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S P E C I A L  I S S U E  O N  U N D E R S E A  N AT U R A L  H A Z A R D S 

 Source
Processes for the Probabilistic Assessment 

 of Tsunami Hazards
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ABSTR AC T. The importance of tsunami hazard assessment has increased in recent 
years as a result of catastrophic consequences from events such as the 2004 Indian 
Ocean and 2011 Japan tsunamis. In particular, probabilistic tsunami hazard assessment 
(PTHA) methods have been emphasized to include all possible ways a tsunami 
could be generated. Owing to the scarcity of tsunami observations, a computational 
approach is used to define the hazard. This approach includes all relevant sources that 
may cause a tsunami to impact a site and all quantifiable uncertainty. Although only 
earthquakes were initially considered for PTHA, recent efforts have also attempted to 
include landslide tsunami sources. Including these sources into PTHA is considerably 
more difficult because of a general lack of information on relating landslide area 
and volume to mean return period. The large variety of failure types and rheologies 
associated with submarine landslides translates to considerable uncertainty in 
determining the efficiency of tsunami generation. Resolution of these and several other 
outstanding problems are described that will further advance PTHA methodologies 
leading to a more accurate understanding of tsunami hazard.
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Regional wavefield of tsunami 
from Currituck landslide at 

three time steps. Evident in this 
simulation is a secondary wave 

that refracts up the continental 
slope and toward shore north 

of the Currituck landslide.  
LD wave: Leading depression wave. 

LE wave: Leading elevation wave. 
From Geist et al. (2009)
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The most common application is using 
a pre-specified design probability 
to determine the exceedance value 
at that probability (Figure 1a). For 
tsunami hazards, the hazard value of 
interest is typically runup (runup is a 
measurement of the maximum height 
of the water that the tsunami pushed 
onshore observed above a reference 
sea level; see http://walrus.wr.usgs.gov/
tsunami/basics.html), although other 
impact metrics such as current speed or 
momentum flux can also be considered. 
A less common application of the hazard 
curve is using a pre-specified tolerance 
level to determine the probability of 
exceedance from the hazard curve 
(Figure 1b). For example, engineers 
may be interested in the probability 
that a sea wall of a certain height will 
be overtopped by a tsunami. Finally, 
probabilistic inundation maps can also 
be constructed by calculating the hazard 
at a specific design probability over a 
given region (González et al., 2009), 
useful for setting flood insurance rates 
(e.g., at 1% annual probability of exceed-
ance). With information regarding vul-
nerability and exposure of a community, 
hazard curves permit a risk calculation.

Ideally, historical data from a nearby 
water level station could be used to 
construct a hazard curve. However, 
there are few locations in the world 
where there is a sufficiently long record 
of tsunami observations. A computa-
tional method, termed probabilistic 
tsunami hazard analysis (PTHA; Geist 
and Parsons, 2006), is therefore required 
to construct the tsunami hazard curve. 
These methods require specifying all 
relevant tsunami sources that may 
affect the site, performing numerical 
hydrodynamic modeling for each 
source, and aggregating the results to 
form the hazard curve. In contrast to 

deterministic analysis, probabilistic 
analysis directly incorporates different 
sources of uncertainties into the 
construction of the hazard curve. In 
this article, we review the framework 
of PTHA that was established using 
just earthquake sources and discuss 
recent advances in the methodology for 
including landslide sources. 

PTHA FR AMEWORK
PTHA was developed by adapting a 
long-standing probabilistic method for 
determining ground motion exceedance 
caused by earthquakes: probabilistic 
seismic hazard analysis (PSHA) (Cornell, 
1968). The main differences between 
PSHA and PTHA relate to which sources 
are considered and how the hazard is 
calculated for earthquakes and tsunamis. 
For PTHA, it is important to consider 
large tsunamigenic earthquakes, includ-
ing those at far distances, as well as other 
tsunami sources such as submarine land-
slides and volcanic processes that can 
rapidly displace the water column. For 
PSHA, it is more important to consider 
a wider range of earthquake magnitudes, 
including small events, close to the site 
of interest. For the hazard calculation, 
empirical attenuation relations are 
used in PSHA that relate earthquake 
parameters to ground motion, whereas 
physics-based numerical hydrodynamic 
models are used in PTHA so that less 
uncertainty can be expected, given 
sufficiently accurate input data. In this 
regard, PTHA shares some similarities 
with probabilistic storm surge forecasts 
that also rely on numerical modeling 
(e.g., Resio et al., 2009).

There are four basic steps in 
conducting PTHA (Figure 2, middle): 
(1) specification of source parameters, 
including rate of occurrence, (2) choice 
of probability model that describes 

INTRODUC TION
Recent events such as the 2004 Indian 
Ocean and 2011 Tōhoku tsunamis, 
among many others, have demonstrated 
the tremendous destructive nature of 
tsunamis as they impact coastlines. 
Traditionally, tsunami hazards have 
been assessed deterministically using the 
concept of a maximum credible event or 
worst-case scenario. There is, however, 
no single accepted way of determining 
this scenario. In some cases, the physi-
cally largest earthquake or landslide is 
used to assess the tsunami hazard at a 
coastal site, whereas in other approaches, 
the largest historical event is defined as 
the worst-case scenario. Furthermore, 
the deterministic scenario is created 
under an implicit assumption of a min-
imum likelihood, though the likelihood 
limit is often not explicitly stated. For 
example, tsunami hazards from asteroid 
impacts are rarely considered, owing to 
the long mean return period associated 
with this source. Finally, uncertainty 
associated with these scenarios is often 
not rigorously defined or used in deter-
ministic hazard assessments. To address 
these problems, tsunami hazards have 
recently been assessed probabilistically. 
While these assessments are resource 
intensive compared to deterministic 
assessments, they provide a systematic 
method for defining the hazard for a 
probability of interest specific to appli-
cations such as tsunami preparedness, 
determining flood insurance rates, and 
impact on infrastructure.

In contrast to deterministic analysis 
that estimates the severity of natural 
hazard as a single value, the primary 
result from probabilistic analysis is a 
hazard curve that plots the probability 
that a given severity will be met or 
exceeded. The hazard curve can be 
used in two different ways (Figure 1). 

http://walrus.wr.usgs.gov/tsunami/basics.html
http://walrus.wr.usgs.gov/tsunami/basics.html
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source occurrence in time (most often 
Poisson, as described below), (3) hydro-
dynamic modeling for each source 
location and set of source parameters to 
compute tsunami hazard characteristics 
at a site, and (4) aggregation of the 
modeling results and incorporation of 
uncertainty. It is easy to see, with the 
number of sources involved and the 
many possible combinations of source 
parameters, that the computational 
load associated with PTHA can become 
a major obstacle in performing the 
analysis. There are several methods for 
decreasing the computational load. First, 
usually there is a primary parameter, 
such as earthquake magnitude, that has 
a dominant effect on the tsunami hazard 
at a site. Other parameters scale with the 
primary parameter, reducing the range 
of parameters that need be considered. 
In addition, random sampling of possible 
parameter combinations (Monte Carlo 
simulation) can decrease the computa-
tional workload.

Throughout the analysis, different 
causes of uncertainty in the calculation 
are tracked (Figure 2, top). A distinction 
is made between uncertainty in our 
knowledge of parameters or processes 
(epistemic uncertainty) and uncertainty 

owing to the natural variability of 
tsunami evolution (aleatory uncertainty). 
The latter is directly integrated into 
the hazard curve through a defined 
probability distribution that models the 
uncertainty. The former is incorporated 
through the use of logic trees (Figure 2, 
bottom). Each branch of the logic tree 
is a separate calculated hazard curve 
that is weighted according to a specific 
subjective (i.e., expert consensus) or 
objective (i.e., normal distribution) 
scheme. The final hazard curve is 
defined as the median or some other 
fractile of the ensemble hazard curves 
from the logic tree.

Data available from nearby water level 
stations and other observations can be 
used to check the PTHA calculations. 
Tsunami observations may be censored 
at low runups and undersampled at high 
runups (Geist and Parsons, 2006). With 
this in mind, if the empirical hazard 
curve results in higher hazard values 
for a given probability than the PTHA 
hazard curve, then there is a problem 
with which sources are included and the 
validity of assumptions used in PTHA. 
The available data can also be used to 
fill in the PTHA calculations for rare 
or unknown sources using Bayesian 

analysis (Parsons and Geist, 2009; 
Grezio et al., 2010). 

A perhaps subtle assumption in many 
probabilistic analyses of tsunamis and 
other natural hazards is that events are 
random in time and unrelated to one 
another, termed a Poisson process. The 
time between tsunami events in such a 
process follows an exponential distri-
bution. Accordingly, the hazard curve 
represents the probability that one or 
more tsunamis will meet or exceed the 
corresponding runup on the horizontal 
axis over a given exposure time (T ) given 
by P(R ≥ R0) = 1 – exp(–λT ), where λ is 
the rate of occurrence of these tsunamis 
and is constant with time. For tsunamis 
and other floods, annualized probabili-
ties are often considered (exposure time 
T of one year). For small values of λT, 
P approximately equals λ and hazard 
curves are often calculated in terms of λ 
rather than P. The exceedance rate λ is 
critically dependent on the probability 
model chosen for the tsunami sources 
in step 2 of PTHA (Figure 2, middle), 
with the Poisson model being a common 
starting model.

The choice of design probability 
depends on the particular application 
of PTHA. For determining flood zones 
for insurance purposes, an annual 
probability of 1% and, less often, 0.2% 
is considered (Burby, 2001). The mean 
return period is given by 1/ λ and these 
designs are often termed the 100- and 
500-year floods, although these terms 
often generate confusion in the public 
that is caused by not understanding the 
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Figure 1. Schematic tsunami hazard curve showing different applications: (a) exceedance runup (R0) 
determined from design probability, and (b) probability (P) determined from specified tolerance level.
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random nature of the hazard (Bell and 
Tobin, 2007). For example, there is a 63% 
chance of the 100-year flood occurring 
in any given 100-year time period. In 
other cases, such as for ground motion 
from earthquakes (Frankel et al., 2000), 
the design is a specific probability over 
a period of time, such as the 5% in 
50 years event that is equivalent to an 
annualized rate of 1/974.8 years. For 
nuclear applications, the annual design 
probability can be as low as 10–4 to 10–6 
(Nicholson and Reed, 2013).

EARTHQUAKE SOURCES
Earthquake sources considered for 
PTHA are located primarily along 
subduction zones. Here, the world’s 
largest earthquakes occur on the 
interface fault that separates the 
downgoing plate from the overriding 
plate, often termed the “megathrust.” 
The geometry of these massive faults 
can be defined from geophysical 
methods and the precise location of 
instrumentally recorded earthquakes 
(Hayes et al., 2012). Although relative 
plate convergence rates and slip rates on 
specific faults can be determined using 
modern geodetic methods, a significant 
source of uncertainty is how much 
of the slip on megathrusts is released 
seismically. A combination of both 

earthquake statistics and plate tectonic 
models is currently the best method for 
constraining the rate of occurrence for 
megathrust tsunamis (Bird and Kagan, 
2004). Devastating tsunamis have been 
historically generated on faults other 
than subduction megathrusts, such as 
faults along the outer trench slope and 
outer rise of subduction zones and in the 
back arc, although it is even more diffi-
cult to assign slip rates to these faults.

A long-running controversy in 
seismology that affects PTHA is how 
earthquake magnitudes are distributed 
along a fault zone (Parsons et al., 2012). 
The characteristic earthquake hypothesis 
is that the largest earthquakes that occur 
along an individual fault or fault segment 
are of similar magnitude throughout 
time. The competing hypothesis is that 
earthquake magnitudes are distributed 
according to a power-law relationship 
(termed the Gutenberg-Richter rela-
tionship) that is tapered at the highest 
magnitudes. For the characteristic 
model, at design probabilities less than 
but near the mean recurrence rate of the 
characteristic earthquake, the contribu-
tion to the overall hazard will be higher 
than for the Gutenberg-Richter rela-
tionship. For lower design probabilities, 
the contribution to the overall hazard 
under the characteristic hypothesis is 

significantly lower, although not zero 
if various uncertainties are considered 
because earthquakes larger than the 
characteristic magnitude do not exist, by 
definition. For example, the mean return 
period for magnitude 9 earthquakes 
along the northern Cascadia subduction 
zone is approximately 500–540 years. 
(Atwater and Hemphill-Haley, 1997). 
PTHA analysis at an annual design 
probability of 0.2% for coastal sites in the 
Pacific Northwest would be higher under 
the characteristic hypothesis compared 
to the Gutenberg-Richter hypothesis, 
but lower for a design probability of 
0.1%. One of the significant advantages 
of PTHA analysis, however, is that both 
hypotheses can be considered sources of 
epistemic uncertainty and included in a 
logic-tree framework. The occurrence of 
the 2011 Tōhoku earthquake is seen by 
many as a refutation of the characteristic 
hypothesis (see Opinion by Kagan et al., 
2012), and at the very least demonstrates 
the difficulty in assigning a maximum 
magnitude using the characteristic 
model (Geist and Parsons, 2014).

L ANDSLIDE SOURCES
For landslide-generated tsunamis, 
specification of the seafloor time history, 
which is used to force generation of 
the ocean surface wave, is a difficult 

Source
Parameters

Specifies geometric
parameters and long-
term rates of occurrence.

Probability
Models

Gives the probablitiy that 
each source will occur in a
specified time span.

Generation &
Propagation Models
Calculates the tsunami
wave height at the site for
each source.

Aggregation

Determines the hazard
curve for each branch of
the logic tree.

Identification of Significant Sources of Uncertainty

Development and Calculation of all Logic Tree Branches

Figure 2. (middle) General 
steps in probabilistic tsunami 
hazard analysis (PTHA). 
(top) Throughout the spec-
ification of tsunami sources, 
probability models, and 
tsunami simulations, various 
epistemic and aleatory 
uncertainties are identified. 
(bottom) Epistemic 
uncertainty is included in 
a logic tree and a hazard 
curve is computed for each 
logic tree branch during the 
aggregation phase.
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task. Submarine mass movements can 
take a wide variety of forms, such as 
translational slides, rotational slumps, 
and debris flows, and each will have 
different tsunamigenic efficiency. Here, 
efficiency is a measure of the transfer of 
the energy of the mass movement into 
free ocean surface waves. In general, the 
most efficient mass movements are those 
that are “shallow” (meaning the hori-
zontal length scale of the slide is much 
greater than the local depth), “coherent” 
(meaning that the mass fails as a single 

piece, not as a group of smaller, spatially 
and temporally separated segments), 
and “fast” (meaning that the time scale 
of motion of the movement is on the 
order of the generated wave period) 
(e.g., Lynett and Liu, 2002). Note that 
the discussion above details efficiency 
and does not address tsunami potential, 
which is a function of the efficiency and 
is also closely related to metrics such as 
landslide volume and mass discharge 
rates (Harbitz et al., 2006).

A great challenge to including 

landslide-generated tsunamis into PTHA 
is the understanding of local sources 
with significant heterogeneity in their 
spatial geometry and time evolution. 
This would be classified for the most part 
as epistemic uncertainty, driven by our 
lack of understanding of how small-scale 
spatial and temporal details generate 
and evolve. If this heterogeneity can be 
quantified, as it can to a reasonable extent 
for earthquake sources, and coupled with 
statistical information about local slope 
stability mechanisms and landslide prob-
ability of occurrence, then proceeding 
with a PTHA is justified. For landslides, 
this is a great challenge. Furthermore, 
the mean return periods of submarine 
landslides in a given area, which are 
integral to PTHA, are often accompanied 
by leading order imprecision and uncer-
tainty. Figure 3 provides an example 
methodology for integration of landslides 
in PTHA, focusing only on modeling the 
landslide time history. Note that Figure 3 
represents an expansion of detail for the 
“generation and propagation” box shown 
in Figure 2 associated with landslide tsu-
namis. The first pieces of information are 
functional relations between the mean 
return period and both slide volume 
and horizontal slide area. Note that slide 
area is equally important, as without this 
piece of information it is not possible to 
estimate slide thickness, which largely 
controls the generated wave height 
(e.g., Lynett and Liu, 2005). Alternatively, 
relating slide volume to slide area (and/or 
maximum slide thickness), when used 
in conjunction with a slide volume to 
return period relationship, would close 
this problem. These relations come 
from statistical data from previous 
landslides, geophysical information, and 
geotechnical samples. Currently, these 
types of data are sparse, so only limited 
information is available for building these 

Figure 3. Example procedure tree for the inclusion of slide variability and uncertainty into a PTHA. 
Note that this flowchart represents an expansion of detail for the “generation and propagation” box 
shown in Figure 2.
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starting-point relationships. 
With these relationships in hand, 

however, they can be sampled to arrive 
at a set of landslide volume + thickness 
combinations. For each member of 
the set, a distribution of possible slide 
time histories should be determined. 
The first step in this procedure is for 
the user to decide how to describe the 
motion (Figure 3). There are two main 
categories of choice (which could also 
be combined into a single category, if 
desired): (1) specify the failure type, or 
(2) specify the rheological model. In 
the “Specify Failure Type” route, a set 
of different types of failure mechanisms 
are included, such as rotational slides, 
translational slides, block slides, debris 
flows, and avalanches. These slide 
motions are defined as “prescriptive,” 
meaning that their temporal and spatial 
evolution profiles are known a priori. 
Each of these different types will yield 
different tsunamigenic efficiencies as well 
as different generated wave properties. 
This step represents a branching logic 
tree, and thus a weighting factor must 
be assigned for each different type. The 
variety and number of types can likely be 
reduced based on site-specific conditions, 
and indeed the weighting factors must 
be location specific as well. Once a type 
is chosen, the parameters that govern its 
evolution must be selected. With a trans-
lational landslide, for example, its initial 
motion would likely follow solid body 
(block) motion, and therefore parameters 
such as drag coefficient, added mass, and 
material density must be given (Enet and 
Grilli, 2007). These parameters, which are 
location specific, should be selected from 
distributions created for each parameter; 
though such information could likely be 
generated, it is not currently known to 
formally exist for submarine landslides. 
It is also worth noting that while the 

evolution model for a translational slide 
(solid body motion) is established in the 
literature, the same cannot be said for 
any of the other “types” of motion, such 
as rotational slumps, creeping slides, 
and debris flows. With the parameters 
necessary for the failure model provided, 
the slide time history can be imported 
into the hydrodynamic model, and a 
single realization can be generated. In 
a Monte Carlo analysis, this procedure 
is repeated until enough realizations 
are generated so that distributions can 
be constructed for whichever tsunami 
impact metric is under analysis. 

Instead of choosing the “failure type” 
route, it is possible to specify a set of 
different rheological models. Here, 
slide motion is not specified a priori; 
rather, the landslide motion is a function 
of an initial condition, boundary 
conditions, and a set of differential 
equations to evolve the material in time. 
Rheological models are meant to cover 
the full spectrum of materials relevant 
to landslides, from fluids to solids and 
elastic to viscous materials. Similar 
to the “failure type” approach, the 
range and weightings of the employed 
rheological models are location specific. 
Rheological models tend to be more 
complex and computationally costly than 
the “prescriptive” models and require 
calibration of numerous submodels, such 
as closure equations for yield stress or 
basal friction. Furthermore, each sub-
model contains a handful of material and 
empirical parameters, and a distribution 
for each needs to be constructed. 

Note that the methodology outlined 
in Figure 3 is simply one suggestion for 
a probabilistic analysis incorporating 
landslides—an analysis procedure that 
is currently not well defined. Alternative 
methods are certainly viable, and 
significant simplifications may be made, 

with justification, to the generality given 
here. These simplifications will often 
exist in the description of the failure 
types/rheological models and distri-
butions of the parameters that govern 
them. Our current state of knowledge 
of wave and landslide coupling may 
not justify a confident simplification 
to these models/parameters, and, 
hence, the current preference is for a 
highly conservative landslide source 
estimate with a deterministic modeling 
approach. Likewise, the computational 
cost for a PTHA-with-landslides, driven 
by the high computational cost of 
three-dimensional/dispersive models 
often needed for accurate physical 
representation of the slide and waves 
(e.g., Abadie et al., 2012), is significant 
and may only be justified for sites where 
a tsunami from a local landslide controls 
the design hazard level. Lastly, the reader 
is directed to Geist and ten Brink (2012) 
for a more complete and comprehensive 
review of the challenges in landslide 
tsunami modeling related to PTHA.

OUTSTANDING PROBLEMS
In addition to the challenge of including 
landslide sources, as well as volcanic 
sources (Paris et al., 2014), into PTHA, 
there are general issues that need to be 
addressed to improve the accuracy of 
PTHA in the future. These issues include 
incorporating (1) extreme sources not 
represented in the historical or recent 
geological record, (2) time-varying 
rates of recurrence for tsunami sources, 
and (3) dependencies among different 
models of source occurrence. In each 
case, resolving these issues will rely 
on a variety of statistical and other 
methodologies used the in the assess-
ment of other natural hazards, such as 
storm-surge forecasting. 

For the case of incorporating extreme 
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sources for low design probabilities, 
the issue comes down to how well we 
can extrapolate the historical record of 
source occurrence. The paleoseismic 
record can augment earthquake catalogs, 
especially for subduction zones where the 
occurrences of megathrust earthquakes 
are marked by coastal subsidence and 
sedimentary deposits left by the ensuing 
tsunami. Similarly, drill hole records 
and multichannel seismic data can yield 
information to assess that distribution of 
landslide sizes in a given region. The diffi-
culty with these geologic and geophysical 
records is in assessing both the age and 
the size of prehistoric tsunami sources 
and quantifying the uncertainty in both 
of these parameters (Geist et al., 2013). 

One of the basic assumptions for 
the probabilistic assessment of natural 
hazards is that the hazard rate is constant 
with time. This is contradictory to well-
known observations that earthquakes 
cluster in time and space in the form of 
foreshock, mainshock, and aftershock 
sequences (Kagan and Jackson, 1991). 
Landslides also appear to cluster, as 
indicated from detailed geologic studies 
such as in Port Valdez, Alaska, where 
landslides were triggered by the 1964 
Great Alaska Earthquake (Lee et al., 
2007). Tsunami sources may also exhibit 
quasiperiodic behavior, being less 
random than a Poisson model. One of 
the steps in an advanced PTHA is deter-
mining the appropriate probability model 
for source occurrence (second step, 
Figure 2). Clustering and quasiperiodic 
behavior can be approximately included 
in a Poissonian PTHA framework using 
an equivalent annual rate parameter 
(Petersen et al., 2007), although other 
techniques are being developed to incor-
porate these time-dependent behaviors 
based on statistically defined patterns of 
earthquake occurrence (Beauval et al., 

2006). In addition, there may be a long-
term change in the rate of tsunami source 
occurrence, as Lombardi and Marzocchi 
(2007) describe for large earthquakes. For 
submarine landslide sources, the effect 
of climate change and glacial cycles may 
also systematically change the occurrence 
rate for these sources (Masson et al., 
2006; Lee, 2009), although the signif-
icance of this connection is currently 
under debate (Urlaub et al., 2013).

Finally, different conceptual models 
for the occurrence of earthquakes and 
landslides are often included in PTHA 
in a logic tree. Occurrence models 
include how the sizes of the sources are 
distributed and the probability model 
for how they occur in time. In averaging 
the hazard curves that result from these 
models in a logic tree format, these mod-
els are treated independently; each model 
likely represents some “true” aspect of 
occurrence, but is not a complete model 
in and of itself (Page and Carlson, 2006). 
A similar issue arises also in climate 
change models (Dosio and Paruolo, 
2011). Various ways of incorporating this 
uncertainty include Bayesian techniques 
and the use of copulas, which are 
techniques to estimate the dependence 
among different models.

SUMMARY
Probabilistic analysis of tsunami hazards 
provides a systematic way to define the 
severity of the hazard at an explicit like-
lihood. Because tsunami observations 
at most coastal locations are scarce, 
a computational method, PTHA, has 
been developed to calculate a tsunami 
hazard curve that includes known and 
quantifiable sources of uncertainty. 
These methods were originally based 
on well-defined earthquake statistics, 
but submarine landslides that are a 
dominant tsunami source for passive 

margins have recently been considered 
for probabilistic analysis. However, there 
are significant challenges in including 
these sources, ranging from the variety 
of landslide types and rheologies to 
the need for high-dimensional 
hydrodynamic modeling to compute 
wave heights and other impact metrics. 
Conducting the analyses requires sub-
stantial resources, although methods are 
being developed to reduce the computa-
tional load associated with probabilistic 
analysis, particularly when inundation 
calculations are needed. Resolution of 
several outstanding theoretical issues 
will improve probabilistic tsunami 
hazard analysis in the future based on 
focused acquisition of specific geological 
data sets and application of probability 
methods used for other natural hazards.
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