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Satellites to Seafloor
TOWARD FULLY AUTONOMOUS OCEAN SAMPLING

By Andrew F. Thompson, Yi Chao, Steve Chien, James Kinsey, M. Mar Flexas, Zachary K. Erickson, John Farrara, 

David Fratantoni, Andrew Branch, Selina Chu, Martina Troesch, Brian Claus, and James Kepper

SCIENTIFIC AND TECHNICAL 
MOTIVATION
A fundamental problem in oceanog-
raphy is that key processes span many 
orders of magnitude in spatial and tem-
poral scales. For instance, the global over-
turning circulation, occurring on scales 
of O(108 m, 1010 s), is tightly coupled 
to water mass modification that occurs 
on scales of O(10–2 m, 1 s)—a variation 
of 10 orders of magnitude in both space 
and time. Ocean observational strate-
gies have typically been focused on cap-
turing a specific part of this range; for 
example, mooring arrays and the Argo 
network of autonomous profiling floats 
cover large temporal and spatial scales, 

respectively, while scientific cruises that 
collect water samples or deploy high-​
resolution (e.g.,  microstructure) profil-
ers may resolve the very smallest scales. 
Observational strategies are moving 
toward increasing the range of measured 
scales through the use of remote sensing, 
high-frequency radar, Lagrangian instru-
ments, and other techniques.

Many key research questions related 
to the ocean’s role in the climate system 
lie at the interface of traditional oceano-
graphic disciplines. An interdisciplinary 
approach is needed that prioritizes scales 
where ocean physics, chemistry, and biol-
ogy are most strongly coupled. Recent 
work shows that many essential processes, 

such as air-sea fluxes, nutrient transport, 
and water mass subduction, occur at the 
ocean submesoscale (Lévy et  al., 2012; 
Mahadevan, 2016). At the submesoscale, 
ocean dynamics evolve on time scales of 
days and over length scales between 1 km 
and 20 km, ranges that are difficult to cap-
ture observationally. Furthermore, mov-
ing beyond local process studies, measur-
ing the impact of submesoscale motions 
and ocean properties on larger scales, or 
globally, will require an intelligent alloca-
tion of finite resources. Finally, the need 
to collect coincident information about 
physical, chemical, and biological vari-
ables requires sampling with a broad 
range of sensors that typically cannot be 
accommodated on a single platform.

Distributions of physical and biogeo-
chemical properties (e.g.,  temperature, 
primary productivity) in the ocean are 
patchy (Martin et al., 2002). This is partic-
ularly acute in the upper ocean at spatial 
scales between 10 km and 50 km and over 
time scales of 24 hours to a few days. Fluid 
motions at these scales, typically referred 
to as the mesoscale, have a strong influ-
ence on planktonic community struc-
ture in the upper ocean and at upper tro-
phic levels (Lévy et al., 2013; Siegel et al., 
2016). Submesoscale motions also gener-
ate strong vertical velocities that may con-
tribute significantly to the total export of 
carbon from the surface ocean into the 
interior ocean (Omand et al., 2015). Thus, 

ABSTRACT. Future ocean observing systems will rely heavily on autonomous 
vehicles to achieve the persistent and heterogeneous measurements needed to 
understand the ocean’s impact on the climate system. The day-to-day maintenance 
of these arrays will become increasingly challenging if significant human resources, 
such as manual piloting, are required. For this reason, techniques need to be developed 
that permit autonomous determination of sampling directives based on science goals 
and responses to in situ, remote-sensing, and model-derived information. Techniques 
that can accommodate large arrays of assets and permit sustained observations of 
rapidly evolving ocean properties are especially needed for capturing interactions 
between physical circulation and biogeochemical cycling. Here we document the first 
field program of the Satellites to Seafloor project, designed to enable a closed loop of 
numerical model prediction, vehicle path-planning, in situ path implementation, data 
collection, and data assimilation for future model predictions. We present results from 
the first of two field programs carried out in Monterey Bay, California, over a period of 
three months in 2016. While relatively modest in scope, this approach provides a step 
toward an observing array that makes use of multiple information streams to update 
and improve sampling strategies without human intervention.
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the marine carbon cycle responds dra-
matically to individual events that are spa-
tially and temporally intermittent. A strik-
ing example is annual spring blooms: in a 
period of a few days, an intricate balance 
between surface heating, vertical nutri-
ent fluxes, and upper ocean turbulence 
triggers rapid growth in phytoplank-
ton that completely restructures carbon 
and nutrient concentrations and fluxes in 
localized ocean regions (Sverdrup, 1953; 
Mahadevan et  al., 2012). This intermit-
tency makes it difficult to identify and 
study the evolution of surface dynamics 
from a static array of assets. Scaling this 
regional example up to a global physical-​
biological observing array would require 
a large number of platforms in different 
regions that may be targeting different 
scales and different physical dynamics.

In 2013–2014, the Keck Institute for 
Space Studies (KISS) conducted a six-
month study to investigate the premise 

that autonomous, coordinated groups 
of ocean robots programmed to use 
remote-sensing information and shore-
based data assimilation could signifi-
cantly advance our ability to obtain 
ocean observations needed to con-
strain the marine carbon cycle (Figure 1; 
A.  Thompson et  al., 2015). The primary 
conclusion of this study was the need to 
develop techniques that allow heteroge-
neous groups of robots to autonomously 
determine sampling strategies with the help 
of numerical ocean forecasts and remotely 
sensed observations. This work builds on 
earlier coordinated efforts to optimize 
marine autonomous observing networks.

Previous attempts at designing ocean 
observing systems that use multiple 
vehicles were conducted either with 
extensive human interaction or non-​
adaptive sampling approaches. Major 
efforts that involved adaptive surveys 
with multiple gliders under various 

degrees of automated control include the 
Autonomous Ocean Sampling Networks 
(Curtin et  al., 1993; F. Zhang et  al., 
2007; Curtin and Bellingham, 2009), 
the Adaptive Sampling and Prediction 
(ASAP; Leonard et  al., 2010), and the 
Shallow Water 06 (SW06; Tang et  al., 
2007) programs. There have been several 
efforts to use high-resolution assimilat-
ing numerical ocean models for planning 
vehicle trajectories (e.g., Smith et al., 2010; 
D. Thompson et  al., 2010; Wang et  al., 
2013). Finally, fleets of multiple heteroge-
neous ocean robots have been deployed 
for projects like REP (Rapid Environment 
Picture) and CANON (Controlled, Agile, 
and Novel Observing Network; Y. Zhang 
et al., 2012; Das et al., 2014). A compan-
ion article, Flexas et al. (in press), details 
feature-tracking activities associated with 
the current KISS field program.

Here we report on the first field sea-
son associated with the technical 

AUVs, gliders, Wave Gliders, floats, etc.

T, S, O2, Chl-a

FIGURE 1. Schematic and work flow of the Satellites to the Seafloor Keck Institute for Space Studies (KISS) concept (A. Thompson et al., 2015). The 
design calls for a combination of in situ (red) and satellite-based (purple) measurements to be assimilated into a high-resolution numerical model (blue). 
Both model output and observations are passed to a suite of planning algorithms (orange) that direct the in situ observing array, accounting for the 
varying capabilities and health of each instrument. Right-hand panels show an example of a path-planner template (orange), sea surface temperature 
in Monterey Bay from the 300 m resolution numerical output (blue, see Figure 2), and coastal California ocean color from the NASA Visible Infrared 
Imaging Radiometer Suite (VIIRS) scanning radiometer (purple).
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development component of the KISS 
Satellites to Seafloor project, carried 
out in Monterey Bay between July and 
October 2016. The main goals of the field 
program were to (1) develop algorithms 
that maximize information gain from 
in situ observations with the use of shore-
based circulation models; (2) design a 
framework in which a fleet of heteroge-
neous ocean robots can receive directives 
from shore-based models that consider 
the health, sensing, navigation, and com-
munication characteristics of the robots; 
and (3) implement these methods on a 
range of vehicles, including autonomous 
underwater vehicles (AUVs), underwater 
gliders, and autonomous surface vehicles 
(ASVs). Considering the need for future 
ocean observing systems with longer per-
sistence and increased asset heterogene-
ity and complexity, human control and 

piloting of the array is unlikely to be fea-
sible. For this reason, a guiding princi-
ple of this project is to develop scalable 
techniques that can accommodate large 
arrays of assets and permit sustained 
observations of the upper ocean’s rapidly 
evolving submesoscale.

PROJECT COMPONENTS
The KISS field program was comprised 
of three components: (1) a numerical 
modeling effort to forecast the evolution 
of mesoscale and submesoscale struc-
ture, (2) a suite of algorithms to auton-
omously identify submesoscale features 
and to determine optimal sampling pat-
terns, and (3) an array of in situ assets to 
implement the planned sampling pattern. 
The field program was conducted in mul-
tiple stages that focused on different spa-
tial scales and sampling strategies.

Regional Ocean Modeling System 
(ROMS)
During the KISS field experiment, a 
nested ROMS-based coastal ocean mod-
eling and data assimilation system pro-
vided both nowcast and forecast on a daily 
basis. ROMS is an open-source model 
developed by the oceanographic com-
munity (Shchepetkin and McWilliams, 
2005). In the configuration used here, 
the innermost ROMS domain cov-
ers the greater Monterey Bay region to 
about 75 km offshore with a horizon-
tal resolution of approximately 300 m. It 
is nested within an intermediate ROMS 
domain with a horizontal resolution of 
1.1 km covering the coast from Pt. Reyes 
to Morro Bay and out to about 250 km 
offshore. The outermost ROMS domain 
covers the entire California coastal ocean 
from north of Crescent City, California, 
to Ensenada, Mexico, with a resolu-
tion of 3.3 km (Figure  2). In the verti-
cal, there are 40 unevenly spaced sigma 
levels—a type of terrain-following verti-
cal coordinate—used in all three ROMS 
domains, with the majority of these clus-
tered near the surface to better resolve 
near-surface processes.

Tidal forcing is added through lateral 
boundary conditions that are obtained 
from a global barotropic tidal model 
(TPXO.6; Egbert et al., 1994; Egbert and 
Erofeeva, 2002). Lateral boundary con-
ditions for the California domain are 
derived from global HYCOM (Hybrid 
Coordinate Ocean Model) forecasts 
(http://hycom.org). Both boundary con-
ditions are provided at the outermost 
3.3 km ROMS domain. The atmospheric 
forcing required by the ROMS model is 
derived from hourly operational fore-
cast output performed with the NCEP 
(National Center for Environmental 
Prediction) 5 km North American model 
(NAM). An essential component of 
the nowcast and forecast system is the 
data assimilation scheme, a mathemat-
ical methodology for optimally synthe-
sizing different types of observations 
with model first guesses (that is, fore-
casts). A new two-step multiscale (MS) 
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FIGURE 2. Sea surface temperature (°C) for April 5, 2016, (a) as observed by AVHRR/MODIS satellites, 
and as simulated in the three nested Regional Ocean Modeling System (ROMS) domains: (b) California 
3 km, (c) central California 1 km, and (d) Monterey Bay 300 m. See text for further discussion.

http://hycom.org
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three-dimensional variational (3DVAR) 
data assimilation algorithm is used here. 
This MS-3DVAR scheme is a general-
ization of the 3DVAR methodology of 
Li et al. (2008) and is described in detail 
in Li et al. (2015). The MS-3DVAR data 
assimilation methodology was selected 
because of its ability to propagate obser-
vational information, which is often spo-
radically and irregularly distributed in 
both the horizontal and vertical direc-
tions through an advanced error covari-
ance formulation, as well as its compu-
tational efficiency that enables real-time 
operational forecasting.

The ROMS nowcast/forecast system 
is run daily in near-real time. The sys-
tem incorporates all available real-time 
streams of data gathered from in situ or 
remote platforms, and is executed fol-
lowing the procedures of numerical 
weather prediction at operational mete-
orological centers. An assimilation step 
is carried out every six hours. The near-
real time operation schedule during the 
KISS field experiment was designed to 
minimize the time lag between nowcast 
and forecast model times and real time 
and to ensure that the 48-hour model 
forecast was available by 5:00 am local 
time (PDT). More details on our mod-
eling system, including the data assimi-
lation methodology and a validation of 
the operational results, can be found in 
Chao et al. (2017).

As an example of the significant 
impact that increased horizontal res-
olution can have on the fidelity of the 
representation of small-scale features 
in the model fields, Figure  2 shows 
the daily mean sea surface tempera-
ture (SST) on April 5, 2016, as observed 
by AVHRR/MODIS (Advanced Very 
High Resolution Radiometer/Moderate-
resolution Imaging Spectroradiometer), 
as well as the daily output of the model 
nowcasts with increasing resolutions 
from 3 km to 1 km and 300 m. On this 
particular day, a large standing meso-
scale eddy is observed off the continen-
tal shelf. This feature is associated with 
warmer SSTs and separated from warmer 

coastal water by a band of lower SST 
related to a wind-driven upwelling front 
(Ryan et  al., 2005). Submesoscale fea-
tures associated with small-scale eddies 
and filaments that are not well simulated 
by the relatively coarser models at 3 km 
and 1 km resolutions are reproduced by 
the model at 300 m resolution, for exam-
ple, a filament of warmer SST located at 
36.9°N and 122.5°W. Furthermore, the 
lateral scales and intensity of the cooler 
upwelled waters are more accurately cap-
tured in the 300 m ROMS model.

Feature Detection and 
Path Planning
The KISS observing system relies on a 
suite of feature detection algorithms, 
applied to the ROMS model output, to 
identify “target” locations for the in  situ 
assets. Targets are defined by persistent 
(identified over a period of a day or lon-
ger) submesoscale physical oceano-
graphic structures. With an appropriate 
sensor payload, the sampling strategies 
described herein are equally applica-
ble to features defined by biological and/
or chemical signatures. During the field 
program, a range of different upper ocean 
diagnostics were considered, including 
surface vorticity, lateral buoyancy gradi-
ents, and surface speed. Ultimately, we 
used horizontal SST gradients to detect 
surface fronts. The planning algorithm 
not only identified regions of enhanced 
SST gradients but also tracked the evolu-
tion of these features over multiple days 
using the gridded, three-dimensional, 
time-dependent ROMS ocean model 
with a time step of one hour.

The feature detection algorithm uti-
lizes the two-dimensional spatial lay-
out of SST at each time step ti. Features 
are selected based on the gradient of 
the smoothed SST (| SST |) data using 
the Savitzky-Golay filter (Savitzky and 
Golay, 1964), a low-pass filter with a 
moving window. The feature detection 
algorithm chooses N features with the 
highest gradients at time t0 . To allevi-
ate the problems of rapid merging of ini-
tial high-​gradient regions, the entire grid 

is initially subdivided into equal sec-
tions and a target is selected from each 
section. Each feature is tracked in time 
by estimating the projected trajectory, 
including a user-defined velocity con-
straint that restricts the distance traveled 
between successive ti. In this approach, 
nearby features are allowed to merge 
during the tracking procedure.

The path planner produces control 
directives that instruct the assets to fol-
low a template path relative to the iden-
tified feature. Two different template 
paths were developed: straight transects 
for the slower instrumentation, such as 
gliders, and bowtie shapes for the faster 
AUV assets. Future iterations could also 
optimize the sampling template. The path 
planner simulates the movement of an 
asset through the ocean using a move-
ment model that dictates the undulation 
of the vehicle at a glide slope to the des-
ignated depth applying the control direc-
tive and the interpolated ROMS current 
velocity at the relevant latitude, longi-
tude, depth, and time.

For each communication between 
shore and vehicle, a new plan is gener-
ated, covering multiple dives in case of 
poor communications. The template path 
(transect, bowtie) indicates a target lat-
itude and longitude for the next vehicle 
surfacing. The planner considers a range 
of heading control directives and selects 
the control directive that, when simu-
lated, minimizes error between the sim-
ulated surfacing location and the target 
location. This process is repeated until a 
set time period is reached.

Critically, the same planning algo-
rithm accommodates assets with differ-
ent characteristics. For our Monterey 
study, we used ocean gliders and AUVs. 
Despite the differences in vehicle char-
acteristics (AUVs are much faster, glid-
ers dive much deeper), the same plan-
ning algorithm was used for both types of 
vehicles. Glider plans are regenerated at 
each surfacing. For the AUVs, plans were 
generated daily for both moving and sta-
tionary features and were provided to the 
AUV operational team for deployment.
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Glider and AUV Operations
Two different classes of autonomous 
vehicles were deployed during this field 
program: underwater gliders and pro-
pelled AUVs. The long-term gliders, one 
Seaglider (SG621) and one Spray glider 
(NPS34), were deployed in July 2016 to 
provide an overview of the hydrographic 
and biogeochemical properties of the 
study area. The gliders were piloted to 
sample perpendicular to the continen-
tal slope, which hosts a series of frontal 
currents, in particular at the shelf break 
(Figure 3a; Ryan et al., 2005; Flexas et al., 
in press). The gliders were flown in par-
allel sections with a lateral separation of 
~20 km to permit calculation of lateral 
gradients at the submesoscale; for larger 
numbers of vehicles, the optimal separa-
tion between assets would also be deter-
mined by the planner. Due to the rela-
tively shallow depths over the continental 
shelf and the gliders’ slow speeds, the 
gliders did not sample in depths less than 
~150 m. Unfortunately, due to inclement 
weather conditions during the field pro-
gram, it was not possible to carry out spa-
tially co-located deployments of the glid-
ers and the AUVs. Therefore, the path 
planning efforts focused on the AUV 
sampling, while the gliders were used to 
carry out autonomous feature-tracking 

activities, as described in a later section 
on Deep Fronts and Feature Tracking.

The paths generated using the ROMS 
model were applied during an inten-
sive AUV field program that was sup-
ported by R/V Shana Rae operating out 
of Santa Cruz, California. A typical oper-
ational cycle was to leave dockside at 
5:00 am local time, with the AUVs fully 
charged and missions loaded, steam to 
targeted feature locations, deploy vehi-
cles, monitor their progress, and recover 
early afternoon. A steaming time of about 
two to three hours from Santa Cruz to 
targets enabled us to capture a selec-
tion of features.

The observing platforms used for this 
field experiment consisted of three Iver2 
(Ocean Server Technology Inc.) AUVs. 
All three of the vehicles were equipped 
with a 25 kHz Woods Hole Oceanographic 
Institution acoustic micro-modem and a 
hull-mounted Neil Brown conductivity/
temperature sensor (Ocean Sensors Inc.). 
Additionally, two vehicles were config-
ured with the YSI 6-Series Multiparameter 
Water Quality Sonde for sensing various 
biochemical parameters. All three vehi-
cles operated at the most energy efficient 
speed of 2.5 knots and endured mission 
lengths of approximately 3.5 hours while 
expending less than 60% of total battery 

capacity. All three vehicles conducted 
undulating dives to depths of 20 m, 40 m, 
60 m, and 80 m in a bow-tie type tra-
jectory over a 3 km2 area. Figure  4 dis-
plays an example of trajectory and tem-
perature data gathered by the AUVs on 
September 2, 2016. We acknowledge that 
the 3.5-hour deployment durations mean 
that for this field program the primary 
goal was feature detection; future deploy-
ments would use similar techniques to 
capture feature evolution.

The field program schedule provided 
one week to implement and verify the 
overall KISS project concept. The week 
was divided between software and hard-
ware testing, proofs of concepts, algo-
rithm refinement, and finally, a full 
demonstration of the “start-to-finish” 
KISS project concept.

WIND-DRIVEN UPWELLING 
FRONTS
From August 27 to September 3, 2016, 
multiple deployments of the Iver2 AUVs 
were carried out over the continental shelf 
(Figure  3b). Each morning, the survey 
location was determined autonomously 
following analysis of the output from 
the ROMS 72-hour forecast arriving at 
5:00 am. Due to the nearshore limitations 
of the sampling activities, we targeted 
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shallow upwelling fronts that are typically 
less than 10 km in scale. The full imple-
mentation of the KISS project concept 
was carried out on both the September 1 
and 2; these dates correspond to the blue 
butterfly locations in Figure 3b.

An example of the implementation 
from September 2, 2016, is summarized 
in Figure 4. Panels (a) and (b) show snap-
shots of SST and the gradient of SST from 
the ROMS model corresponding to the 
expected deployment time of the assets 
(8:00 am local time). The autonomous 
feature detection accurately captured the 
strong temperature front (approximately 
1°C km–1 and mapped out a butterfly pat-
tern shown in white in these panels. As 
shown in panels (c) and (d), two AUVs 
(i106 and i107) were deployed just before 

at the end of its sampling pattern.
The frontal structure captured by 

the AUV registered a 1°C temperature 
anomaly over a distance of ~1 km. This 
is equivalent to a lateral buoyancy gra-
dient of 10–5 s–2, which is indicative of a 
strong submesoscale front. Although the 
front was not located at the center of the 
sampling array, the fidelity between the 
model output and the observations is ver-
ified by capturing a front in this small 
(approximately 4 km × 4 km) domain. 
A limitation of this concept demonstra-
tion is the relatively short duration of the 
AUV deployment. This curtailed our abil-
ity to track the evolution of the front in 
time in order to determine both the fidel-
ity of the numerical model over longer 
periods of time and the ability of the path 
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and position of two Iver vehicles (i107, upper arrows; i106, lower arrows) on September 2, 2016. (d) Temperature time series from Iver vehicle i107. The 
colored arrows correspond to the legs of the butterfly, as shown in panel (c). The position of the upwelling front is indicated by the yellow triangle.

8:00 am and carried out the sampling pat-
tern for a period of approximately four 
hours. The vertical structure of the tem-
perature shown in panel (c) indicates that 
mixed layers were very shallow, ~20 m. 
However, even over this small domain, 
the AUVs were able to capture significant 
lateral temperature gradients. The yellow 
triangle in panel (d) highlights a period 
of reduced near-surface temperature, 
with temperature changing just over 1°C. 
This temperature difference is nearly half 
of the temperature drop across the front 
shown in panels (a) and (b). This feature 
is persistent over a period of 30 minutes, 
suggesting that it is not the signature of 
internal waves. The reduced surface tem-
perature is also apparent as the glider 
returns to the western side of the butterfly 
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planner to follow the movement of the 
front. In future iterations, a combination 
of model output and in situ observations 
will be used to update the sampling pat-
terns (Figure 1).

DEEP FRONTS AND 
FEATURE TRACKING
In addition to the near real-time exper-
iments carried out over the continen-
tal shelf, we also explored autonomous 
methods for detecting submesoscale 
fronts and optimizing sampling of these 
features without human intervention. 
This approach uses 48-hour forecasts 
from the ROMS model described ear-
lier, feature-tracking techniques, and an 
autonomous planner that controls the 
observing platform. This component 

of the field program was carried out in 
October 2016.

Our targeted “features” for this activ-
ity are thermohaline structures, subduct-
ing from below the mixed layer into the 
deep ocean. Because these features are 
strongly density-compensated (they form 
along density surfaces, but are associated 
with large, compensated temperature 
and salinity gradients), we elect to diag-
nose spice π, as introduced by Flament 
(1986). The absolute value of spice is less 
important than spice variance, indica-
tive of large variations in warm/salty and 
cold/fresh water masses along a density 
surface. Thus, the autonomous planner 
uses lateral, or along-track, gradients in 
spice, ∂π/∂x, to detect features of interest. 
Spiciness has been widely used to study 

the California Current System (Flament, 
2002, and references therein). Isobaric 
and isopycnal hydrographic variability 
specifically from ocean gliders is charac-
terized by Rudnick and Cole (2011) and 
Cole and Rudnick (2012).

Flexas et  al. (in press) presents a 
detailed description of our feature-​
tracking activities, and they are briefly 
summarized here. Using the ROMS fore-
cast, a series of simulated transects are 
determined along a track, nominally 
perpendicular to the continental slope 
(Figure 5a). For a given period, the sim-
ulated glider track can either continue 
straight or can be directed to “turn back” 
if a front is detected. Turning back on the 
front permits multiple realizations of the 
high-gradient region over a short period 
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FIGURE 5. Feature-tracking experiment on October 22, 2016. (a) Glider path: black circles indicate all dives performed during the feature tracking 
experiment (October 22–30, 2016). Dives performed by the Seaglider (SG621) on October 22 are highlighted in blue (first dive, 635, is highlighted in 
magenta). The black contours show bathymetry at 200 m intervals; the 1,000 m isobath is shown in bold. (b) Temperature-salinity plot for the points 
extracted from the ROMS model (black) and from the glider data along the blue curve in panel (a) (red points). (c) Probability distribution function (PDF) 
of the lateral gradient of spice (∂π/∂x, kg m–4) obtained from the glider (red) and shown in (d) and extracted from ROMS 300 m forecast output at glider 
locations (black) and shown in (e). Sub-panels show the PDF for the eastern and western halves of the sections as well as just between 200 m and 
400 m. In the lower panels, black dotted lines indicate the position of the actual (d) and simulated (e) glider. Analysis of additional sections is shown in 
Flexas et al. (in press).



Oceanography  |  June 2017 167

of time. The track selected is the one that 
optimally crosses the strongest lateral 
spice gradients. This track is then auton-
omously delivered to the glider as a series 
of way points.

Figure 5d shows an example of the lat-
eral spice gradient observed from glider 
data on October 22, 2016. The ROMS-
derived lateral spice gradient at the cor-
responding glider location is shown in 
panel (e) for comparison. Similar to the 
upwelling fronts described earlier, the 
location of the submesoscale fronts are 
not found at precisely the same loca-
tion, but the vertical structure and mag-
nitude of the variability is similar. We ver-
ify this by plotting a histogram of ∂π/∂x 
in panel  (c), both for the entire transect 
and for subdomains of the transect. The 
distribution is similar, although ROMS 
tends to underestimate the gradients. 
Flexas et al. (in press) provide an analy-
sis of multiple sections that suggest that 
the ROMS model is accurately captur-
ing the physical process related to the 
subducting fronts and has skill in direct-
ing the glider(s) to a region of strong 
frontogenesis.

Based on model estimations, the sam-
pling “gain,” defined as the amount of 
spiciness gradient sampled, is 50% larger 
for gliders that are autonomously piloted 
by the feature-tracking planner as com-
pared to a sampling pattern that simply 
samples across the entire width of the 
continental slope (Flexas et al., in press).

PERSPECTIVES
Future ocean observing arrays will inevi-
tably move toward greater levels of auton-
omy using larger fleets of a given plat-
form or with arrays of heterogeneous 
assets. This project builds upon previ-
ous and ongoing efforts that have appre-
ciated the need for adaptable observing 
arrays but that have typically involved 
intensive human interpretation of the 
information being returned by the vehi-
cles in real time. We argue that this level 
of human involvement is not sustainable 
because (a) it becomes difficult to main-
tain persistent observations in this mode, 

and (b)  the quantity of data generated 
by models and satellites (and potentially 
multiple in situ instruments) makes it too 
difficult to carry out near-real-time syn-
thesis. As the need to acquire informa-
tion that crosses traditional biological/
chemical/physical disciplines increases, 
the burden on human resources will also 
increase. A solution is to cede more con-
trol over lower-​level tasks, such as tar-
get determination and sampling strat-
egies, to the vehicles and planning 
software (Figure 1).

In this study and during our first 
field program, we laid out a framework 
for ocean sampling with limited human 
intervention. Successes of the mission 
include substantial evidence that near-​
real-time data assimilation of both in situ 
and remote-sensing information in a 
high-resolution numerical model can 
improve the targeting of coherent struc-
tures on the time scale of a day. Our 
feature-​tracking component of the field 
experiment also showed that an auton-
omous dive-by-dive assessment of the 
frontal conditions can improve the effi-
ciency of sampling with gliders. Up to 
50% more time is spent sampling coherent 
frontal regions. Finally, we showed that 
by assimilating the in situ data into the 
ROMS model, the fidelity of the forecasts 
improved, suggesting a positive feedback 
between model reliability, improved tar-
get planning, and more beneficial obser-
vations for future assimilation. Achieving 
fully autonomous observational arrays 
requires further development and testing. 
For instance, during our field program 
we were unable to carry out a nested 
array incorporating assets with differ-
ent characteristics (e.g.,  speed, sensor 
suite). Ideally, longer deployments would 
have allowed us to make a better assess-
ment of how autonomous data acquisi-
tion improves our ability to capture the 
evolution of submesoscale structure in 
the ocean. This is the focus of our second 
field program, in 2017.

LeTraon (2013) argues that oceanog-
raphy has undergone three major revolu-
tions in the past three decades. The first 

is related to the advent of satellite ocean-
ography, which provided global synoptic 
information about ocean surface proper-
ties and variability. The second is related 
to the realization of the Argo float array, 
which benefited heavily from the advan-
tages of autonomous sampling to achieve 
a global subsurface observing system. 
The third revolution is the implementa-
tion of global operational oceanography. 
Yet, these three aspects of observational 
oceanography are rarely used synergisti-
cally in real time. A primary goal of the 
KISS study is to effectively couple infor-
mation from these different streams—
achieving this with minimal, or low-level, 
human effort should aid in the synthesis 
of these diverse data sets. Key scientific 
questions that require an understand-
ing of processes across multiple temporal 
and spatial scales, including the impact of 
submesoscale motions on the large-scale 
ocean circulation (McWilliams, 2016) 
and biogeochemical cycling (Lévy et  al., 
2012), are poised to take advantage of 
these new capabilities. 
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