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On a Three-Dimensional Nonlinear Model 
of Pacific Equatorial Ocean Dynamics
VELOCITIES AND FLOW PATHS By Biswajit Basu

SPECIAL ISSUE ON MATHEMATICAL ASPECTS OF PHYSICAL OCEANOGRAPHY

ABSTRACT. We investigate the velocity field and the three-​
dimensional flow paths obtained from a recently developed 
three-dimensional, nonlinear model that can simulate observed 
features of the Pacific Equatorial Undercurrent. The sensitivity 
of the flow field and the paths to the undercurrent are examined. 
The flow paths or trajectories used in the model were obtained 
from the exact solution of the velocity field. Nonlinear, three-​
dimensional features that can be simulated by the model include 
upwelling/downwelling, cellular flow structures, divergence of 
flow from the equator and extra-equatorial flows, a subsurface 
ocean “bridge” in the equatorial direction, and sharp changes in 
the gradient of the flow path.

INTRODUCTION
Understanding of the Pacific Equatorial Undercurrent (EUC) 
is important because contributions to it from various sources 
profoundly influence the temperature, salinity, and nutri-
ent enrichment of the equatorial thermocline and impact bio-
logical productivity, atmospheric carbon exchange, and the 
El Niño-​Southern Oscillation. Known history of the EUC began 
in the 1950s with its first observations (Cromwell et al., 1954) 
and measurements (Knauss and King, 1958). McCreary (1981, 
1985) provided early models of the current, and among mapping 
studies, one worthy of mention is the Hawaii-to-Tahiti Shuttle 
Experiment (Wyrtki and Kilonsky, 1984) conducted as a part of 
the World Ocean Circulation Experiment. Investigations using 
global observational models suggest that the Pacific EUC will 
strengthen in the future (Drenkard and Karnaukas, 2014), and 
in turn is expected to impact equatorial ocean dynamics.

The EUC is the Pacific cold tongue’s major source of water 
in the eastern Pacific equatorial region (Wyrtki and Kilonsky, 
1984). It is also the primary supplier of the limiting nutrient 
iron, whose source is sediments from the continental shelf of 
Papua New Guinea (Rayn et  al., 2006). This supply of iron is 
vital to phytoplankton production that modulates CO2 fluxes in 
the equatorial Pacific and controls the export of carbon to the 

deep ocean (Feely et  al., 2006; Karnauskas and Cohen, 2012; 
Drenkard and Karnauskas, 2014).

The EUC has also been associated with long-term (decadal) 
climate variability. Extratropical sea surface temperature (SST) 
anomalies are transmitted to the tropics by way of intergyre 
exchange, reappearing along the equator after several years of 
incorporation into the EUC, and then resurfacing. Existence of 
a subsurface ocean “bridge” is a possible connection between the 
warm SST anomaly in the North Pacific during the early 1970s 
and the subsequent warm SST anomaly along the equator in the 
1980s. However, the possible contribution of low-latitude wind 
stresses to equatorial warming cannot be ignored (Schneider 
et al., 1999; Hazeleger et al., 2001).

Equatorial ocean dynamics has some striking features. Close 
to the equator, the meridional component of the Coriolis force is 
negligible, and it vanishes at the equator. This leads to the break-
down of geostrophy. The flow in this region is essentially driven 
by winds, the easterly trade winds in the Pacific and Atlantic, and 
the seasonally reversing monsoonal winds in the Indian Ocean 
(Talley et al., 2011). Equatorial ocean regions also exhibit pro-
nounced stratification, greater than anywhere else in the ocean 
(Fedorov and Brown, 2009). 

Subjects of undercurrent research include termination, source, 
divergence, and upwelling (Lukas, 1986; Tsuchiya et  al., 1989; 
Johnson et al., 2001), and undercurrent modeling has employed 
measurements and observations (McCreary, 1985; Vallis, 2006). 
The simplest model of the EUC is based on a homogeneous 
fluid subject to uniform westward stress at the surface. While 
this local model is unstratified, more realistic models that con-
sider the effects of stratification lead to layered models of under-
currents. Other nonlocal and physical models include a pressure 
head that is of extra-equatorial origin. Observations indicate 
that some of the water in the EUC flows from subtropical gyres. 
A two-layer inertial model of undercurrents can account for 
equatorial and extra-equatorial dynamics. Initial local theo-
ries of undercurrent formation proposed by Cromwell (1953) 
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were developed further by Stommel (1960), Veronis (1960), and 
Robinson (1966), and linear non-dissipative models followed 
(Gill, 1971, 1975; McKee, 1973). Subsequently, linear models 
were significantly extended to include the effects of continu-
ous stratification (McCreary, 1981), and some nonlinear mod-
els were also developed (Charney, 1960; McKee, 1973; Cane, 
1979a, 1979b). Inertial theories of Fofonoff and Montgomery 
(1955) were advanced by Pedlosky (1987), and McCreary and 
Lu (1994) reconciled the inertial approach with a local perspec-
tive that considered the EUC as part of a larger and more com-
plex subtropical current system that has both local and inertial 
effects. A complete model that captures the integrated dynamics, 
however, requires numerical computations. 

To capture the fine structure of the EUC, the basic varia-
tion with depth of its main azimuthal flow can be modeled in 
the spherical geometry of a rotating Earth (Constantin and 
Johnson, 2016). However, there are advantages to using the stan-
dard β-plane approximation. It permits capture of variations in 
the meridional direction (in particular, following Earth’s cur-
vature) that are not available within the f-plane approximation 
framework. (See Constantin and Johnson, 2015, for an overview 
of ocean dynamics in the equatorial Pacific in the f-plane set-
ting.) Without further approximations, explicit solutions to the 
nonlinear governing equations in the equatorial β-plane were 
recently obtained in the Lagrangian framework (Constantin, 
2012, 2014; Constantin and Germain, 2013; Henry, 2013, 2016). 
These solutions represent realistic flow only for the region near 
the surface or in the neighborhood of the thermocline. The 
model does not perform well within the entire vertical extent 
of the equatorial flow due to the limitations on the permissible 
underlying currents.

Constantin and Johnson (2017) proposed a model based on 
the fundamentals of fluid mechanics. This nonlinear, three- 
dimensional model, herein called the Constantin-Johnson 
model, is developed following a systematic approach that is 
mathematically consistent, captures the essential flow proper-
ties observed for the Pacific EUC, and avoids oversimplification. 
For example, the model accounts for the Coriolis effects due to 
Earth’s rotation and retains nontraditional terms arising in the 
formulation. The model is based on the assumption of slow evo-
lution of a two-layer flow in the equatorial direction, and suc-
cessfully provides asymptotic solutions.

This article has two goals. One is to study the sensitivity of the 
EUC model to oceanic flows. The other is to obtain and study 
Pacific EUC flow paths/trajectories based on the Constantin-
Johnson model by identifying the nonlinear three-dimensional 
nature of the flow, comparing the model with known observa-
tions, and exploring the unknowns. Past studies have used tra-
jectory analysis to look at various aspects of the Pacific EUC. A 
3.5-layer model was used to study the tropical cells and quanti-
tatively estimate the source of EUC waters (Lu et al., 1998). A 
relatively coarse resolution Oceanic General Circulation Model 

(OGCM) simulation was carried out to quantify local exchanges 
as the EUC flows from Indonesia to Peru (Blanke and Raynaud, 
1997). Other studies examined the mean-time composition of 
EUC waters (Goodman et  al., 2005; Grenier et  al., 2011) and 
variability in pathways of the Pacific EUC (Qin et  al., 2015). 
While increasing computing resources and parameterizing 
subgrid-​scale phenomena have resulted in more realistic simula-
tions, analytically tractable and mathematically consistent mod-
els such as the one proposed by Constantin and Johnson, arising 
out of and satisfying the fluid dynamics equations and princi-
ples, are valuable for providing insight into complex nonlinear 
phenomena. The Constantin-Johnson model has the potential to 
become an OGCM and to be integrated with other OGCMs for 
computational efficiency. 

This paper focuses on the Constantin-Johnson model and 
investigates one example from Constantin and Johnson (2017) 
in detail. The two EUC models considered here, polynomial 
and quadratic-quartic, both reasonably represent the EUC. The 
velocity field for the equatorial flow is computed for these two 
cases, and the results are compared to assess their sensitivity to 
the model. Three-dimensional flow paths are then derived from 
the velocity field, and computed trajectories or flow paths are 
examined to identify features and structures indicative of non-
linear three-dimensional flow.

RESULTS
Here, we investigate the Constantin-Johnson model. To express 
the governing equations, we chose a coordinate system that 
rotates with Earth, with the x– axis pointing toward the east, the 
y– axis pointing due north, and the z– axis pointing vertically 
upward (see Figure 1). This description of the coordinate system 
is, in fact, associated with tangent plane approximation and is 
also consistent with the β-plane approximation.

z̄

ȳ

x̄

N

S

FIGURE 1. The rotating frame of reference for Earth 
with the North Pole, South Pole, the equator, and 
the rotational axis around the pole indicated.
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In this coordinate system, the two set of governing equations 
(Euler and conservation) may be written as

Dū

Dt̄
+ 2Ω̄× ū = −1

ρ
∇̄p̄+ F̄ , ∇̄ · ū = 0 ,

1

Dū

Dt̄
+ 2Ω̄× ū = −1

ρ
∇̄p̄+ F̄ , ∇̄ · ū = 0 ,

1

Dū

Dt̄
+ 2Ω̄× ū = −1

ρ
∇̄p̄+ F̄ , ∇̄ · ū = 0 ,

1

where u– = (u–, v–, w–) is the velocity of the fluid at x– at time t–. The 
operator D /Dt– is the material derivative, the pressure is p–, the 
(constant) density is ρ–, and the body force is represented by F–. 
The angular velocity vector is Ω– = Ω– (0, cos θ, sin θ), describ-
ing Earth’s rotation, with |Ω– | = Ω– ≈ 7.29 × 10–5 rads–1 and θ the 
angle of latitude.

Preliminary Considerations
With a suitable nondimensionalization of the variables, we can 
write

x = (x̄, ȳ, z̄) = (̄Lx, l̄y, h̄z) ,

u = (ū, v̄, w̄) = Ū
(
u,

l̄

L̄
v,

h̄

L̄
w
)
,

1

We provide some guidelines on the size of some of the parame-
ters. The length is approximately 13 × 103 km, the depth to the 
bottom of the EUC is typically about 200 m, and the width is 
about 300 km. With these values, and a speed at the surface of 
U– = 0.5 m s–1, the nondimensional angular speed of Earth’s rota-
tion is ω = Ω– h

–
/U– ≈ 0.03. The choice of scale can be interpreted 

such that in the flow direction 0 ≤ x ≤ 1, with x = 0 correspond-
ing to the western end and x = 1 corresponding to the eastern 
end. The width is restricted to −y0 < y < y0 by virtue of β-plane 
approximation for a suitable finite value of y0.

A simplified three-dimensional nonlinear model is derived 
and a solution is proposed using a suitable approximation of the 
Coriolis term close to the equator, assuming slow variation of a 
two-layered flow along the equator and some appropriate sim-
plifying assumptions (Constantin and Johnson, 2017), such as:

1. 	Small r (thermocline [pycnocline] is a line of discontinuity 
in density; above the density is ρ0 and below the density is 
(1 + r)ρ0)

2. 	Free surface and thermocline sit on planes parallel to tan-
gent plane

3. 	Constant pressure on the surface along y = 0 
Importantly, the formulation considers all of the Coriolis con-
tributions associated with Earth’s rotation (see Constantin and 
Johnson, 2017, for more details on the model). Studies have 
indicated that ignoring nontraditional components of the 
Coriolis force influences equatorial ocean dynamics. Constantin 
and Johnson (2017) provide the solution of the nondimensional 
velocity field (v − w) for the fluid region:

{(x, ζ) : 0 < x < 1 , ζ0 < ζ = z − 1

2
y2 < 0}

1

with −y0 < y < y0. The solution of the velocity field (v, w) is 
dependent on the nature of velocity profile u or the background 
undercurrent. The models for background current are mostly 
based on observations and measurements. For the solution of 
the equations, we need to specify a profile for the undercurrent 

u. Following the proposal by Constantin and Johnson (2017) 
that mimics observations, we consider two EUC profiles for our 
investigations: quadratic-quartic and polynomial. The profiles 
extend down to zero and also have a second zero that replicates 
the switch from westward to eastward flow near the surface.

The expression for a quadratic-quartic profile can be written as

u(x, ζ) = U(x)− γ(x)[ζ + λ(x)]2 − δ(x)[ζ + λ(x)]4

1

for 0 ≥ ζ ≥ −µ(x)

1

 and
u(x, ζ) = 0 , −µ(x) > ζ ,

1

 for  u(x, ζ) = 0 , −µ(x) > ζ ,

1

while the expression for polynomial profile can be written as

u(x, ζ) = U(x)− γ(x)[ζ + λ(x)]2 − δ(x)[ζ + λ(x)]4

1

for 0 ≥ ζ ≥ −λ(x)

1

,

u(x, ζ) = U(x)− λ(x) , ζ ≥ −µ(x) ,

1

u(x, ζ) = U(x)− λ(x) , ζ ≥ −µ(x) ,

1

u(x, ζ) = U(x)− λ(x) , ζ ≥ −µ(x) ,

1

u(x, ζ) = U(x)− λ(x) , ζ ≥ −µ(x) ,

1

u(x, ζ) = U(x)− λ(x) , ζ ≥ −µ(x) ,

1

foru(x, ζ) = U(x)− λ(x) , ζ ≥ −µ(x) ,

1

and
u(x, ζ) = 0 , −µ(x) ≥ ζ ,

1

foru(x, ζ) = 0 , −µ(x) ≥ ζ ,

1

u(x, ζ) = 0 , −µ(x) ≥ ζ ,

1

u(x, ζ) = 0 , −µ(x) ≥ ζ ,

1

where

	 µ = λ+

√
− γ

2δ
+

√
U

δ
+

γ2

4δ2
(1)

1

	 (1)

and  λ(x) = 1− Λx

1

. We assume that

U > 0, γ > 0, δ > 0, µ > λ > 0 .

1

The uniform maximum azimuthal flow below the surface is 
located in −λ(x) > ζ ≥ −µ(x)

1

, and it is assumed that for the 
model the thermocline is situated somewhere within this maxi-
mum azimuthal flow region and not on its boundary.

A complete description of the three-dimensional flow paths 
requires the solution of the following differential equations 
simultaneously:

dx/dt = u , dy/dt = v , dz/dt = w

1

.

Transforming to the ζ = z − 1
2
y2

1

 variable on using ζ = z − 1
2
y2

1

, we have 
the following differential equations:

dx/dt = u , dy/dt = v , dζ/dt = w − v .

1

.

Numerical integration of the set of differential equations yields 
three-dimensional streamlines from the three-dimensional 
velocity field (u, v, w). Note that no approximation is made 
regarding small ω in this analysis.

Example
To carry out the numerical investigations, it is necessary to 
choose a specific setting with parameters appropriate to a Pacific 
EUC profile. For this purpose, we consider parameter settings 
from examples presented in Constantin and Johnson (2017). 
The value of ω is taken as 0.03 for numerical computations in 
this paper.

We use the parameters considered in Example 3 in Constantin 
and Johnson (2017). A linear function is used for γ0 given by

γ0 = A + Bx,
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with A = 0.03 and B = 2.4, approximating γ in Equation 1. We 
also set c0 = Û0 + V0 = 3

1

 = 2 as an approximation of U, and V0 = 1 leading to 
c0 = Û0 + V0 = 3

1

. The value of Λ is taken as 0.18. The function 
δ in Equation 1 is approximated by δ0, which is given by

δ0 = c0/λ
4(x)− γ0(x)/λ

2(x).

1

In a three-dimensional plot, Figure 2 shows the horizon-
tal velocity v and vertical velocity w in the (ζ − y) plane for the 
quadratic-quartic profile of the EUC for a point on the equa-
tor corresponding to x = 0.0 (i.e., at the western end). The vari-
ations of the velocity magnitude are plotted vertically as a func-
tion of depth function ζ and tangential distance due north from 
the equator y, at x = 0.0. As expected, the velocity field exhib-
its complex structures (see Constantin and Johnson, 2017). The 
horizontal velocity v changes sign from positive to negative 
near the surface, and then assumes a large positive value at an 
intermediate depth, followed again by a negative value prior to 
approaching zero deeper down. This fluctuating pattern, clearly 
evident in Figure 2a, is more pronounced away from the equa-
tor. Along the equatorial direction, there is relatively little varia-
tion in horizontal velocity. Figure 2b also shows the transforma-
tion of negative values of vertical velocity w near the surface to 
positive at intermediate depth, subsequently leading to negative 
values at greater depth. Local troughs and peaks in the vertical 

velocity profile increase away from the equator. Along the equa-
torial direction, the vertical velocity values take on a convex 
shape, with a maximum positive value at an intermediate depth 
and negative values both near the surface and deep down. These 
observations indicate the existence of cellular structures in the 
oceanic flow (Constantin and Johnson, 2017). To investigate the 
strength of the flow in the (ζ − y) domain, we plot the in-plane 
velocity amplitude maps (uin−amp =

√
v2 + w2

1

) on the (ζ − y) 
plane. Figure 3 portrays two clear regions of strong flow that are 
located away from the equator at intermediate depth.

To compare the results displayed in Figures 2 and 3 to the 
case where we consider the polynomial EUC profile, and to 
examine the sensitivity of the results to two different but rea-
sonable representations of EUC, similar results are plotted in 
Figures 4 and 5 for the polynomial EUC profile. Figures 4 and 5 
demonstrate that the type of EUC profile used affects the results. 
Figure 4 shows the horizontal velocity v and vertical velocity w 
for the polynomial profile of the EUC in a three-dimensional 
plot, as in Figure 2, for a point on the equator corresponding to 
x = 0.0 (i.e., at the western end). It is observed from Figure 4a 
that variation of the horizontal velocity v is less compared to that 
seen in Figure 2a, though the broad nature is somewhat sim-
ilar. Further, it is observed from Figure 4a that the horizontal 
velocities are predominantly negative. Again, as in Figure 2a, we 

FIGURE 2. (a) Horizontal velocity v, and (b) vertical velocity w for a 
quadratic-quartic profile of the Equatorial Undercurrent (EUC) at x = 0.0.

FIGURE 4. (a) Horizontal velocity v, and (b) vertical velocity w for a polyno-
mial profile of the EUC at x = 0.0.

FIGURE 3. In-plane velocity amplitude uin−amp map for a 
quadratic-quartic profile of the EUC for x = 0.0.

FIGURE 5. In-plane velocity amplitude uin−amp map for a 
polynomial profile of the EUC for x = 0.0.
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infer that fluctuations in horizontal velocities along the equa-
tor are marginal, as seen in Figure 4a. We also observe from 
Figure 4b that the vertical velocities are similar in nature to 
those in Figure 2b, with the exception that the vertical veloci-
ties at greater depth in Figure 4b tend to have negative values of 
higher magnitude. Not much difference is observed in the results 
between Figures 3 and 5, as both display two strong regions of 
flow away from the equator at intermediate depth.

Exercises leading to similar types of results as those in 
Figures 2–5 are produced in Figures 6–9. The results in 
Figures 6–9 correspond to a point along the equator at x = 0.25. 
Broad conclusions from Figures 6–9 derived from the analy-
sis remain unchanged with respect to what was inferred from 
Figures 2–5, though there are some minor differences. For 
example, the vertical velocities for the case of a polynomial 
profile of the EUC attain positive values deep down (around 
ζ ≈ −1.7 to −1.8; see Figure 8) in contrast to negative values for 
the case of a quadratic-quartic profile of the EUC (see Figure 6).

Next, we use the velocity field to compute the flow path or the 
trajectories. Because the EUC profile has some impact locally 
on the velocity (though the broad features of the velocity field 
are unchanged), we decide to use both EUC profiles once again. 
We consider the quadratic-quartic profile of the EUC first. 
The results for the three-dimensional flow paths are plotted in 

Figures 10–12 using the Eulerian velocities in three dimensions 
obtained previously and performing time integration. We stra-
tegically chose nine different initial points at the western end 
of the equator (i.e., x = 0.0). These nine points represent three 
groups. The first group chosen is representative of the flow 
originating near the surface, hence ζ = −0.1 (i.e., at a depth of 
20 m). The second, representing flows originating at intermedi-
ate depth, corresponds to ζ = −0.6 (i.e., at a depth of 120 m). The 
third group at ζ = −1.2 (i.e., at a depth of 240 m) initiates flow at 
greater depth. For each of the groups, the y positions of the ini-
tial points are chosen to be 0.0, 0.3, and 0.6 (i.e., at the equator, 
approximately 45 km away from the equator, and approximately 
90 km away from the equator, respectively).

Figure 10 is a plot of the three-dimensional flow paths from the 
three initial locations close to the surface (ζ = −0.1) on the (ζ − y) 
plane, corresponding to y = 0.0, 0.3, and 0.6, respectively. The 
figure clearly shows the complex three-dimensional nonlinear 
nature of the paths. Following an initial downward descent, there 
is a sudden ascent, which is subsequently followed by a sudden 
sharp drop. This happens around x = 0.3 for all the trajectories. 
The final phases of the trajectories are monotonically descend-
ing in nature, with a gentler slope. The trajectories provide evi-
dence of downwelling, in which waters originating at the western 
end of the EUC move to the eastern end in a downward-sloping 

FIGURE 6. (a) Horizontal velocity v, and (b) vertical velocity w for a 
quadratic-​quartic profile of the EUC at x = 0.25.

FIGURE 8. (a) Horizontal velocity v, and (b) vertical velocity w for a polyno-
mial profile of the EUC at x = 0.25.

FIGURE 7. In-plane velocity amplitude uin−amp map for a 
quadratic-​quartic profile of the EUC for x = 0.25.

FIGURE 9. In-plane velocity amplitude uin−amp map for a 
polynomial profile of the EUC for x = 0.25.



Oceanography |  Vol.31, No.356

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

−0.112

−0.108

−0.104

−0.100

x

y

ζ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.60.7
−0.115
−0.110
−0.105
−0.100

x

y

ζ

FIGURE 10. Three-dimensional flow paths for a quadratic-quartic EUC 
profile with paths initiating from points near the surface.

FIGURE 13. Three-dimensional flow paths for a polynomial EUC profile 
with paths initiating from points near the surface.

FIGURE 11. Three-dimensional flow paths for a quadratic-quartic EUC pro-
file with paths initiating from points at intermediate depths.

FIGURE 14. Three-dimensional flow paths for a polynomial EUC profile 
with paths initiating from points at intermediate depths.

FIGURE 12. Three-dimensional flow paths for a quadratic-quartic EUC 
profile with paths initiating from points at deeper locations.

FIGURE 15. Three-dimensional flow paths for a polynomial EUC profile 
with paths initiating from points at deeper locations.

direction. The paths initiated away from the equator also show 
some (though marginal) amount of flow toward the equator—
demonstrating real three-dimensional structures and confirming 
that the flow is forced toward the equatorial region.

The three flow paths originating from the (ζ − y) plane shown 
in Figure 11, corresponding to an intermediate depth of ζ = −0.6, 
portray the existence of a subsurface ocean “bridge” in the west-
to-east direction. This concept (Zhang et  al., 1998) has been 
used to explain the relationship between the North Pacific and 
the equator in terms of SST anomaly. In Figure 11, the source 
water from the western end of the Pacific travels downward 
before resurfacing at the eastern end. The trajectories in this fig-
ure have the tendency to move outward from the equator.

The extra-equatorial flow patterns produced in Figure 11 are 
amplified in Figure 12, where the originating points of the flow 
paths at the western end of the equator are located at a relatively 

greater depth of ζ = −1.2 and correspond to y = 0.0, 0.3, and 0.6. 
The presence of an extra-equatorial poleward flow path is evi-
dent. In fact, originating points farther from the equator show 
a greater amount of flow divergence from the equator. In addi-
tion, we find flows that originate deep down (240 m) at the west-
ern boundary of the equator move upward as they move toward 
the eastern boundary.

Figures 13–15 show results similar to those in Figures 10–12, 
but for the case of the polynomial EUC profile. The qualita-
tive results in these figures are close to the results observed in 
Figures 10–12. This is not unexpected as the velocity fields for 
the two cases of EUC profiles have similar broad natures though 
they differ in some details. This is translated in the results for 
flow paths. Hence, the trajectories in Figures 13–15 are similar to 
the trajectories in Figures 9–12, though there may be some vari-
ation in numerical details.
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CONCLUSION
The investigation carried out in this paper and analyses of the 
velocity field and flow paths have resulted in a number of obser-
vations and findings. Strong flow-field regions exist away from 
the equator at intermediate depths. Variations of the veloc-
ity amplitudes with depth or along the meridional direction 
are more pronounced away from the equator. Results are sim-
ilar for the two models of the EUC considered—though the 
details of the velocity profiles are model sensitive, their broad 
natures are unaffected by the EUC model used. For example, in 
the numerical investigation, the vertical velocity attains higher 
negative values at greater depth for the polynomial profile of the 
EUC, in contrast to the corresponding velocities obtained for 
the quadratic-quartic model. Analyses of the flow paths show 
sharp changes in their gradients. Another remarkable feature 
observed in this study is the presence of a subsea ocean bridge in 
the west-to-east direction. Extra-equatorial trajectories, forcing 
both toward the equator and poleward, have also been observed. 
In particular, poleward extra-equatorial flow paths originating 
from a deeper initial source at the western end of the equator 
are spectacular. All features of the flow path strongly reinforce 
the three-dimensional nonlinear nature of the flow, and demon-
strate that the Constantin-Johnson model is capable of mod-
eling these features, some of which are known from observa-
tions and some still possibly unknown. From this study we 
conclude that the Constantin-Johnson model for Pacific equa-
torial ocean dynamics shows promise, and with some further 
development, is a potential candidate to become an Oceanic 
General Circulation Model. 
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