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Projections of Future Sea Level 
Contributions from the Greenland 

and Antarctic Ice Sheets
CHALLENGES BEYOND DYNAMICAL ICE SHEET MODELING

ABSTRACT. As Earth’s climate warms, rising sea levels are becoming a great concern. 
Providing substantiated and well-informed guidance on the amount and rate of future 
sea level rise is important, but remains challenging. Observations of the Greenland and 
Antarctic Ice Sheets—Earth’s largest freshwater reservoirs—reveal their ongoing, rapid, 
and complex changes in response to an evolving climate. The improved understanding 
of ice sheet behavior resulting from observations is driving the development of ice sheet 
models, and is allowing better simulation of past, present, and future ice sheet evolu-
tion. However, insight into future changes requires a better understanding of how ice 
sheets interact with other components of the Earth system and associated feedbacks. As 
climate models start to include dynamical ice sheet components, our understanding of 
such interactions and the feedback mechanisms will advance. These new developments 
in ice sheet modeling and their implementation in climate models are timely, as obser-
vations indicate an accelerating contribution of ice sheets to sea level rise. 

Jakobshavn Glacier, Greenland Ice Sheet, 
July 2014. Photo credit: Thomas Overly
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INTRODUCTION 
Thoughts of sea level and climate change 
often conjure up images of rapidly melt-
ing glaciers and disintegrating ice sheets. 
Indeed, the Greenland and Antarctic 
Ice Sheets currently account for one-
third of the rate of global mean sea level 
rise (~3 mm yr–1), an increase from 
just one-tenth in less than two decades 
(Shepherd and Nowicki, 2017). The 
recent Intergovernmental Panel Climate 
Change (IPCC) reports consider ice 
sheets to be a key dynamic source of sea 
level rise by the end of the century (Meehl 
et  al., 2007; Church et al., 2013). This is 
in sharp contrast to the perception, 
reported in the early IPCC documents, 
that ice sheets were minor Earth system 
contributors to sea level rise (Warrick 
et  al., 1990, 1996). This revised view of 
ice sheets resulted from observations of 
unexpected outlet glacier accelerations 
in the late twentieth century (Rignot, 
1998). We now know that ice sheets can 
respond to changes on timescales that 
range from hours (response to tides, see 
review from Padman et al., 2018) to mil-
lennia (response to past climate, Dutton 
et al., 2015; DeConto and Pollard, 2016). 

Ice sheet changes remain the most 
uncertain sources of future sea level rise: 
projected contributions for the year 2100 
range from 21 cm to 1.3 m (Church et al., 

2013; DeConto and Pollard, 2016). This 
large uncertainty highlights the poten-
tially significant responses of both the 
Greenland and Antarctic Ice Sheets to 
changes in atmospheric and oceanic con-
ditions in the twenty-first century. In 
Antarctica, outlet glaciers are vulnera-
ble to marine ice sheet instability if they 
rest on bedrock that lies below sea level 
and slopes downward inland (Schoof, 
2007), and to marine ice cliff instability 
if unstable ice cliffs with heights above 
90 m are created following the collapse 
of ice shelves through hydrofracturing 
(DeConto and Pollard, 2016). Changes in 
oceanic conditions are the main triggers 
of these processes (Jacobs et al., 2011). 

Over 20 million people currently reside 
on land potentially vulnerable to flood-
ing from sea level rise within the United 
States (Strauss et al., 2015). Reducing the 
uncertainty in future sea level rise there-
fore is key to planning and adaptation. 
Over the last few decades, our under-
standing of ice sheet behavior has greatly 
improved due to the longer observational 
period and new observations over the 
polar regions. Models are now beginning 
to simulate ice sheet behavior and are 
being included as a dynamic component 
in climate models (Eyring et  al., 2016; 
Nowicki et  al., 2016). Here, we review 
recent developments in observations 

and in ice sheet models (ISMs), and pro-
vide examples of remaining challenges 
that need to be resolved in order to fully 
understand how ice sheets and sea level 
will evolve in a changing climate.

CONTEMPORARY CHANGES 
IN ICE SHEETS
Ice sheets contain the largest reservoirs of 
freshwater on Earth, and the mass fluxes 
between ice sheets, atmosphere, and 
ocean are complex (Figure 1). Ice sheets 
gain mass due to snowfall and accretion 
beneath ice shelves, and lose mass via 
melting and iceberg calving (Cuffey and 
Paterson, 2010). Figure 2 shows the com-
plexity of spatiotemporal mass changes 
that result from interannual variations 
in surface mass balance (SMB) and ice 
dynamics. Ice dynamics refers to changes 
in ice sheet flow, and is generally concen-
trated along outlet glaciers. In contrast, 
SMB changes occur across the entire ice 
sheet and arise from surface processes 
(evaporation, surface melt, and accu-
mulation). Although surface melting 
and meltwater runoff are increasingly 
large components of the Greenland Ice 
Sheet surface mass balance, they are lim-
ited to the margins in Antarctica (Rignot 
et al., 2013; Enderlin et al., 2014; van den 
Broeke et al., 2016).

Three distinct remote-sensing tech-
niques are currently used to study the 
mass change of ice sheets (Shepherd 
et  al., 2012): (1) altimetry (based on ice 
sheet elevation changes), (2) gravime-
try (based on gravity field changes), and 
(3) the input-output method (estima-
tion of the difference between ice gain 
from accumulation and ice loss from 
surface runoff and ice discharge at the 
periphery). These methods resulted in 
a spread of ice sheet mass change esti-
mates (−72 Gt yr–1 to 684  Gt yr–1) that 
motivated the Ice Sheet Mass Balance 
Intercomparison Experiment (IMBIE; 
Shepherd et  al., 2012). IMBIE’s aim was 
to reconcile differences in satellite mea-
surements of ice sheets mass balance 
from 1992 to 2011, and IMBIE2 extended 
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FIGURE 1. Schematic representation of ice sheet mass exchange with the atmosphere and ocean. 
Typical mass fluxes for the Antarctic (blue) and Greenland (green) Ice Sheets are in Gt yr–1 (360 Gt 
= 1 mm of sea level). Sub-shelf basal melt and calving flux for Greenland are uncertain and variable, 
hence excluded. Sources: van den Broeke et al. (2016), Rignot et al. (2013)
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this record to 2017 for Antarctica 
(Shepherd et al., 2018). 

The Greenland Ice Sheet was in equi-
librium with climate conditions in the 
early 1990s, and it therefore did not con-
tribute significantly to sea level rise at that 
time. Its sea level contribution increased 
to 142 ± 49 Gt yr–1 during 1992–2011, 
accelerating from 51 ± 65 Gt yr–1 in 1992–
2000 to 211 ± 37 Gt yr–1 in 2000–2011 
(Shepherd et al., 2012). The mass loss was 
equally split between increased ice dis-
charge and greater surface meltwater run-
off from 1996 to 2008; however, surface 
runoff changes increased to two-thirds 
of the mass loss in 2009–2012 (Enderlin 
et al., 2014). Although most outlet glaciers 
are thinning, at times there are episodes of 
thickening (Csatho et al., 2014). A similar 
story is revealed with ice velocity obser-
vations, with glaciers generally speeding 
up, but sometimes slowing down (Moon 
et al., 2012). Adjacent glaciers may evolve 
differently, as illustrated by Willis et  al. 
(2018, in this issue) for Greenland’s Tracy 
and Heilprin Glaciers.

For the Antarctic Ice Sheet, the rec-
onciled IMBIE2 mass losses were 
109 ± 56 Gt yr–1 for 1992–2017, with 
76 ± 59 Gt yr–1 during 1992–2011 

and 219 ± 43 Gt yr–1 between 2012 
and 2017 (Shepherd et  al., 2018). The 
Antarctic Peninsula was close to balance 
in the  1990s, but observations revealed 
increased dynamical mass loss following, 
for example, calving front retreat and dis-
integration of the Larsen B Ice Shelf in 2002 
(Berthier et  al., 2012). West Antarctica 
is the leading source of Antarctic mass 
loss throughout the IMBIE2 observa-
tional record (94 ± 27  Gt  yr–1), due to 
rapid acceleration, thinning, and ground-
ing line retreat of the glaciers feeding 
the Amundsen Sea sector (Rignot et  al., 
2008; Shepherd et  al., 2012). However, 
not all regions of West Antarctica are los-
ing mass: the Kamb Ice Stream stagnated 
about 160 years ago (Retzlaff and Bentley, 
1993) and is now gaining mass at a rate of 
18 Gt yr–1 (Rignot et al., 2008). Localized 
ice dynamical mass loss is also occurring 
in some parts of East Antarctica, such as 
the Totten and Cook Glaciers (Pritchard 
et  al., 2009). However, these dynamic 
mass losses are smaller than the mass gain  
from snowfall over a large area (Figure 2),  
such that East Antarctica might have 
been gaining mass at an average rate of 
5 ± 46 Gt yr–1 over the 25-year observa-
tional record (Shepherd et al., 2018). 

AN IMPROVED GENERATION 
OF MODELS 
In its fourth assessment report (Meehl 
et  al., 2007), the IPCC criticized the sea 
level projections from ISMs, as they could 
not replicate the observed rapid changes. 
As a result, several key features of ice flow 
models have improved greatly, including: 
(1) the approximation used for the stress 
balance equations (Figure 3), (2) the dis-
cretization of model domains (Figure 4), 
and (3) the representation of grounding 
lines and ice front migration. This sec-
tion summarizes these improvements; for 
more details on recent ISM development, 
we refer readers to Goelzer et  al. (2017) 
and Pattyn et al. (2017). 

To reproduce the rapid changes in the 
flow of the Antarctic and Greenland Ice 
Sheets, approximations of the Stokes equa-
tions that are valid in fast-flowing outlet 
glaciers, ice streams, and ice shelves were 
implemented. As Figure 3 shows, these 
new approximations replace the Shallow 
Ice Approximation (Hutter, 1982), which 
only represents vertical shear, and range 
from the Shelfy-Stream Approximation 
(MacAyeal, 1989) that captures the 
motion of ice shelves and fast-flowing ice 
streams to the complete Stokes equations 

FIGURE 2. Mass change over the Greenland (a) and Antarctic (b) ice sheets as observed by NASA’s Gravity Recovery and Climate Experiment (GRACE). 
The time evolution of the mass loss (black) seen by GRACE is due to both dynamical mass loss and fluctuations in surface mass balance. The maps 
show changes from the start of the time series to the end of the melt seasons in 2003 and 2015, respectively. These reveal significant Greenland ice 
mass losses along the coast and moderate mass increases in the northern interior over the course of the GRACE mission, along with increasing sig-
nificant mass loss over West Antarctica. Results shown are computed from the NASA GSFC mascons v2.4. Courtesy of Bryant Loomis, NASA Goddard 
Space Flight Center

A)	

B)	

A)	

B)	
(a) Greenland Ice Sheet (b) Antarctic Ice Sheet
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that combine the momentum and incom-
pressibility equations. To optimize the 
computational time, higher order mod-
els that neglect some components of 
the momentum balance equations, but 
that are valid in most regions (Pattyn, 
2003; Schoof and Hindmarsh, 2010), and 
combinations thereof (Seroussi et  al., 
2012; Ahlkrona et  al., 2016) were also 
developed. These improved stress bal-
ance approximations permit better sim-
ulation of rapidly changing glaciers 
(Morlighem et al., 2010). 

Simultaneously, significant improve-
ments were achieved in the discretiza-
tion of ice flow domains. Thanks to the 
increased computational power and par-
allelization of ISMs (Larour et al., 2012), 
the typical grid resolution of continental-​
scale models decreased from several 
tens or hundreds of kilometers to 10 km 
or less, improving the representation of 
tributary glaciers, shear margins, and 

critical areas, as well as the agreement with 
observations (see Figure 4). The intro-
duction of a mesh with varying resolution 
(Morlighem et  al., 2010) allowed mod-
els to combine fine resolution in critical 
areas with coarser resolutions in stagnant 
areas, and some models allow this refine-
ment to evolve with time using adaptive 
remeshing techniques (Cornford et  al., 
2013). These refinements led to an almost 
doubling of grounding line retreat and to 
ice mass loss up to an order of magnitude 
higher (Cornford et al., 2013).

Accurate modeling of grounding line 
migration is critical, as this process is a 
major control on the stability of marine 
ice sheets and their mass loss (Durand 
et  al., 2009). This field is another where 
substantial progress has been made: 
early models only included the grounded 
part of ice sheets, as ice shelf buttressing 
was thought not to influence the flow of 
grounded ice (Whillans and van der Veen, 

1993). To capture the impact of changes 
in the ice shelves, Schoof (2007) proposed 
a grounding line flux parameterization 
that was implemented in several large-
scale models (Pollard and Deconto, 2012). 
Most ISMs, however, determine ground-
ing line positions directly, based on hydro-
static equilibrium. Refined grounding line 
position based on subgrid parameteriza-
tions (Pattyn et  al., 2006; Seroussi et  al., 
2014) improved the ability of models to 
accurately simulate its position while lim-
iting the need for high grid resolution. 
Models implementing the Stokes equa-
tions include a nonhydrostatic ground-
ing line representation based on con-
tact mechanics (Nowicki and Wingham, 
2008; Durand et  al., 2009). The Marine 
Ice Sheet Intercomparison Projects 
(MISMIP, Pattyn et al., 2012; MISMIP3D, 
Pattyn et al., 2013; MISMIP+, Asay-Davis 
et  al., 2016) are advancing our ability to 
improve the representation of ground-
ing line motion in numerical models, and 
to define minimum requirements to cor-
rectly include this process.

Modeling ice front evolution poses 
significant challenges both in terms of 
numerical implementation and under-
standing of calving. Numerical imple-
mentation of moving boundaries was 
performed in a number of models, either 
with subgrid parameterization (Albrecht 
et al., 2011) or level-set methods (concep-
tual frameworks for computing and ana-
lyzing the motion of an interface, here 
the ice front; Pralong and Funk, 2004; 
Bondzio et  al., 2017). Such numerical 
schemes enable models to simulate the 
impact of ice front position on ice dynam-
ics (Martin et  al., 2011; Bondzio et  al., 
2017). The physical processes driving 
calving, however, remain poorly under-
stood, as discussed in a recent review of 
calving (Benn et al., 2017).

Our understanding of ice sheets is 
constantly evolving with the discovery 
of new processes such as ice shelf dam-
age (Borstad et  al., 2016), subglacial 
hydrology (Creyts and Schoof, 2009), 
and cryo-hydrologic warming (Phillips 
et  al., 2010), as well as with knowledge 

FIGURE 3. 
Illustration of a hier-
archy of stress bal-
ance approximations 
available in ice sheet 
models. The Shallow 
Ice Approximation 
(SIA) assumes that 
flow is dominated by 
vertical shear stress, 
while the Shallow 
Shelf Approximation 
(SSA) assumes that 
flow is dominated by 
horizontal stress gra-
dients. Hybrid mod-
els combine solu-
tions from SIA and 
SSA. Higher order 
(HO) models include 
additional stresses 
to allow stress trans-
mission across float-
ing and grounded 
ice, while Full-Stokes 
(FS) models resolve 
all stresses. Adapted 
from Pattyn et al. 
(2006) 
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of the nature of the underlying bed 
(Christianson et  al., 2013) and the evo-
lution in properties of basal conditions 
(Gillet-Chaulet et  al., 2016). Such pro-
cesses and understanding are starting to 
be implemented in regional ISMs and 
should be more systematically included 
in future simulations. 

LINKING MODELS AND 
OBSERVATIONS 
In the past decade, we witnessed a shift 
from a world with very limited mod-
ern observations to an era with abun-
dant high temporal and spatial resolution 
data. Newly acquired data and improved 
models influence each other in terms of 
requirements, areas studied, and limita-
tions. The launch of several satellite and 
airborne missions made available a wide 
range of large-scale observations that 
are being used to better initialize, con-
strain, and validate ISMs. Prior to the 
first complete maps of ice surface veloc-
ity (published fewer than 10 years ago; 
Joughin et al., 2010; Rignot et al., 2011), 
it was impossible to compare one of 
the main model diagnostics, ice veloc-
ity, with large-scale observations. The 
improved description of geometry was 
directly included in ISMs to define their 
initial states (Bamber et al., 2013; Fretwell 
et al., 2013). The opportunities offered by 
these new observations, however, go well 
beyond their simple use as model inputs. 
Using data assimilation methods, model-
ers were able to infer ice properties that 
cannot be directly observed, such as basal 
conditions that are buried under kilo-
meters of ice, or rigidity of ice shelves 
(MacAyeal, 1992; Joughin et  al., 2001; 
Goelzer et al., 2018).

The systematic use of observations 
went even further: ISMs started to com-
bine observations with model phys-
ics to evaluate ice parameters in areas 
where observations are lacking. Large 
errors resulting from a limited cover-
age of ice geometry made these observa-
tional data sets difficult to use in models 
(Seroussi et  al., 2011). As a result, mass 
conservation algorithms that estimate 

ice thickness from ice surface velocities, 
existing (but sparse) thickness measure-
ments, surface mass balance, and sur-
face elevation changes were developed 
(Morlighem et  al., 2011). The maps cre-
ated provide additional details about 
bedrock topography and show that 
Greenland fjords extend deeper and fur-
ther inland than previously thought, 
making them more vulnerable to ocean 
warming (Morlighem et al., 2014). 

All these improvements greatly 
enhanced the models’ ability to repro-
duce current ice sheet characteristics, 
especially for outlet glaciers (Figure 4), 
where changes are the most significant 
(Seroussi et al., 2017). Because models are 
now able to replicate observed changes 
over the past couple of decades, hindcast-
ing is becoming possible (Aschwanden 

et al., 2013). Observations are also used to 
calibrate projections of ice sheet changes 
over the coming centuries in ensemble 
runs, such that simulations with the best 
agreement to the past evolution are given 
a higher weight in the projections (Ritz 
et  al., 2015). However, accurately simu-
lating the future evolution of ice sheets 
remains very challenging, as models’ ini-
tial states (Goelzer et al., 2018) and exter-
nal forcings need to be better constrained. 

SEA LEVEL PROJECTIONS: 
BEYOND AN ICE SHEET MODEL 
PROBLEM 
Credible ice sheet projections rely not 
only on ISMs, but also on knowledge 
of boundary conditions and future cli-
matic forcing. Thus, reducing the uncer-
tainty in future sea level rise resulting 
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from ice sheet melting requires advances 
in and tighter collaborations with other 
disciplines. In an attempt to bridge 
the gap between the ice sheet and cli-
mate communities, the Coupled Model 
Intercomparison Project Phase 6 
(CMIP6) endorsed the Ice Sheet Model 
Intercomparison for CMIP6 (ISMIP6; 
Nowicki et al., 2016; Eyring et al., 2016). 
ISMIP6 experimental protocol combines 
simulations of stand-alone ISMs driven 
offline from forcings generated from cou-
pled atmosphere-ocean climate models 
and simulations generated from coupled 
ice sheet-atmosphere-ocean models. 

Much progress has been made in 
recent years, with global climate models 
beginning to generate SMBs that com-
pare well with regional climate mod-
els (Vizcaino et al., 2013; Lenaerts et al., 
2016). These simulations, in which ice 
sheet extent and elevation are fixed in 
the climate model, focus on improving 
surface processes and polar climate over 
the ice sheets. Nonetheless, challenges 
in representing ice-atmosphere inter-
actions and SMB remain, and we refer 
the reader to recent reviews in this field 
(Favier et al., 2017, van den Broeke et al., 
2017). Simulations in which ice sheets 
fully interact with the atmosphere in cli-
mate models show promising results and 
demonstrate the importance of ice sheets 
as an interactive component of climate 

models. For example, allowing for eleva-
tion-SMB feedback increases the surface 
runoff at lower elevations and thus the 
contribution of the Greenland Ice Sheet 
to sea level rise (Vizcaino et al., 2015). 

Representing ice-ocean interactions 
accurately in ISMs is critical, as changes 
in oceanic conditions have the potential 
to impact ice sheet dynamics on inter-
annual (Steig et  al., 2012; Greene et  al., 
2017) to centennial (Rahmstorf, 2002; 
Alley et  al., 2005) timescales through 
evolving melt rates under ice shelves and 
along calving fronts. An exploration of 
the sensitivity of Antarctica’s contribu-
tion to sea level rise in response to uncer-
tainties in external forcing, boundary 
conditions, and input parameters shows 
that uncertainties in ice shelf melt rates 
dominate the continent’s sea level contri-
bution and its uncertainty over the next 
100 years (Figure 5 and Schlegel et  al., 
2018). Studies on fast-flowing glaciers in 
the Amundsen Sea sector came to a sim-
ilar conclusion regarding the dominant 
role ocean-induced melting plays in con-
trolling ice dynamics, as higher melt rates 
reduce ice shelf buttressing and acceler-
ate grounding line retreats (Favier et al., 
2014; Seroussi et  al., 2017). An accurate 
representation of oceanic forcing is, how-
ever, challenging because of the techni-
cal difficulty of coupling ice sheet and 
ocean models with a dynamic boundary, 

the limited understanding of physical 
processes governing ice-ocean interac-
tions, and the limited number of oceanic 
observations in ice shelf cavities, includ-
ing observations of oceanic properties 
and also bathymetry and bedrock under 
both floating and grounded ice (Colloni 
et al., 2018). 

Understanding the feedback between 
ice sheets and large-scale ocean circula-
tion, as well as the impacts of their vari-
ability, requires models to interactively 
couple these two systems (Fyke et  al., 
2018). The first studies relying on coupled 
ice-ocean models show that simulations 
performed with parameterizations of ice 
shelf melt tend to overestimate glacier 
changes and mass loss compared to simu-
lations performed with coupled ice-ocean 
models (De Rydt and Gudmundsson, 
2016; Seroussi et  al., 2017). The cou-
pled models agree better with observa-
tions of real glacier changes and ground-
ing line retreat, in particular (Seroussi 
et  al., 2017). Developing Earth sys-
tem models that couple the atmosphere, 
ocean, land, ice, and biosphere would be 
the best approach to accurately simulat-
ing these interactions, but these models 
have coarse resolutions (~ 50–100 km in 
the polar regions) that limit their accu-
racy in critical areas such as narrow gla-
cier fjords around Greenland, and no 
model of the CMIP5 ensemble resolved 
the ocean circulation in ice shelf cav-
ities (Flato et  al., 2013; Straneo et  al., 
2013). Furthermore, these models do not 
include dynamic boundaries for their dif-
ferent components, which are critical for 
representing ice shelf cavity evolution or 
ice front retreat. The only solution so far 
for including large-scale ocean changes 
in ocean forcings for the ice sheets is to 
translate these changes into parameter-
izations based on oceanic conditions 
and ice sheet configurations (Asay-Davis 
et al., 2017), but neglecting the feedbacks 
between these systems.

A challenge for any simulation of 
sea level change from ISMs is obtain-
ing an accurate initial state. Two dis-
tinct methods were traditionally used 

FIGURE 5. Probability distributions of the Antarctic Ice Sheet contribution to sea level rise in 2100, 
based on 800 simulation ensembles sampled within a given uniform distribution of error. Solid 
lines show the impact of uncertainties in the ocean-induced melting rate (dark blue), surface mass 
balance (light blue), ice viscosity (green), basal friction (purple), and the combination of these four 
parameters (red). The black crossed line shows the sum of the four independent ensembles. The 
legend indicates the mean, lower 95%, and upper 95% distribution values for each ensemble. 
Adapted from Schlegel et al. (2018)
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for stand-alone ISMs, spin-ups and data 
assimilation (Nowicki et  al., 2013), but 
we are now seeing approaches that com-
bine these two methods (Goelzer et  al., 
2018). Spin-up methods that permit 
ISMs to be in equilibrium with climatic 
forcing or to retain some transient mem-
ory of previous climatic changes are cur-
rently available for the Greenland and 
the Antarctic Ice Sheets. However, spin-
ups often result in an ice sheet geometry 
that differs from that of the present day 
(Nowicki et  al., 2013; Goelzer et  al., 
2018). Data assimilation in most ISMs 
relies on assimilating snapshots of obser-
vations and assumes a steady state for the 
present-day ice sheet. A path forward for 
obtaining a time-​evolving state would 
be to combine existing observational 
time series into a reanalysis, similar to 
what is being done in physical oceanog-
raphy to provide the best possible ocean 
state estimates (Menemenlis et al., 2008). 
A few studies have been performed by 
assimilating time series of observations 
(Goldberg and Heimbach, 2013; Larour 
et al., 2014). They show that forecasting is 
much improved when models are initial-
ized not with a snapshot of observations 
but with longer time series. Many ISMs 
are working toward this goal, and we can 
expect to see a lot of progress along this 
line over the coming decade. Another 
emerging area of research is how to best 
initialize ISMs within fully coupled Earth 
system models (Nowicki et  al., 2016; 
Fyke et al., 2018).

CONCLUSIONS 
The collection of annual to weekly 
observations of ice sheet surface veloc-
ity, surface elevation, and mass change 
(Mouginot et  al., 2014; Mililo et  al., 
2017; Csatho et al., 2014) marks the start 
of a new era for ice flow modeling. We 
recently switched from a no-data world 
to one with an abundance of observa-
tions, but modelers are challenged when 
these observations do not agree, as illus-
trated by the IMBIE efforts and the need 
to reconcile observations of ice sheet mass 
change. We are also reaching an era when 

ISMs can provide insight on observations 
(type, scope, location, and resolution) that 
are most needed for improving projec-
tions. An example is the sparsity of bed-
rock topography data under ice streams 
(in particular, in the vicinity of ground-
ing lines) and beneath ice shelves. There 
is an urgent need for observation-based 
scientists and modelers to increase their 
collaborations in order to fully under-
stand the drivers of observed changes 
over the polar regions and to analyze 
which processes, interactions, and feed-
back are crucial and which ones can be  
ignored in models. 

What can be expected in terms of pro-
jections of future sea level? Considering 
the rapid ISM developments that have 
occurred over the last decades, a major 
challenge is obtaining realistic atmo-
spheric and oceanic forcing for ice 
sheets. Thus, there is an urgent need 
for improved polar climate representa-
tion from Earth system models, which 
is also necessary for the coupling of ice 
sheet-climate models. The inclusion of 
ISMs in Earth system models has resulted 
in a focus on improving the SMB gener-
ated by these models and a better under-
standing of ice-atmosphere interactions. 
Modeling ice-ocean interactions and 
coupling ISMs to ocean models remain 
extremely challenging, in part due to 
the difficulties in collecting observa-
tions beneath the ice shelves, our poor 
knowledge of the bathymetry beneath 
ice shelf cavities, and the numerical chal-
lenge of creating ocean models that have 
the capability to adjust their domains as 
the ice sheet evolves. Reducing uncer-
tainties in sea level contributions from 
ice sheets is therefore becoming a prob-
lem that is no longer simply an ice sheet 
modeling problem.  
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