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A Tale of Two Eruptions

SPECIAL ISSUE ON THE OCEAN OBSERVATORIES INITIATIVE

ABSTRACT. Mid-ocean ridge volcanism generates two-thirds of the surface of our planet and 
plays an important role in chemical exchange with the overlying ocean, yet little is known about 
the dynamic processes involved in mid-ocean ridge eruptions. This is largely due to the costs and 
challenges of deploying long-term instrumentation on the seafloor, particularly those that transmit 
data to shore in real time and would allow the scientific community to respond to and coalesce 
around a particular event. The 2015 eruption at Axial Seamount, which lies along the Juan de Fuca 
Ridge in the Northeast Pacific Ocean, resulted in the first in situ, real-time geophysical data collected 
during a mid-ocean ridge eruption. The results provided insights into the caldera fault structure 
and response to a seafloor-spreading episode, and also confirmed the origin of seismically recorded 
impulsive signals that are associated with fresh lava erupting onto the seafloor. This confirmation 
of a seismic signal associated with erupting lava led to revisiting data from an eruption almost 
a decade earlier and a fundamental new view of seafloor spreading at fast-spreading ridges 
thousands of kilometers from Axial Seamount. This example illustrates the point that even though 
cabled observatories are necessarily bound to a specific location, their results can have significant 
implications for understanding systems that are quite different, in far reaches of the globe. 
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Fresh lava from a 2006 East 
Pacific Rise eruption over-

lying lava from an older sea-
floor eruption. Photo credit: 

Dan Fornari/Woods Hole 
Oceanographic Institution/NSF

HOW DATA FROM AXIAL SEAMOUNT LED 
TO A DISCOVERY ON THE EAST PACIFIC RISE
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Real-time, open-access geophysical data 
collected from the deep-sea floor have 
long held great promise for understand-
ing dynamic seafloor processes, in par-
ticular, mid-ocean ridge eruptions. The 
benefits of streaming data live to the sci-
ence community include the ability to 
respond quickly to events of interest, the 
ability to monitor instrument status, and 
the collective engagement of the inter-
ested community. While the benefits of 
having access to real-time data are obvi-
ous to scientists studying a particular site, 
it is perhaps less obvious how these data 
can also benefit understanding of seafloor 
processes far away in analogous settings. 

In April 2015, a seafloor eruption at 
Axial Seamount was captured live on 
geophysical instruments attached to the 
Ocean Observatories Initiative (OOI) 
Cabled Array (Wilcock et al., 2018, in this 
issue, and references therein). The erup-
tion came just months after live-​streaming 
seismic data had become openly avail-
able, and two days after conclusion of a 
workshop that discussed science at Axial 
Seamount. Community engagement was 
high, as an eruption was forecast to be 
imminent. The ability to geophysically 
observe a seafloor eruption live for the first 
time generated substantial excitement, 
and different signals were discussed, ana-
lyzed, and shared rapidly through emails 
as new data were received. Although a for-
mal discussion platform did not exist, the 
email list grew and generated a dynamic 
collective discussion that brought multi-
ple perspectives to interpreting the event 
unfolding at Axial Seamount. This was 
the real-time event the community had 
been preparing for.

One observation of a waterborne 
impulsive signal was discussed at length 
and interpreted to be associated with lava 
erupting onto the seafloor (Wilcock et al., 
2016). Such signals had previously been 
hypothesized as being associated with 
seafloor eruptions (e.g., Caplan-Auerbach 
and Duennebier, 2001; Schlindwein and 
Riedel, 2010), but not clearly demonstrated 
as such in the field. The timing of the mul-
tiple water bounce arrivals (Figure 1) on 

multiple instruments allowed rapid esti-
mation of the source locations. Initial 
locations were soon confirmed to be asso-
ciated with new lava flows (Chadwick 
et al., 2016). The exact cause of these sig-
nals is yet to be determined (Tan et  al., 
2016; Wilcock et al., 2016), but they could 
be related to steam explosions (Perfit et al. 
2003; Chadwick et al., 2016), pillow implo-
sions or degassing (Caplan-Auerbach 
and Duennebier, 2001; Schlindwein and 
Riedel, 2010), other lava-seawater inter-
actions, or a mix of causes (Figure  2). 
Regardless of the cause, these signals pro-
vide a newly ground truthed way to estab-
lish the timing of lava reaching the sea-
floor, a critical factor in understanding 
eruption dynamics. 

As a result of this observation, data 
from the only previous in situ seismi-
cally observed seafloor eruption, at 
9°50'N on the East Pacific Rise (Tolstoy 
et  al., 2006), were revisited. These data 
were limited to three ocean bottom seis-
mometers, in part because two-thirds of 
the original array was buried in the lava 
flow. However, a number of the recov-
ered instruments also had hard drive 
issues unrelated to the eruption that were 
not known until after recovery, illustrat-
ing another important limitation of non- 
real-time data. Therefore, analysis of 
available earthquake data was quite lim-
ited. The eruption period was dominated 
by many small impulsive seismic events 
that were not consistent with earthquake 
travel times between instruments, and 
thus were thought to perhaps be isolated 

small events happening very near indi-
vidual instruments. 

On reexamining the East Pacific Rise 
data, it was clear these signals were not 
small local earthquakes, but instead 
impulsive signals similar to those observed 
during Axial Seamount’s eruption. When 
these waterborne arrivals were revis-
ited, their locations correlated remark-
ably well with the previously mapped lava 
flows (Soule et al., 2007; Tan et al., 2016), 
addressing a long-standing debate about 
the timing of that eruption, and providing 
a whole new insight into how mid-ocean 
ridges erupt. The results showed that the 
majority of the lava erupted within a mat-
ter of days in January 2006; flows could 
even be tracked moving down the flanks 
of the ridge axis. Most interesting was the 
timing of the eruption with respect to the 
largest earthquakes, which suggested that 
the East Pacific Rise erupted largely in 
response to the rupture of the plate rather 
than in response to buildup of magma 
pressure (Tan et al., 2016). This is in con-
trast to what is expected at most volca-
noes, where magma pressure is solely 
driving the seismic and eruptive activ-
ity, and different to what was observed at 
Axial Seamount in 2015.

Of particular note when comparing 
the geophysical signals leading up to and 
during both eruptions is the difference in 
timing of the magmatic tremor. At Axial 
Seamount, six hours of tremor (inferred 
to be magma movement) preceded the 
seismic crisis that led to the eruption 
(Wilcock et al., 2016). At the East Pacific 

FIGURE 1. Illustration of ray paths 
taken by the first two arrivals of 
the waterborne impulsive sig-
nal observed to be associated 
with lava eruption, with an exam-
ple waveform show at the top. The 
blue ray is the first arrival and the 
red ray is the second arrival. At 
Axial Seamount, more than two 
arrivals were often observed asso-
ciated with a single event (Wilcock 
et  al., 2016). With good knowl-
edge of the regional water depth, 
the velocity of sound in water, and 
signal arrival times, the events 
could be accurately located using 
multiple instruments. 
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Rise, however, approximately one hour 
of tremor (long-period events) followed 
the initiation of the seismic crisis. The 
tremor at the East Pacific Rise appeared 
within tens of minutes following the larg-
est earthquakes recorded at the site in a 
decade (Dziak et  al., 2009), and ended 
36 minutes prior to lava first reaching the 
seafloor (Tan et al., 2016). This timing is 
consistent with the tremor resulting from 
magma response to failure of the plate 
boundary. This contrast in relative timing 
of the tremor to the seismic crisis implies 
that at Axial Seamount, magma pres-
sure played a key role in the timing of the 
eruption, whereas at the East Pacific Rise, 
the buildup of tectonic stress due to plate 
pull led to rupture of the plate boundary. 
It is possible that magma pressure may 
also have contributed to initiation of the 
eruption at the East Pacific Rise, but the 
timing of the eruption is interpreted as 
largely responding to the rupture. 

Comparison of the seafloor erup-
tions shows that they represent two 
end members: Axial Seamount dis-
plays classic ring-fault caldera dynam-
ics (Wilcock et al., 2016), while the East 
Pacific Rise demonstrates that mid-ocean 
ridge eruptions can result from a “tear” 

in the seafloor (Tan et  al., 2016). While 
the East Pacific Rise at 9°50'N is viewed 
as a “typical” fast-spreading ridge, Axial 
Seamount by contrast is a feature of the 
Cobb-Eickelberg hotspot that interacts 
with the intermediate-spreading Juan 
de Fuca Ridge. This fundamental differ-
ence between ridge-based hotspot volca-
nism and non-hotspot-influenced mid-
ocean ridge magmatism remains to be 
demonstrated elsewhere and at other 
spreading rates. However, it provides an 
exciting template to test these two mod-
els, both in further eruptions at Axial 
Seamount and eruptions elsewhere on 
the deep seafloor.  
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FIGURE  2. While the exact source of the impulsive signals is still 
unknown, there are multiple examples of lava features that might 
have caused such signals. (a) A drained pillow that may have 
been associated with degassing or other phenomenon that might 
result in a brief acoustic source. Courtesy of D. Kelley, University 
of Washington, NSF/OOI-ROPOS dive R1863 (TN326). (b) Rubble 
thought to result from a steam explosion (Chadwick et  al., 2016). 
Courtesy of W. Chadwick, NOAA-PMEL and Oregon State University, 
Jason dive J2-822 (TN327). 
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