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SPECIAL ISSUE ON SEDIMENTARY PROCESSES BUILDING A TROPICAL DELTA  
YESTERDAY, TODAY, AND TOMORROW: THE MEKONG SYSTEM

Stratigraphic Formation of 
the Mekong River Delta and 

Its Recent Shoreline Changes
By J. Paul Liu, David J. DeMaster, Thanh T. Nguyen, Yoshiki Saito, 

Van Lap Nguyen, Thi Kim Oanh Ta, and Xing Li

A CHIRP sonar profile off the Song Hau mouth on the 
Mekong Delta showing a typical clinoform with topset and 
foreset regions, extending (next page) to the bottomset 
region underlain by infilled channels from the last lowstand 
of sea level (see location in Figure 5, line# 11).
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INTRODUCTION 
The Mekong River (Figure  1) runs 
~4,700 km from the Himalayas, through 
China, Myanmar, Thailand, Laos, 
Cambodia, and Vietnam, to the East 
Sea (also known as the South China 
Sea). Its annual freshwater discharge is 
~470 × 109 m3, and the estimated annual 
sediment flux was ~130–160 million 
tons in the 1960s and 110 million tons 
in the 1990s (Milliman and Farnsworth, 
2011). In southern Vietnam, the Mekong 
River has accumulated a massive sub-
aerial delta of 50,000 km2 (Figure 1), the 
third largest tide-dominated delta in the 
world after the Amazon and Ganges-
Brahmaputra Deltas (Coleman et  al., 
2003). The Mekong Delta is home to 20% 
of Vietnam’s population and currently 
produces >20 million tons of rice annu-
ally; it is therefore often called Vietnam’s 
“Rice Bowl” (Cosslett and Cosslett, 2014). 
In a recent World Wildlife Fund report 
(WWF, 2016), the Mekong was labeled 
a “biological treasure trove” because 
of the >2,400 new species discovered 
in the Greater Mekong Basin between 
1997 and 2015.

ABSTRACT. Where the Mekong River discharges into the East Sea (also known 
as the South China Sea), it has formed the world’s third largest delta plain with an 
area of ~50,000 km2. Numerous cores recovered from the subaerial delta reveal 
that it has prograded ~220 km southeastward within the past 7,500 years. Recent 
extensive seismic and geochemical surveys of the adjacent subaqueous delta 
indicate that the Mekong River forms a classic sigmoidal, cross-shelf clinoform 
immediately off its distributaries that is up to 15 m thick, with topset, foreset, 
and bottomset facies. These deposits are constrained within water depths of 
20 m. Mekong-derived sediment packages extend ~300 km along shelf in the 
southwestward direction to the tip of the Ca Mau Peninsula, where they form a 
distal mud depocenter up to 22 m thick. These sediment packages can also be 
traced into the Gulf of Thailand to water depths of 25 m. The proximal and distal 
deposits cover ~11,000 km2 of the shelf.

Historically, the Mekong Delta has prograded seaward at a mean rate of 
>30 m yr–1, or 7 km2 yr–1; however, study of the past 43 years of Landsat images 
indicates that the mode of sedimentation in the delta shifted starting in 2005. From 
1973 to 2005, the Mekong Delta’s seaward shoreline growth decreased gradually 
from a mean of 7.8 m yr–1 to 2.8 m yr–1, and after 2005 it became negative, with 
a retreat rate of −1.4 m yr–1. The net deltaic land area gain has also been slow-
ing, with the mean rate decreasing from 4.3 km2 yr–1 (1973–1979) to 1.0 km2 yr–1 
(1995–2005), and then to −0.05 km2 yr–1 (2005–2015). Thus, in about 2005, the 
subaerial Mekong Delta transitioned from a constructive mode to an erosional 
(or destructive) mode. Furthermore, not only is the subaerial Mekong Delta land 
area gradually diminishing, but high-resolution CHIRP sonar profiling surveys off 
the east-central Ca Mau Peninsula reveal that this portion of the subaqueous delta 
is also eroding. With the construction of more dams, sand mining, delta subsid-
ence, increasing storms, and sea level rise, the Mekong Delta will likely face more 
destructive changes, with erosion both of coastlines and underwater deposits. 
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With 30 large dams already constructed 
(Figure 1), the fluvial sediment flux to the 
sea has been decreasing (Lu et  al., 2014; 
Wang et al., 2011)—and ~200 new dams 
have been authorized. In addition, there 
has been a significant increase in coastal 
sand mining activities (Brunier et  al., 
2014). Together, decreasing sediment flux 
and increasing sand mining threaten the 
future of the deltaic shoreline and adja-
cent continental shelf. Currently, the dis-
tributary channel floors, the river banks, 
and the adjacent deltaic shoreline of the 
Mekong River delta are all eroding (Xue 
et al., 2011; Noh et al., 2013; Anthony et al., 
2015; Smajgl, et al., 2015; Allison et al., in 
press). Given that the Mekong Delta aver-
age elevation is <2 m above sea level, many 
delta provinces have already been subject 
to deleterious effects from subsidence and 
saltwater intrusion (Allison et  al., 2017, 
in this issue; Minderhound et  al., 2017). 

Significant future changes can be expected 
in delta progradation, coastal circulation, 
and patterns of sediment delivery, trans-
port, and accumulation (Xue et al., 2010; 
Darby et al., 2016; Li et al., 2017; Schmitt 
et al., in press). 

In this article, we look at the historical 
evolution of the modern Mekong Delta: 
its progradation from the land to the 
sea, its across-shelf and along-shelf sed-
iment transport regime, and the resul-
tant proximal (including shoreline) and 
distal accumulation. The goal is to use 
the long-term (decadal to millennial) 
geological depositional records to help 
us understand (1) the Mekong Delta’s 
recent geologic evolution, and (2) the 
rapid alterations that are beginning along 
its coasts and marine depositional envi-
ronments in response to relative sea level 
rise, land use change, and alterations to 
the sediment supply. 

LATE HOLOCENE SUBAERIAL 
DELTA EVOLUTION 
Most of the world’s large rivers began to 
form their Holocene marine deltas as a 
result of deceleration in the postglacial 
rate of sea level rise (Stanley and Warne, 
1994). The modern Mekong Delta was 
initiated during the local sea level still-
stand about 7,500 years ago (Bird et al., 
2010; Hanebuth et  al., 2012). Extensive 
stratigraphic studies have been con-
ducted based on more than 20 deep 
boreholes drilled in the Mekong Delta 
plain (Figure 2; e.g., Nguyen et al., 2000; 
Ta et  al., 2002; Hanebuth et  al., 2012; 
Tamura et al., 2012a, 2012b). These stud-
ies indicate that sea level regression began 
along the delta front about 4,800 years 
ago, coincident with the slowdown in 
sea level rise that allowed buildup of 
a subaerial delta. This led to the delta 
depocenter shifting farther seaward and 

FIGURE 1. (left) Topographic relief map of the Mekong River Basin with 
constructed and planned large capacity reservoirs/dams (the Shuttle 
Radar Topography Mission data are available at http://dds.cr.usgs.gov/
srtm; dam information is from Wang et al., 2011, and Xue et al., 2011). The 
red box denotes the area of the Mekong River delta shown in the figure at 
right. (right) MODIS-Terra satellite image (January 8, 2002; the white fea-
tures are clouds) showing the Mekong Delta’s distributary channels, sus-
pended sediments emanating from the river mouths into the East Sea, and 
coastal turbidity extending to the Gulf of Thailand. 
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the onset of subaqueous delta prograda-
tion at that time (Hanebuth et al., 2012). 
About 3,000 years ago, the Mekong Delta 
depositional package shifted from being 
“tide-dominated” to “tide-and-wave-
dominated” (Ta et al., 2002), marked by 
the development of sandy chenier ridges 
in its lower delta plain (Tamura 2012a, 
2012b; Figure 2). 

Since the middle Holocene 
(~7,500 years ago), the delta has pro-
graded more than 220 km from 
Cambodia eastward into the East Sea at a 
long-term mean rate of ~30 m yr–1. This 
progradation has buried earlier phases of 
the subaqueous delta beneath later sub-
aerial deltaic deposits, thus becoming 
the foundation for delta development 
(i.e.,  as a part of the Holocene delta). 
Transects A-B and X-Y in Figure  3, 
including 12 boreholes across the lower 
delta plain, clearly show the depositional 
sequences and time lines (Ta et al., 2002, 
2005) associated with this growth. These 
results and other studies (Ta et al., 2002; 
J.P. Liu et al., in press) also indicate that 
the current coastal zone and subaqueous 
delta on the shelf were formed only in the 
past 1,000 years (Figures 2 and 3). Cores 
VC-1, CM, and 5-1, drilled on the Ca 
Mau Peninsula, also verified that most 
distal accumulation has occurred within 
the past 1,000 years (unpublished data 
of authors Nguyen and Ta). This delta 
evolution model is different from those 
of other large river delta systems on 
East Asian margins such as the Yangtze 
(J.P. Liu et al., 2006, 2007), the Pearl (Ge 
et  al., 2014), and the Red (van Maren, 
2004; Tanabe et  al., 2006; Ross, 2011) 
Rivers. The paths of along-shelf trans-
port and locations of distal accumula-
tions for these deltas have been rela-
tively unchanged for the past 7,000 years 
(J.P. Liu et al., 2009, in press). However, 
the rapidly growing Mekong Delta has 
kept creating new shoreline and mov-
ing seaward (~30 m yr–1). Therefore, the 
modern subaqueous deposit we observed 
on the shelf represents a relatively young 
deltaic clinoform. 

 

PREVIOUS STUDIES OF THE 
SUBAQUEOUS DELTA
The offshore portion of the Mekong 
Delta rests on a very shallow and gently 
sloping (1:15,000) continental shelf. Two 
different tidal systems surrounding the 
Mekong Delta distribute sediments dis-
charged from the river channels: to the 
east in the East Sea, tides are semidiurnal 
with an average range of 2.5 m; to the 
west in the Gulf of Thailand, tides are 
diurnal and microtidal with mean 
ranges of only 0.8–1.0 m. Seasonal mon-
soonal wind patterns exert primary con-
trol on coastal water circulation around 
the delta; the dominant current moves 
northeastward under the wet monsoon 
(May to October) and shifts southwest-
ward under the dry monsoon (Xue et al., 
2010). About 85% of the Mekong River’s 
discharge is delivered during the wet 

monsoon season, with only ~15% dis-
charged between November and April 
during the dry monsoon (Mekong River 
Commission, 2005). Numerical simula-
tions using the Delft3D model and direct 
observations indicate that suspended 
sediment is advected out of the lower 
Song Hau channel to the sea during the 
high flow season, whereas net sediment 
transport is back into the channel during 
the low flow season (Nowacki et al., 2015; 
McLachlan et al., in press; Xing et al., in 
press; Ogston et al., 2017, in this issue). 
Outside the distributary channels, the 
nearshore tidal currents and wind-
driven surface currents play a major 
role in controlling suspended particle 
transport throughout the topset region. 
For example, observed net sediment 
fluxes near the Song Hau distributary 
mouth were predominantly seaward/

FIGURE 2. Geomorphological features of the Mekong Delta and the distribution of the deep bore-
holes drilled over the entire delta plain (from Ta et  al., 2002, 2005; Nguyen et  al., 2005). The 
selected cross sections X-Y and A-B are shown in Figure 3.
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northeastward during the wet season and 
predominantly landward/southwestward 
during the dry season (Eidam et  al., in 
press; Nittrouer et al., 2017, in this issue). 
Numerical simulations using the ROMS 
(Regional Ocean Modeling System) 
model also indicate that during the wet 
monsoon, extensive volumes of fluvial 
sediment are delivered and deposited 
near Mekong River distributary mouths 
(Xue et al., 2012). The model simulation 
shows that during the dry monsoon, a 
portion of sediment previously stored on 

the inner shelf is resuspended and trans-
ported away from the proximal delta 
area. A more recent Delft-3D model sim-
ulation of sediment transport (Thanh 
et al., in press) verifies the dominance of 
along-shelf transport toward the south-
west during the dry monsoon. Near the 
southern end of the Ca Mau Peninsula, 
Unverricht et al. (2013) report that tidal 
processes in the subaqueous Mekong 
Delta can also have a significant influence 
on sediment resuspension and transport 
direction. The ebb-tidal currents, with 

their relatively high velocities, also act to 
transport suspended sediment over lon-
ger distances southwestward.

GEOPHYSICAL AND 
GEOCHEMICAL STUDIES 
OF MEKONG-DERIVED 
SEDIMENTATION: PROXIMAL 
VERSUS DISTAL ACCUMULATION
To further study the processes controlling 
proximal and distal sediment distribution, 
transport, accumulation, and formation 
of the Mekong clinoform, two research 

FIGURE 3. Selected cross-sections X-Y and A-B (see Figure 2) show Mekong Delta depositional facies with time lines from the middle to the late 
Holocene. The time line contours are from Ta et al. (2002, 2005) and Nguyen et al. (2005), using calibrated 14C and optically stimulated luminescence 
ages. The red boxes highlight the subaqueous deltaic deposits on the shelf.
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cruises were jointly conducted by a team 
of scientists from the Institute of Marine 
Geology and Geophysics, Vietnam; 
North Carolina State University, USA; 
and University of Washington, USA, in 
September 2014 and March 2015. Using 
an EdgeTech  0512i CHIRP subbottom 
profiler (frequency range: 0.5–12 kHz), 
a total of 62 high-resolution seismic 
profiles were acquired, spanning more 
than 1,000 km on the inner shelf adja-
cent to the modern Mekong River delta. 
Most profiles were collected seaward 
of four distributary channels: My Tho, 
Ham Luong, Co Chien, and Song Hau 
(Figures  4 and 5). Besides the CHIRP 
sonar profiles, 32 kasten cores, 19 Shipek 
surface grab samples, and numerous 
water samples were obtained during the 
two research cruises (see DeMaster et al., 
in press; Eidam et  al., in press; J.P. Liu 
et al., in press). 

Analysis of seismic profiles from the 
Mekong inner shelf reveals a typical clino-
form structure with topset, foreset, and 
bottomset beds (Figure 5c). The Holocene 
subaqueous delta is ~15–20 m thick 
nearshore on the topset, which extends 
~8–10 km seaward. The topset rolls over 
into the foreset at a water depth of ~4-6 m; 
the foreset then extends another 5–6 km 
and gradually transitions into the bottom-
set at ~20 m water depth (Figure 5). 

In the northern and southern proximal 
portions of the continental shelf seaward 
of the Mekong’s distributary mouths, 
J.P. Liu et  al. (in press) observed, based 
on the 2014–2015 study, that the clino-
form extends <15 km seaward between 
the 4.5 m and 20.5 m isobaths (Figures 4 
and 5). In the central transition area, 
adjacent to the eastern side of the Ca Mau 
Peninsula, clinoform sediments become 
thinner (<10 m) but extend much farther 
(~20–35 km) from shore. No obvious 
topset facies have developed in this area, 
and seabed erosional features (e.g., trun-
cated beds) are present. The area around 
the southern Ca Mau Peninsula has accu-
mulated a very thick clinoform (up to 
22 m), with steep foreset and bottom-
set beds in relatively deep water (up to 

25 m). In the Gulf of Thailand, Mekong 
sediment extends 20–30 km farther sea-
ward (to 26 m water depth). The amount 
of Holocene sediment associated with 
Mekong accumulation gradually dimin-
ishes in the northwestern part of the 
delta, where no major distributary chan-
nels connect the Mekong River to the 
Gulf of Thailand.

Based on CHIRP sonar profiles from 
the 2014–2015 and earlier studies, J.P. Liu 
et al. (in press) created an isopach map of 
Mekong-derived, late-Holocene sediment 
accumulation on the shelf (Figure  6a). 
Beyond the 15 m-thick proximal sub-
aqueous delta that has formed adja-
cent to the distributary channel mouths 
(Figures  5 and 6a), a distal depocenter 
(up to 22 m thick) is growing ~300 km 
southwestward along the shelf, surround-
ing the Ca Mau Peninsula. J.P. Liu et al. (in 
press) calculated the area of the Mekong 
subaqueous delta and estimated the total 
volume of the deltaic sediment on the 
shelf. The results show that Mekong sedi-
ment covers more than 11,000 km2 on the 
inner shelf, with a calculated total volume 

of ~120 km3. Based on a dry bulk density 
of 1.0–1.2 g cm–3 in this area (Szczuciński 
et al., 2013; DeMaster et al., in press), the 
Mekong subaqueous delta has accumu-
lated a total of 120–140 × 109 tons of sed-
iment on the shelf in the past 1,000 years. 
More specifically, the Mekong prox-
imal subaqueous delta has accumu-
lated ~48 × 109 tons of sediment imme-
diately off its distributary channels and 
~36 ×  109  tons in the central transition 
area. In the distal area, ~60 × 109 tons of 
sediment have accumulated around the 
Ca Mau Peninsula and in the Gulf of 
Thailand (Figure 6a). 

Based on the maximum thickness 
(15–22 m) and the estimated age of the 
subaqueous deltaic deposits, the shelf-
wide averaged sediment accumulation 
rate (SAR) on a time scale of ~1,000 years 
is up to 2 cm yr–1, which agrees with 
210Pb-derived SARs (100-year time scale; 
DeMaster et al., in press) from cores col-
lected during the 2014–2015 studies. 
The 210Pb-based SARs are typically high 
(1 to >10 cm yr–1) immediately off the dis-
tributary mouths on the northeastern side 

FIGURE 4. 2014–2015 ship track lines for the CHIRP subbottom seismic profiler survey and sedi-
ment sampling stations off the Mekong distributary channels in the eastern side of the delta. Photos 
show deployments of the surface grab sampler, CHIRP profiler, and kasten corer. (The blue and 
green stations are from other related cruises.) 
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of the delta (the proximal depocenter) 
as well as in the areas south and west 
of the Ca Mau Peninsula (Figure  6b). 
Most foreset locations have 210Pb SARs 
between 1 cm yr–1 and 3 cm yr–1, and the 
bottomset locations have slower rates of 
~0.5 cm yr–1 (DeMaster et  al., in press). 
On a 100-year time scale, regions offshore 
of the distributary mouths and south of 
the Ca Mau Peninsula are the two main 
depocenters, with sediment accumula-
tion rates greater than those in the cen-
tral transition area and the offshore Gulf 
of Thailand area. This pattern agrees 
well with the isopach map derived from 
CHIRP sonar data (Figure 6b). The geo-
chemical, geological, and hydrodynamic 

characteristics of the sediments offshore 
of the Mekong distributaries are further 
discussed by other papers in this issue 
(i.e., Nittrouer et al., 2017, in this issue). 

SHORELINE RETREAT AND 
SUBAQUEOUS DELTA EROSION 
As outlined above, in the past 7,500 years, 
the Mekong River mouth has prograded 
220 km seaward, built a 50,000 km2 sub-
aerial delta over the foundation of the 
former subaqueous delta, and built a 
11,000 km2 modern subaqueous delta. 
Based on the size and age of the Mekong 
Delta, the long-term average shoreline 
growth rate has been ~30 m yr–1, and the 
net land gain rate has been 7 km2 yr–1. 

However, the modern Mekong Delta has 
been experiencing large-scale shoreline 
erosion and land loss in the past decade 
(Syvitski et  al., 2009; Anthony et  al., 
2015). In addition, its river channels and 
the banks of the delta have also eroded 
strongly (Noh et al., 2013). Due to grad-
ually increasing groundwater extraction 
over the past 25 years, on average the 
Mekong Delta has subsided by ~18 cm, 
with some areas sinking >30 cm (Erban 
et al., 2014; Minderhoud et al., 2017). The 
total coverage of mangrove forests on the 
Mekong Delta coastal zone decreased by 
50% between 1965 and 2001, with most 
of these forests destroyed after 1995 (Thu 
and Populus, 2007). This resulted both 

FIGURE 5. (a) Three-dimensional fence diagrams of CHIRP sonar profile results off the Mekong River mouth in 2014–2015, and (b) selected profiles 8-12 
and 29-31 off the Mekong’s main distributary channel, Song Hau. Yellow represents the Mekong subaqueous delta on the shelf, pink indicates infilled 
valley or channel sediment, and green areas are deposits from before the last glacial low stand. (c) Explanation of the seismic stratigraphic sequences 
in which the Highstand System Tract (HST) is the same as the yellow strata shown in (a) and (b). 
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from fragmentation (Seto and Fragkias, 
2007) and from replacement by aqua-
culture operations and shoreline stabi-
lization (Gupta, 2009). The exposure of 
the coast to waves and currents not only 
impacts the conditions for accumula-
tion of sediment and progradation of 
mangroves but also complicates natural 
shoreline evolution (Phan et  al., 2015; 
Fagherazzi, et al., 2017, in this issue).

During the pre-dam era, Mekong 
River sediment discharge was 160 mil-
lion tons per year (Milliman and Syvitski, 
1992). Milliman and Farnsworth 
(2011) reported the sediment discharge 
decreased to 110 million tons per year 
as a result of dam construction in the 
basin. More recent estimates for post-
dam sediment discharge vary from 
less than 67 million tons per year to 
145 million tons per year (C. Liu et  al., 
2013; Koehnken, 2014; Lu et  al., 2014; 
Darby et  al., 2016). Sediment transport 
in the Mekong Basin, especially down-
stream of Kratie, is still poorly under-
stood. Currently, the serious lack of long-
term and accurate sediment data for the 
Mekong River makes the sediment flux 
into the delta, and hence its potential 
impact on delta front evolution, diffi-
cult to assess (Walling, 2008; Wang et al., 
2011; Wild and Loucks, 2014; Darby 
et al., 2016). In fact, not only dam con-
struction but also land use change, cli-
mate variations, and hydrological cycles 
critically affect the sediment load in the 
Mekong Basin (Wang et al., 2011; Allison 
et al., 2017, in this issue). In addition, the 
estimated amount of annual sediment 
dredged from the lower Mekong River 
channels as a result of sand and gravel 
mining is ~56 Mt yr–1 (Bravard et  al., 
2013). Manh et  al. (2015) reported that 
there might be as much as a 95% reduc-
tion in Mekong-derived sediment reach-
ing the sea in the future. 

Anthropogenic changes in the 
Mekong Delta, such as those mentioned 
above, are often difficult to observe in 
seismic profiles of the subaqueous del-
taic clinoform. A more sensitive indi-
cator of net deltaic growth on a time 

scale of decades is change in the shore-
line as it responds to temporal variations 
in sediment supply, deposition and ero-
sion, and sea level rise. Consequently, 
we have examined satellite images of the 

shoreline along the southern Vietnam 
coast over the past 43 years to document 
the transition in delta dynamics from a 
mode of constructive progradation to 
a mode of destruction and erosion (Li 

FIGURE 6. (a) Seismic-derived isopach map and budget estimates of the Mekong’s late Holocene 
sediment accumulation on the shelves of the East Sea and the Gulf of Thailand (J.P. Liu et al., in 
press). Thickness is shown in meters. (b) Distributions of 210Pb-derived sediment accumulation rates 
and mud depocenters over the proximal and distal deltaic deposits (DeMaster et al., in press). 
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et al., 2017). To compare our newly dig-
itized shorelines to the shorelines widely 
used in GIS applications, we employed 
the Global Self-consistent, Hierarchical, 
High-resolution Shoreline Database 
(GSHHS; Wessel and Smith, 1996) as a 

reference base map, and then overlaid 
our new shorelines. 

The Mekong deltaic coast was divided 
into four segments based on the shore-
line change rate: proximal (river 
mouth) coast (Segment 1), Ca Mau 

east coast (Segment 2), Ca Mau west 
coast (Segment 3), and Gulf of Thailand 
coast (Segment 4). The results show 
almost 50% of the Mekong’s shoreline 
is currently eroding (see Figure  7a). 
Segments 1 and 3 are the main accretion-
ary segments, and Segments 2 and 4 are 
predominantly erosional (see Figures 7a 
and 8a,c). Furthermore, based on the 
trends and rate changes of accretion or 
erosion, Li et al. (in press) catalogued the 
coastal zone into four ranks: (1) increas-
ing accretion, (2) decreasing accretion, 
(3) increasing erosion, and (4) decreas-
ing erosion (Figure  7a). For example, 
the eastern shore of Cu Lao Dung and 
western side of Ca Mau are still grow-
ing (Figure  8a,c), but the southeast-
ern side of Ca Mau is severely retreat-
ing (Figure  8b, Zone 2 in Table  1). In 
addition, the annual shoreline change 
rate has significantly decreased over 
the past four decades from 7.84 m yr–1 
to −1.42 m yr–1 (Table 1). The land area 
gain of the entire delta decreased from 
4.32 km2 yr–1 in the 1970s to 1.0 km2 yr–1 
from 1995 to 2005, and the shoreline 
receded by −0.05 km2 yr–1 from 2005 to 
2015 (Table  1). There is a notable shift 
around 2005, coincident with the onset 
of river damming, when the Mekong 
Delta is characterized by both shore-
line accretion/erosion and geomorpho-
logical changes. In addition, beginning 
in 2006, Mekong Delta subsidence rates 
have increased from 0.4–0.6 cm yr–1 
to 0.9–1.1cm yr–1 (Minderhoud et  al., 
2017). Thus, we infer that dam construc-
tion and land subsidence might be major 
contributors to delta erosion. Other fac-
tors that contribute to these shoreline 
trends, such as sea level rise and sand 
mining, are further discussed by Allison 
et al. (2017, in this issue).

Not only are the modern Mekong 
Delta shorelines extensively retreating 
but our nearshore high-resolution sub-
bottom profiling surveys reveal that the 
east-central portion of the subaqueous 
deltaic seabed is also strongly eroding 
(e.g., Line 07-9 and 07-11 in Figure 7b,c). 
Sediment cores, coupled with analyses of 

a

c

b

FIGURE 7. Mekong Delta shoreline changes between 1973 and 2015. (a) Spatial variations of coastal 
erosion versus accretion from Li et al. (2017). The pie chart shows the percentages of the coast-
line undergoing increased or decreased accretion and erosion. (b) and (c) CHIRP sonar profiles 
(Lines 07-9 and 07-11, respectively) showing a distinct erosional feature on the seafloor surface 
off the eastern Ca Mau Peninsula, where the shoreline has been retreating in recent decades 
(see Figure 8b). 
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TABLE 1. Mekong Delta’s historical shoreline growth rates and land-area-gain rates, based on Landsat images from 1973 to 2015. 

Shoreline Change (m yr–1) Area Change (km2 yr–1)

Zones
1973

– 
1979

1979
– 

1987

1987
– 

1995

1995
– 

2005

2005
– 

2015
43 yr 

Average Zones
1973

– 
1979

1979
– 

1987

1987
– 

1995

1995
– 

2005

2005
– 

2015
43 yr 

Average

1  8.66 8.07 12.07 9.68 4.52 8.87 1 1.94 2.01 2.96 2.25 1.15 2.12

2  −10.32 −8.00 −12.22 −13.15 −20.90 −12.79 2 −1.39 −1.87 −2.23 −1.75 −1.71 −1.71

3  28.15 23.33 27.55 19.48 11.83 21.53 3 2.82 2.16 1.71 1.09 1.64 1.99

4  8.43 2.48 3.57 −10.03 −4.53 −1.66 4 0.95 0.35 −0.53 −0.56 −1.13 −0.18

All Areas   7.77 6.11 7.84 2.75 −1.42 4.36 All Areas 4.32 2.64 1.91 1.03 −0.05 2.23

210Pb geochronology, indicate that there 
is little to no modern fluvial sediment 
accumulation on the seafloor off the cen-
tral transition area (DeMaster et  al., in 
press), which parallels the rapid shore-
line retreat. Extensive seismic data anal-
yses by J.P. Liu et  al. (in press) indicate 
that an erosional trough also extends off-
shore of the southern Ca Mau Peninsula 
(see Figures 5 and 7). Numerical model-
ing of offshore areas using ROMS reveals 
that strong bed erosional stress is affect-
ing the portion of the modern Mekong 
subaqueous delta east of the Ca Mau 
Peninsula, particularly during intense 
dry monsoon seasons (Xue et al., 2012). 
With an increase in the number of dams, 
ongoing sand mining, delta subsidence, 
and sea level rise, the Mekong Delta 
will likely continue to transition from 
a constructive to a destructive phase, 
with erosion of both continental shelf 
deposits and shorelines. 

SUMMARY
Beginning in the early middle Holocene 
~7,500 years ago, the Mekong River 
has prograded seaward >220 km and 
formed one of the largest delta plains in 
the world. Sediment cores and sequence 
stratigraphic studies show that the coastal 
zone and adjacent subaqueous delta on 
the shelf were mainly formed in the past 
~1,000 years, and thus the Mekong sub-
aqueous delta is young compared to the 
other Asian deltas. CHIRP sonar surveys 
off the Mekong subaerial delta reveal a 
subaqueous delta 10–20 m thick on the 
inner shelf (20–25 m water depths), hug-
ging the modern shoreline and shoreface. 

This is a relatively small and young clino-
form. The modern Mekong subaqueous 
delta extends only 15–30 km across the 
shelf; however, the clinoform extends 
>300 km southwestward along the shelf. 

Based on seismic-derived sediment 
thicknesses and approximate age, the 

calculated thousand-year-time scale 
accumulation rate for the coast of south-
ern Vietnam is ≤2 cm yr–1, which is com-
parable to many of the 210Pb-derived SAR 
values for the area (i.e., 1–10 cm yr–1 on 
the topset and foreset beds; DeMaster 
et al., in press; Eidam et al., in press). The 

FIGURE 8. Selected locations showing detailed shoreline changes digitized from Landsat images 
collected between 1973 and 2015 (see locations in (a) and upper left in (d)). The shaded areas repre-
sent the land, and the coastline is based on the Global Self-consistent, Hierarchical, High-resolution 
Shoreline Database (GSHHS; Wessel and Smith, 1996).
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total sediment volume of the subaqueous 
delta is estimated to be ~120 km3, equiv-
alent to 120–140 billion tons of sedi-
ment. Based on this estimate, the annual 
average accumulation of Mekong River 
sediment for the past 1,000 years has 
been ~120–140 million tons per year, 
which is within the estimated range 
of the historical annual sediment load 
(110–160 million tons).

Analysis of Landsat images from the 
past 43 years shows a significant decrease 
in the rate of shoreline accretion for 
the Mekong Delta. The rate of shore-
line progradation has steadily decreased 
from 7.2 m yr–1 between 1973 and 1995 
to 2.8 m yr–1 between 1995 and 2005 
to −1.4 m yr–1 between 2005 and 2015. 
Shoreline migration rate is a sensitive 
indicator of change in delta growth mode, 
as this Mekong deltaic system appears to 
be transitioning in recent decades from 
a constructive (accretionary) mode to a 
destructive (erosional) mode. In the near 
future, the realization of planned dams, 
expansion of water withdrawal, uncon-
trolled riverbed mining, climate change, 
and other factors threaten to exacer-
bate the ongoing erosional degradation 
and submergence by rising sea level of 
the Mekong Delta. 
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