphere using the Mercator projection 
as described in the Stereographic Projection section, we instead 
map the latitudes onto the x-axis and the longitude onto the 
y-axis. In other words, we use the change of variables,

 x = − ln

[
tan

(
θ

2

)]
, y = ϕ , (15)

1

 (15)

so that our rectangle, which is now rotated by 90°, is infinite in 
the x-axis with constant width of 2π in the y-axis. As a result, 
the North Pole (θ = 0) corresponds to x = −∞ and the equator 
(θ = x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

) to x = 0.
Using the change of variables (15), x is positive in the Southern 

Hemisphere, with

cos(θ) = tanh(x), sin(θ) = cosh−1(x) .

1

Setting
u(x, y) = ψ(θ, ϕ),

1

we can then rewrite the governing equation (4) as the following 
semilinear elliptic partial differential equation

 �u(x, y) =
F (u(x, y))

cosh2(x)
+ 2ω

sinh(x)

cosh3(x)
. (16)

1

 (16)

Because the ACC is situated between the 40th and 60th parallels, 
which we can denote by θ1 and θ2, we obtain the following two-
point boundary conditions:

 
u(x1, y) = u1(y), x = x1 > 0 , (17)

u(x2, y) = u2(y), x = x2 > 0 , (18)

1

 
(17)

 

u(x1, y) = u1(y), x = x1 > 0 , (17)

u(x2, y) = u2(y), x = x2 > 0 , (18)

1

 
(18)

given that the boundary of the relevant region on the sphere 
corresponds to the parallels θ1 = 2 arctan(e–x1) Î  (x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

, π) and 
θ2 = 2 arctan(e−x2) Î  (x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

x = φ, y = ln

[
tan

(
π

2
− θ

2

)]
.

1

, π) situated in the Southern Hemisphere 
(see Figure 8).

For constant and linear oceanic vorticities, setting F(u) = γ 
and F(u) = au + b with γ, a, b Î  k ∈ R \ Z

1

, respectively, we can use a 
variational approach to study (16). Let us denote our domain 
[x1, x2] × [0, 2π) in the plane by Ω. Existence of weak solutions 
to (16) on Ω can be shown using the Lax-Milgram theorem, and 
regularity is then recovered using the regularity theorems for 
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elliptic partial differential equations (see Brezis, 2010). In par-
ticular, because f(x) := 2ω sinh(x)

cosh3(x)
∈ C∞(Ω)

1

, the solution u is 
smooth. Using the maximum principle for elliptic partial dif-
ferential equations, uniqueness of solutions to (16) can then be 
recovered, except in the linear case for certain specific negative 
a Î  k ∈ R \ Z

1

 (for details, see Haziot, in press).
Because u is periodic in the y-variable, we can expand u 

as a Fourier series in y with coefficients that depend on the 
x-variable. For linear F, using the method of separation of vari-
ables, the linear elliptic partial differential equation reduces to 
an infinite number of boundary-value problems for second- 
order ordinary differential equations. These in turn can then be 
solved to obtain explicit solutions for special oceanic vorticities 
(see Haziot, in press).

For example, for constant vorticity of the form F(u) = γ, 
with γ Î  k ∈ R \ Z

1

,

u(x, y) =
∑

k∈Z,k≤−2

αke
ikyek(x0−x) +

∑
k∈Z,k≥2

αke
ikyek(x−x0)

+ γ[x+ ln(2 cosh(x))]− ω[1 + tanh(x)]

1

u(x, y) =
∑

k∈Z,k≤−2

αke
ikyek(x0−x) +

∑
k∈Z,k≥2

αke
ikyek(x−x0)

+ γ[x+ ln(2 cosh(x))]− ω[1 + tanh(x)]

1

is a general solution to (16) with boundary conditions (17) and 
(18).There are no solutions for α1 ≠ 0 or for α–1 ≠ 0, the modes 
k = ±1 being resonant.

For linear vorticities of the form F(u) = au + b, with 
a = −l(l + 1), l Î  k ∈ R \ Z

1

 and b Î  k ∈ R \ Z

1

,

u(x, y) =
∑

k∈Z∗, |k|≤l

αk[P
k
l (tanh(x0))]

−1P k
l (tanh(x))e

iky

+ b[x+ ln(2 cosh(x))]− ω[1 + tanh(x)]

1

u(x, y) =
∑

k∈Z∗, |k|≤l

αk[P
k
l (tanh(x0))]

−1P k
l (tanh(x))e

iky

+ b[x+ ln(2 cosh(x))]− ω[1 + tanh(x)]

1

is the general solution to (16) with boundary conditions (17) 
and (18) where Pk

l (z) is known as the associated Legendre 
function for k Î  k ∈ R \ Z

1

\k ∈ R \ Z

1

 and the associated Legendre polynomi-
als for k Î  k ∈ R \ Z

1

. For more details on these special functions, see 
Abramowitz and Stegun (1964) and G. Andrews (1999).

CONCLUSIONS
We showed that the stereographic projection and the Mercator 
projection can be applied to study the ACC flow in spherical 
coordinates. Using these projections leads us to simple ACC 
models in the form of specific planar boundary-value problems 
for elliptic partial differential equations, which admit explicit 
solutions. The described procedure permits us to treat the ACC 
globally, taking into account the effects of Earth’s sphericity. By 
increasing the complexity of the model (e.g., by permitting azi-
muthal variations and by considering more intricate expres-
sions for the oceanic vorticity), the procedure implemented in 
this paper can incorporate details that increase accuracy. The 
main advantage is in the possibility of pursuing studies in flat-
space for large-scale phenomena on a rotating sphere without 
the restriction associated with the use of the f-plane approxima-
tion and overcoming the inconsistencies associated with the use 
of the β-plane approximation in non-equatorial regions. 
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