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BACKGROUND
Axial Seamount is the largest and most 
active volcano on the Juan de Fuca Ridge 
spreading center. Annual research cruises 
have collected chemical, geological, and 
biological data at Axial Seamount for 
more than three decades, making this one 
of the longest time series for a deep-sea 
volcanically driven hydrothermal system. 
In 1998, an eruption on Axial’s south rift 
zone was remotely detected by US Navy 
hydrophones (Dziak and Fox, 1999; 
Chadwick et  al., 2013). Axial Seamount 
erupted again in 2011 along the south 
rift zone, resulting in lava flows inside 
and outside the caldera with numerous 
“snow blower” vents that emitted white 
floc from dense eruption-associated 
microbial mats (Caress et al., 2012; Meyer 
et al., 2013; Kelley et al., 2014). In 2014, 
the Ocean Observatories Initiative (OOI) 
completed installation of a regional 
cabled observatory that spans the Juan de 
Fuca Plate with nodes at Axial Seamount 

that include over 20 cabled instruments 
within the caldera (Kelley et al., 2016). 

The OOI Cabled Array detected in 
real time the most recent eruption, which 
started on April 24, 2015, and lasted 
for several weeks (Nooner et  al., 2016; 
Wilcock et  al., 2016). These data were 
critical for identifying new lava flows, 
capturing for the first time the locations 
and timing of earthquakes and explosive 
events as they occurred. The data suggest 
that activity was focused along Axial’s 
north rift zone (NRZ), and this location 
was confirmed by depth changes detected 
by bathymetric resurveys and remotely 
operated vehicles in July and August 2015 
(Chadwick et al., 2016; Kelley et al., 2016). 
The thickest new lava flows were covered 
by microbial mats, and there were numer-
ous sites of hydrothermal flow (Chadwick 
et al., 2016; Kelley et al., 2016). The bathy-
metric and visual observations detected 
11 new lava flows from at least 13 new 
fissures along the NRZ and within Axial 

caldera (Chadwick et  al., 2016), with a 
combined volume of 1.48 × 108 m3, mak-
ing the 2015 eruption the largest volume 
of lava documented since data collection 
began in the mid-1980s. The morphology 
and chemical composition of separate 
lava flows varied from thin sheet flows 
within the caldera to much thicker and 
more evolved (lower MgO) pillow lava 
along the NRZ (Chadwick et al., 2016). 

Eruptive events at mid-ocean ridges 
are responsible for high fluxes in heat, 
chemicals, and biological matter from the 
subsurface (Baker et al., 1987; Butterfield 
et al., 1997; Delaney et al., 1998). Previous 
studies show that abrupt changes in the 
seafloor’s physical and chemical environ-
ment and the overlying water column 
follow eruptive events and influence the 
structure and activity of local microbial 
communities (Huber et  al., 2002, 2003). 
For example, fresh basalt in areas of 
hydrothermal flow after eruptive events is 
rapidly colonized by microbes (Gulmann 
et  al., 2015). These benthic biofilms are 
dominated by chemolithoautotrophs 
(Meyer et al., 2013) that support seafloor 
communities at hydrothermal systems 
for months to years following eruptions 
(Tunnicliffe et al., 1997).

Eruptions can produce new venting 
of hydrothermal fluids due to increased 
permeability of the crust and new heat 
sources such as subseafloor magma and 
freshly erupted lava fields that are still 
cooling (Baker, 1998; Baker et al., 2004). 
Neutrally buoyant hydrothermal plumes 
from long-lived vents are a mixture of 
entrained background seawater and 
<0.01% of subsurface-derived hydrother-
mal fluid (Lupton et al., 1985). A recent 
high-resolution spatial study of hydro-
thermal vent plumes along the Eastern 
Lau Spreading Center suggests that ubiq-
uitous deep-sea microbes populate plume 
microbial communities, while the con-
tribution of subsurface microbial taxa 
to plume communities is secondary as 

ABSTRACT. In April 2015, pressure recorders, seismometers, and hydrophones 
attached to the Ocean Observatories Initiative (OOI) Cabled Array on Axial Seamount 
detected, in real time, a volcanic eruption predominantly located along the north rift 
zone (NRZ). Real-time detection enabled a rapid response cruise to augment OOI 
data with ship-based physical, chemical, and biological sampling of the eruption 
and the new lava flows. The combined data set demonstrates the synergistic value of 
real-time monitoring combined with rapid response efforts that sample beyond the 
boundaries of a fixed cabled array. These combined data show that the 2015 eruption 
gave rise to chemically and microbiologically variable hydrothermal plumes over new 
NRZ lava flows, reflecting chemical and biological linkages between the subsurface 
lithosphere and the oceanic hydrosphere. The warmest and least diluted plume near the 
new lava flows was 0.119°C above background seawater and hosted thermophilic and 
hyperthermophilic taxa that are typically identified in hydrothermal fluids emanating 
from the warm subsurface. Cooler and more diluted hydrothermal plumes farther 
from a hydrothermal fluid source were 0.072°–0.078°C above background seawater 
and hosted mesophilic and psychrophilic taxa that are typically identified in neutrally 
buoyant plumes at persistent hydrothermal venting sites. Potentially chemosynthetic 
microbial lineages, including Epsilonproteobacteria, Gammaproteobacteria, and 
Methanococcales, were positively correlated with elevated temperature anomalies. 
These data suggest that hydrothermal fluid flow through new lava flows on the NRZ 
supported diverse microbial communities for several months following the 2015 
eruption and that subsurface heterogeneity contributed to the structure of unique 
hydrothermal-plume-hosted microbial communities. 



Oceanography |  Vol.31, No.1130

a result of extreme dilution within the 
hydrothermal plume (Sheik et al., 2015). 
Yet, some subsurface bacteria, such as 
sulfur-oxidizing Epsilonproteobacteria, 
demonstrate strong distance-decay rela-
tionships within plumes, with high abun-
dances near the source of hydrothermal 
flow, and they can be considered indica-
tors of hydrothermal activity (Djurhuus 
et  al., 2017). While distance-decay rela-
tionships and high rates of entrain-
ment of background deep-sea micro-
bial communities primarily structure 
plume microbial communities, the geo-
chemical and physical environment of 
the subsurface source fluids also impose 
selective pressures on microbial com-
munity composition over time (Huber 
et  al., 2007; Opatkiewicz et  al., 2009; 
Anderson et al., 2013).

Newly established links between the 
seafloor and subsurface magma sources, 

as the result of a deep-sea eruption, have 
the potential to create variable subseafloor 
hydrothermal conditions that alter over-
lying seawater non-uniformly, which may 
be reflected in the structure of microbial 
communities in newly formed eruptive 
hydrothermal plumes. We use physical, 
chemical, and biological data to charac-
terize hydrothermal plume heterogene-
ity above new lava flows along the NRZ 
at Axial Seamount. Our data indicate that 
differences in subsurface environments 
associated with new lava flows can cre-
ate geochemically unique hydrothermal 
plumes that harbor distinct microbial 
communities comprised of both deep-
ocean and subsurface lineages. This has 
the potential to significantly impact deep-
ocean microbiology, as mid-ocean ridges 
span 65,000 km of Earth’s surface and are 
responsible for approximately 70% of the 
volcanic activity on Earth.

RESULTS AND DISCUSSION
Physical and Chemical 
Characterization of Distinct Post-
Eruption Hydrothermal Plumes 
A rapid response cruise was added to 
the previously planned R/V Thompson 
TN327 expedition to survey the geol-
ogy, chemistry, and microbiology of new 
lava flows. CTD tow-yo surveys above 
the new NRZ lava flows collected contin-
uous measurements for depth, tempera-
ture, salinity, and turbidity. Potential tem-
perature and turbidity anomalies verified 
the presence of near-seafloor hydrother-
mal plumes 50–100 m thick extending 
horizontally several kilometers over the 
northernmost new lava flows (Methods 
in online Supplementary Materials, 
Figure  1A, Table  1). It is estimated that 
92% of the erupted volume was accounted 
for in the three northernmost lava flows 
(#8–#10 using the numbering scheme 

FIGURE 1. Bathymetry, temperature anomaly field, and gas chemistry of hydrothermal 
plumes over the caldera and north rift zone of Axial Seamount caldera following the 2015 
eruption. (A) Map of the 2015 lava flows (black outlines) numbered 1 to 11 from south to 
north, corresponding with the flow numbers in Chadwick et al. (2016). Colored lines show 
CTD tow-yos from August 2015. The inset locates Axial Seamount on the Juan de Fuca 
Ridge (JdFR) in the Northeast Pacific, offshore Oregon (OR) and Washington (WA), USA. 
(B) Temperature anomaly field from CTD tow-yos. Discrete water samples were collected 
at the locations indicated by open diamonds. Numbered labels refer to sample numbers. 
(C) Dissolved methane (gray diamonds) and hydrogen (black squares) concentrations in 
hydrothermal plumes over the caldera and north rift zone. The vertical line indicates the 
northern boundary of Axial caldera. 
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from south to north following Chadwick 
et al., 2016). Hydrothermal plumes above 
these thicker northern flows had higher 
temperature anomalies than plumes 
overlying thinner new flows within Axial 
caldera or elsewhere along the NRZ. 
The plumes over new lava flows #9 and 
#10 (46.08°N and 46.11°N, respectively) 
were sampled for further characteriza-
tion of plume chemistry and microbial 
microbiology. A total of 44 water- column 
samples from the caldera, NRZ, and 
background seawater were analyzed ship-
board for methane and hydrogen concen-
trations. DNA was extracted from a sub-
set of 12 water-column samples, and the 
microbial community was characterized 
by 16S rRNA gene sequencing (Methods 
in online Supplementary Materials).

Temperature and turbidity anomalies, 
as well as methane and hydrogen con-
centrations, were not uniform along the 
NRZ (Figure  1B,C) and showed regions 
of variability above lava flows #9 and 
#10 (Table  1). The hydrothermal plume 
above lava flow #9 (samples 6, 8, and 9) 
had the highest temperature and turbid-
ity anomalies, measured as ΔNTU (neph-
elometric turbidity units; Figure  1B, 
Table  1). The plume over lava flow #10 
(samples 2, 3, 4, and 5) was character-
ized by the highest hydrogen and meth-
ane concentrations compared to any 
other plume along the NRZ or within 
Axial caldera but had lower tempera-
ture and turbidity anomalies than in the 
plume over lava flow #9 (Figure  1B,C, 
Table  1). Two samples (10 and 12) were 
collected within the broader plume, not 
above a new lava flow, to compare lava- 
associated plumes with the non-lava asso-
ciated plume (Figure 1B). Non-lava tem-
perature anomalies were similar to those 
over lava flow #10 (average 0.078°C), 
but turbidity anomalies were lower 
than in both lava-associated plumes 
(ΔNTU = 0.024 vs. > 0.039). Similarly, 
methane concentrations in the non-
lava plumes were lower than in the lava- 
associated plumes, and hydrogen con-
centrations were near zero (Table 1). One 
background sample was collected at the 

NRZ (sample 14) where temperature and 
turbidity anomalies were not detected. 
Two additional background samples 
were collected 24 km northeast of Axial 
Seamount and at depths corresponding 
to plume samples above lava flows #9 and 
#10 (1,500 m and 1,700 m).

Differences in plume conditions above 
the two NRZ lava flows indicate variabil-
ity in the subsurface geology, chemistry, 
and microbiology. While no obvious dif-
ferences in lava morphology or composi-
tion were detected between flows #9 and 
#10 (Chadwick et  al., 2016), the micro-
bial mats covering lava flows were thicker 
and more orange in color on lava flow 
#9 relative to lava flow #10. Additionally, 
the sharp increase in plume hydrogen 
and methane concentrations over lava 
flow #10 indicates differences in the 
chemistry, and possibly microbiology, 
over the two flows. 

Hydrothermal fluids enriched in 
reduced chemical species fuel high rates 
of microbial productivity, which are com-
monly more productive than photosyn-
thetically driven parts of the ocean (Lutz 
et al., 1994; McCollom and Shock, 1997; 
Shock and Holland, 1997; McCollom, 
2000). Geochemical models predict that 
most chemosynthetic primary produc-
tion within vent plumes occurs when 

concentrations of hydrogen and sul-
fide are highest. This condition can 
occur in the early stages of hydrother-
mal plume development (McCollom, 
2000). Microbial characterization of per-
sistent vent plumes shows that sulfur- 
and hydrogen-oxidizing autotrophic bac-
teria dominate vent fluids at their source 
and are present in diffuse-flow fluids 
(Sunamura et  al., 2004; Anantharaman 
et al., 2013; Anderson et al., 2013; Mattes 
et  al., 2013). Understanding the het-
erogeneity in the hydrothermal plumes 
associated with new lava flows from the 
2015 eruptive event is important when 
considering biogeochemical models of 
deep-sea eruptions.

Microbiological Characterization 
of Distinct Post-Eruption 
Hydrothermal Plumes
To understand how microbial commu-
nity structure relates to environmen-
tal heterogeneity within post-eruptive 
hydrothermal plumes, we characterized 
microbial communities in discrete sam-
ples collected from the plumes over lava 
flows #9 and #10, in non-lava associated 
samples, and in background seawater. 
Non-metric multidimensional scaling of 
microbial operational taxonomic units 
derived from 16S rRNA gene sequence 

TABLE 1. Physical and chemical measurements. Discrete samples are categorized by region and 
match sample numbers as indicated in Figure 1.

Region Sample
(ID)

Depth
(m)

Temperature 
anomaly (°C)

Turbidity 
anomaly 
(ΔNTU)

CH4
(nmol kg–1)

H2 
(nmol kg–1)

Lava flow #10

2 1,725 0.070 0.057 333 461

3 1,708 0.082 0.054 406 508

4 1,694 0.081 0.039 536 140

5 1,733 0.054 0.035 297 25

Lava flow #9

6 1,700 0.113 0.134 301 4

8 1,696 0.121 0.202 NA NA

9 1,687 0.122 0.241 NA NA

Non-lava
10 1,689 0.059 0.024 8 0

12 1,607 0.096 0.024 168 0

Background

14 1,498 0.012 0.005 NA NA

1500 1,500 –0.012 0.001 BDL 1

1700 1,700 0.000 0.001 1 1

NA = not available (data not collected). BDL = below detection limit. ΔNTU = turbidity anomaly in 
nephelometric turbidity units.
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analyses indicates that bacterial community composition was unique 
within each region (Figure  2A, ANOSIM global R = 0.8839, p <0.01). 
The four regions sampled were also significantly distinct in terms of their 
archaeal communities (Figure 2B, ANOSIM global R = 0.4049, p <0.01). 
Dispersion ellipses demarcating the standard deviations of sample points 
within each region indicate that microbial community composition was 
distinct in each of the four regions sampled. 

Distinct bacterial communities were identified over the four different 
sampling regions even at a broad taxonomic level (Figure 3, Figure S1). 
The most abundant classes of bacteria were Alphaproteobacteria, 
Gammaproteobacteria, and Epsilonproteobacteria (Figure  3A). 
Gammaproteobacteria were dominant in plume regions (40.0% to 
49.3%). Alphaproteobacteria dominated communities in background 
seawater, averaging 45.5% of the bacterial 16S rRNA gene sequences 
recovered from these samples. Many of the top bacterial classes were 
strongly correlated with temperature and turbidity anomalies, both indi-
cators of hydrothermal input (Table  S1). The Gammaproteobacteria 
and Epsilonproteobacteria had strong normal relationships with anom-
alies of temperature (adjusted R2: 0.63 and 0.67, respectively) and tur-
bidity (adjusted R2: 0.57 and 0.96, respectively) across all 12 sam-
ples, while the Alphaproteobacteria had a strong inverse relationship 
with temperature and turbidity anomalies (adjusted R2: 0.78 and 0.74, 
respectively; Table S1). 

Shifts in archaeal communities were also evident, though patterns in 
distribution were most noticeable among three low abundance orders: 
Methanococcales, Methanomicrobiales, and Cenarchaeales (Figure 3B). 
Methanococcales were most abundant in the near-seafloor plume over 
lava flow #9 (average 1.8%), where temperature anomalies were high-
est and where there were elevated methane and hydrogen concentra-
tions, and over lava flow #10 (average 1.4%) where temperature anoma-
lies were lower but methane and hydrogen concentrations were highest. 
Their contribution to archaeal communities decreased significantly in 
non-lava samples (average 0.8%) and in background seawater (0.2%). 
The Methanococcales also had the highest correlations with tempera-
ture and turbidity anomalies (adjusted R2: 0.82 and 0.55, respectively; 
Table  S2). Cultivation-based studies have isolated thermophilic and 

FIGURE  2. Non-metric multidimensional scaling plot of the differences between 
microbial communities across sampling regions at Axial Seamount following 
the 2015 eruption. Microbial communities were assessed for (A) bacterial and 
(B)  archaeal composition. Points represent individual samples, and the colors of 
points represent four distinct sampling regions (above lava flow #10, lava flow #9, or 
non-lava seafloor, and background seawater not influenced by hydrothermal activ-
ity). Solid lines define a convex hull of the set of samples within a group while the 
dashed-lines show a dispersion ellipse using the standard deviation of sample point 
scores under a 95% confidence limit. An asterisk indicates p <0.01.

FIGURE 3. Proportions of key (A) bacterial classes and (B) archaeal orders detected 
along the north rift zone of Axial Seamount following the 2015 eruption. Samples 
are ordered by decreasing turbidity anomaly, a proxy for hydrothermal circulation, 
from left to right. Samples are classified into four distinct sampling regions: above 
lava flow #9, lava flow #10, non-lava, and background samples not influenced by 
hydrothermal activity. 



Oceanography  |  March 2018 133

hyperthermophilic hydrogen- consuming 
Methanococcales with temperature 
requirements well above the tempera-
ture of the hydrothermal plume fluids 
from which they were sampled (Holden 
et  al., 1998; Summit and Baross, 1998; 
Topcuoglu et  al., 2016). The implica-
tion from these studies is that meso-
philic and thermophilic microorganisms 
in the heated subsurface environment 
are released into seawater (Delaney 
et al., 1998; Holden et al., 1998; Summit 
and Baross, 1998).

Strictly methanogenic Methanomi-
crobiales were most abundant in the 
non-lava associated samples and least 
abundant in background seawater. Most 
members of the Methanomicrobiales 
are psychrophilic or mesophilic and 
can use either hydrogen or formate as 

electron donors for methanogenesis and 
acetate as a carbon source (Liu, 2010). 
It is important to note that while the 
Methanomicrobiales were most numer-
ous in the non-lava region, their relative 
abundance compared to other archaeal 
orders was low (1.82% of archaeal 
sequences) and that the detection of a 
16S rRNA gene sequence in the environ-
ment does not imply activity. Therefore, 
Methanomicrobiales may persist lon-
ger than thermophilic and hyperther-
mophilic methanogens in hydrothermal 
plumes that cool and become more dilute 
with entrained seawater, but are likely not 
contributing as much to methanogenesis 
within the plume, as indicated by the lower 
concentrations of methane in mid-plume 
samples. Methane-oxidizing microbes 
are known to dominate hydrothermal 

plumes at Axial Seamount (Mattes et al., 
2013), suggesting that they may contrib-
ute to the drawdown in methane in the 
non-lava associated samples. These data 
suggest that temperature-dependent 
niche partitioning among subseafloor 
methane-producing Methanococcales 
and Methanomicrobiales is evident in 
newly formed lava-associated plumes.

Indicator analyses of bacterial taxa 
detected over new lava flows and in 
background seawater also suggest that 
there are detectable differences in spe-
cies adapted to differences in sub-
surface temperatures. There were signif-
icant increases in the relative abundance 
of Epsilonproteobacteria in hydrother-
mal plumes (Figure 4). On average, they 
accounted for 13.2% of the bacterial 
community in the higher- temperature 

FIGURE 4. Phylogeny and rel-
ative abundances of bacterial 
taxa identified as significant 
indicators for each distinct 
sampling region: above lava 
flow #9, lava flow #10, non-
lava, and background sea-
water. All indicator taxa were 
present in at least three sam-
ples, and indicator values were 
significant at alpha <0.05. 
Bubble size is proportional 
to the log-transformed aver-
age abundance of sequences 
detected within a region.
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plume over lava flow #9 and only 0.6% 
in background seawater. Indicator anal-
yses suggest that thermophilic taxa 
from the Epsilonproteobacteria, includ-
ing Sulfurimonas sp., are significant 
indicators in these plumes. These data 
support the hypothesis proposed by 
Djurhuus et  al. (2017) that members 
of the mesophilic/ thermophilic sulfur- 
oxidizing Epsilonproteobacteria are 
strong indicators of hydrothermal activ-
ity. We add that individual taxa within 
the Epsilonproteobacteria demonstrate 
preferences for different temperature 
ranges or subsurface geochemistry, 
which affects the distribution of differ-
ent taxa across plumes of varying origin 
(Figures 3 and 4).

CONCLUSIONS
Real-time data from the OOI Cabled 
Array at Axial Seamount enabled a 
rapid response expedition to character-
ize the geochemistry and microbiology of 

post-eruptive hydrothermal plumes over-
lying new lava flows from the 2015 erup-
tion. Our results suggest that differences 
in the hydrothermal sources associated 
with distinct lava flows and their sub-
surface feeder dikes create near-seafloor 
plume environments that are chem-
ically and microbiologically distinct 
from upper, non-buoyant hydrothermal 
plumes. We present a conceptual model 
that incorporates different hydrother-
mal venting sites over new lava flows to 
highlight differences in plume chemis-
try and microbiology at Axial Seamount 
(Figure 5). In the model, we attribute dif-
ferences in microbiology to differences 
in subseafloor microbial communities 
injected into the water column, differ-
ences in the degree of mixing due to sea-
water entrainment, and differences in res-
idence time in the plume. These findings 
extend our knowledge, indicating that 
post-eruptive hydrothermal output over 
new lava flows can continue to influence 

deep-sea processes for months follow-
ing an eruption and that the influence 
on deep-sea chemistry and microbiology 
is heterogeneous.  

SUPPLEMENTARY MATERIALS
Methods, Figure S1, and Tables S1 and S2 are avail-
able online at https://doi.org/10.5670/oceanog. 
2018.120.
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