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Ocean Networks Canada
From Geohazards Research Laboratories to Smart Ocean Systems

Ocean Networks Canada (ONC; http://www.oceannetworks.ca) operates 
the NEPTUNE and VENUS cabled ocean observatories off the western 
coast of Canada (Figure 1) and an increasing number of miniature ocean 
observatories, such as in the Canadian Arctic. These observatories collect 
data on physical, chemical, biological, and geological properties of the 
ocean and seafloor over long time periods, supporting research on complex 
Earth processes in ways not previously possible (Taylor, 2009; Barnes et al., 
2012, 2013). All recorded data are permanently archived and publicly 
available in real time through ONC’s Oceans 2.0 data portal. Much of the 
data collected by ONC is related to marine geohazards, such as earth-
quakes, tsunamis, submarine landslides, waves, and gas hydrate stability. 
These real-time data are used by early warning centers and could be made 
available to decision makers through Smart Ocean Systems (http://www.
oceannetworks.ca/technology-services/smart-ocean-systems).
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Figure 1. Overview map showing the locations of Ocean Network 

Canada’s NEPTUNE and VENUS cabled ocean observatories. 

Primary nodes that provide power and Internet to connected 

junction boxes and instruments are shown as orange squares. 

The NEPTUNE observatory covers the northern part of the 

Juan de Fuca Plate and of the Cascadia subduction zone, where 

the Juan de Fuca Plate subducts beneath the North American 

Plate. The insets highlight (a) the tsunami meter that is arranged 

around the Cascadia Basin node, and (b) the Delta Dynamics 

Laboratory at the mouth of the Fraser River. Bathymetry Data 

Sources: Saanich Inlet and Strait of Georgia bathymetry from 

Canadian Hydrographic Service; USGS Cascadia DEM report 

99-369; University of Washington (UW), School of Oceanography, 

R/V Thomas G. Thompson, multibeam cruise data (funding pro-

vided by KECK Foundation and UW). Plate Boundaries: Adapted 

from Dragert et al. Science, May 2001. Map Creation: Center for 

Environmental Visualization, UW School of Oceanography.
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NEPTUNE : AN EARTHQUAKES AND 
TSUNAMI RESEARCH LABORATORY
The NEPTUNE cabled observatory monitors 
the continental shelf and slope off the west 
coast of Vancouver Island as well as the com-
plete northern part of the Juan de Fuca Plate. 
Its cable loop is more than 800 km long and 
covers the coastal zone, the northern part 
of the Cascadia subduction zone, Cascadia 
Basin, and the Endeavour Segment of the 
Juan de Fuca Ridge (Figure 1).

Currently, seismometers installed at each 
of the NEPTUNE nodes (except for the 
shallow Folger node) are recording relatively 
little seismic activity on the northern 
Cascadia subduction zone (Figure 1), con-
sistent with a fully locked seismogenic zone 
(Scherwath et al., 2011). However, geological 
evidence suggests a 25–40% probability 
of a magnitude 8 or greater megathrust 
earthquake occurring along the Cascadia 

subduction zone in the next 50 years 
(Goldfinger et al., 2012). Sedimentary 
records of episodic coastal subsidence and 
offshore turbidites confirm that the interface 
between the Juan de Fuca and North 
American Plates has produced numerous 
great megathrust earthquakes and tsunamis, 
with an average recurrence interval of about 
500 years (Goldfinger, 2011). The most 
recent great earthquake, with an estimated 
magnitude of about 9.0, occurred in 1700 
and caused widespread tsunami damage in 
Japan (Atwater et al., 2005). 

Most of the tsunamis that arrive along 
the west coast of North America originate 
from distant sources around the Pacific 
(Clague et al., 2003). Over the last 100 years, 
about 500 major tsunamis have occurred in 
the Pacific Ocean, killing tens of thousands 
of people (Lockridge, 1988; Clague et al., 
2003), and the probability of a potentially 

damaging tsunami (runup ≥ 1.5 m) for the 
Canadian outer Pacific coastline is ~ 40–80% 
in 50 years (Leonard et al., 2014). To monitor 
these tsunamis, the NEPTUNE observatory 
also includes high-precision bottom pressure 
recorders at each of its nodes and a tsunami 
meter consisting of three additional bottom 
pressure recorders arranged on an ~ 20 km 
radius circle around the flat Cascadia basin 
site (Figure 1). On September 30, 2009, 
just days after the first instruments were 
installed, the first tsunami waves of 2.5 to 
6 cm amplitude associated with the trans-
oceanic tsunami generated by the MW 8.1 
Samoa earthquake in the South Pacific were 
recorded by six instruments (Thomson et al., 
2011). The Samoan tsunami was followed 
by several other events recorded by the 
network, including the 2010 Chilean tsu-
nami, the 2011 Tōhoku-Oki earthquake and 
tsunami (Figure 2), and the 2012 Haida Gwaii 
tsunami (Fine et al., 2013; Rabinovich et al., 
2013a, 2013b; Leonard and Bednarski, 2014). 
These open ocean observations were uncon-
taminated by complex bathymetry or coastal 
reflections, demonstrating that NEPTUNE 
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Figure 2. Ocean Networks Canada bottom pressure 

recorders provide early warning for tsunamis reaching 

Canada’s west coast. The plots show changes in bottom 

pressure due to tsunami waves generated by the 2011 

Tōhoku-Oki earthquake off Japan successively crossing 

different node locations of the NEPTUNE observatory. 
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records from future tsunami events can be 
effectively used as real-time input to regional 
numerical tsunami forecast models. In fact, 
real-time data from NEPTUNE seismometers 
and bottom pressure recorders already feed 
into the tsunami early warning systems 
operated by the National Oceanic and 
Atmospheric Administration (NOAA) 
Pacific and West Coast and Alaska Tsunami 
Warning Centers.

VENUS: AN UNDERWATER LANDSLIDE 
RESEARCH LABORATORY 
An important purpose of the VENUS cabled 
observatory is monitoring the Fraser River 
delta’s main channel off of Vancouver, BC 
(Figure 1). With a peak discharge of nearly 
10,000 cubic meters of silt-laden water per 
second in May and June, sediments rapidly 
accumulate in the Fraser River delta, often 
resulting in unstable slopes that can fail 
catastrophically as underwater landslides. 
Because the delta is located near important 
coastal infrastructure including the 
Vancouver Airport, the deep-sea Deltaport 
container terminal, and the Tsawwassen ferry 
terminal, it is critical to gain a proper under-
standing of this dynamic coastal region.

One type of instrument currently 
deployed on the VENUS Observatory to 
monitor slope stability—known as a Seismic 
Liquefaction In Situ Penetrometer—uses pie-
zometers (to measure pressure in the water 
column and seabed), accelerometers (to 
measure seismic activity), and inclinometers 
(to measure sediment movement through 
strain) to gather data on the conditions 
associated with slope failure. Another 
instrument package, the Delta Dynamics 
Laboratory, provides additional environmen-
tal information concerning water properties, 
turbidity, and currents for the slope stability 
studies. Additionally, hydrophones are 
installed to listen for undersea landslides and 
earthquakes (Lintern and Hill, 2010).

SMART OCE AN SYSTEMS
Ocean Networks Canada actively pursues 
opportunities to make sure that its extensive 
research observatories provide socio-​
economic benefits. For instance, the new 

Smart Oceans BC program (http://www.
oceannetworks.ca/about-smart-oceans-bc) 
aims to provide online and real-time man-
agement portals to industry, government, 
First Nations, and local stakeholders for pre-
venting accidents, responding to situations 
as they arise, forecast and warning of natural 
hazards, and supporting overall marine 
operational situational awareness.
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