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The conductivity, temperature, depth (CTD) 
rosette package being deployed at the 
CARIACO station. Photo credit: Jaimie Rojas
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(> 100 cm per thousand years) and are 
annually varved (undisturbed by bio-
turbation), indicating that the bottom 
waters have remained anoxic for cen-
turies to millennia (Black et al., 2004). 
For this reason, the paleoceanographic 
research community has used the record 
of surface processes stored in Cariaco 
Basin sediments as a tool for examin-
ing tropical climate variability over long 
time scales (e.g., Peterson et al., 1991; 
Hughen et al., 2000; Haug et al., 2001; 
Black et al., 2004, 2007; Goni et al., 2004; 
Tedesco et al., 2007).

According to Richards (1975), Alfred 
Redfield initially suggested the possibil-
ity that the Cariaco Basin was anoxic, 
arguing that, due to bathymetry, it 
was likely that its deep waters would 
be depleted in oxygen; to confirm 
his hypothesis, Redfield arranged for 
Valentine Worthington to sample the 
system in 1954. Soon afterward, Richards 
and Vaccaro (1956) made the first 
chemical observations (other than salin-
ity, oxygen, and phosphorus), setting 

ABSTR AC T. The CARIACO Ocean Time Series program has made monthly 
measurements of oxygen, nutrients, and carbon system parameters (∑CO2, alkalinity, 
pH) in the Cariaco Basin since 1996. At the same time, sediment traps have collected 
settling particles at four to five depths ranging from 150 to 1,200 m. The depth of 
the transition from oxic to anoxic conditions has fluctuated dramatically over the 
time series due to changes in the occurrence of Caribbean water intrusions into the 
deep basin. Nutrient concentrations in the deep basin have increased steadily with 
time in a proportion reflective of the elemental ratios in the settling organic matter, 
although N:P ratios in the water column (approximately 16:1) differ from ratios in the 
accumulating nutrients (11:1) and the settling flux (ranging between 5:1 and 12.5:1). 
This difference is likely due to changes in the source material for remineralization, 
either because of sizeable ecosystem changes or changes in the relative importance of 
the terrestrial input of inorganic P or scavenging of P by mineral precipitation near 
the oxic/anoxic interface. Alternatively, there may have been changes in the degree of 
preferential remineralization of P.

the stage for a number of expeditions 
examining various aspects of the water 
column geochemistry (e.g., Richards 
and Benson, 1961; Fanning and Pilson, 
1972; Deuser, 1973; Reeburgh, 1976; 
Bacon et al., 1980; Hashimoto et al., 
1983; Scranton et al., 1987; Jacobs et al., 
1987; Scranton, 1988; deBaar et al., 1988; 
Hastings and Emerson, 1988; Zhang and 
Millero, 1993). Studies in the Cariaco 
Basin were central to the development 
of stoichiometric models for organic 
carbon remineralization, including what 
is now familiarly called the “Redfield 
ratio,” which describes the elemental 
composition of organic matter and its 
decomposition products (Redfield et al., 
1963; Richards, 1975), as well as to the 
development of vertical advection/
diffusion models to explain geochemical 
distributions (Fanning and Pilson, 1972). 
Since 1995, the internationally funded 
Venezuela-US CARIACO Ocean Time 
Series program has recorded roughly 
monthly measurements of a variety of 
parameters, including hydrography, 
nutrients, and those related to the carbon 
system (alkalinity, ΣCO2, pH, dissolved 
organic carbon [DOC]), obtained 
biweekly samples of settling particulates 
at four to five depths, and conducted 
semi-annual cruises to study water col-
umn (and particularly oxic/anoxic inter-
face) biogeochemistry and microbial 
ecology. Data, methods, and publication 
lists are available on the CARIACO web-
site (http://www.imars.usf.edu/CAR) 
or from the authors of this article. A 
methods manual, describing in detail the 
procedures used to analyze samples for 
the CARIACO program, is available in 
Spanish and English (Astor et al., 2011).

INTRODUC TION
The Cariaco Basin, located on 
Venezuela’s continental margin, is the 
site of one of the longest geochemical 
time series in the ocean. Primary pro-
ductivity there is dominated by strong 
seasonal upwelling that is driven largely 
by trade-wind variations (Muller-Karger 
et al., 1989, 2001, 2010). Redox chemis-
try and transition-zone microbiology in 
the Cariaco Basin respond to large-scale 
processes and ecosystem state changes 
in both the upper water column and in 
the twilight zone. Although it is known 
that changes in oxygen levels in offshore 
water masses coupled with changes 
in circulation patterns strongly affect 
coastal hypoxia in many systems 
(Monteiro et al 2011), it has not been 
well understood what factors are most 
important in controlling the depth or 
character of the oxic/anoxic transition 
or how fluctuations in these processes 
might influence nutrient cycling in the 
basin overall. In addition, basin sedi-
ments are deposited at very high rates 

http://www.imars.usf.edu/CAR/
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Although the deeper waters of the 
Cariaco Basin have typically been char-
acterized as a stable or slowly changing 
system, higher-frequency sampling has 
provided evidence that the system is 
considerably more dynamic than previ-
ously thought. Observations show peri-
ods of relatively intense deep injections 
of water from outside the basin as well 

as stable periods when the dominant 
process below 200 m is more passive and 
dominated by vertical mixing. At the 
same time, Cariaco Basin surface waters 
are clearly warming (Figure 1) and pCO2 

increasing, and changes are evident in 
the ecosystem at all trophic levels (Taylor 
et al., 2012; Astor et al., 2013). While 
changes in wind patterns resulted in 

reduced primary production and chloro-
phyll a concentrations between 1995 and 
2010, zooplankton biomass and sink-
ing flux paradoxically increased (Taylor 
et al., 2012). Studies by Lorenzoni et al. 
(2012) and Montes et al. (2012) link 
trends in upper water column biogeo-
chemistry and physics to the concen-
tration and composition of sinking 
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Figure 1. Satellite-derived Sea Surface Temperature (SST) trends [°C per decade] for the period January 1985 to December 2009 in the tropical Atlantic 
and Caribbean Sea. Trends were computed using monthly long-term SST anomalies derived from satellite images collected with the NOAA Advanced 
Very High Resolution Radiometer (AVHRR; Pathfinder 4 km resolution, Version 5.0; for a description of the data set, see Casey et al., 2010). Positive 
or negative values indicate long-term SST warming or cooling trends, respectively. The panels only show SST trend values with 95% of statistical 
significance (p < 0.05); values not significant are masked in gray. The figure shows that the Caribbean Sea and much of the tropical western North 
Atlantic have experienced a warming trend in SST (Chollett et al., 2012; Ruiz-Ochoa et al., 2012). In the CARIACO Ocean Time Series area, positive SST 
trends are observed during January and February, which is the beginning of the upwelling season. This is suggestive of weaker—and possibly shorter—
upwelling events. The warming trend was stronger and affected a larger area during August and October than during May and June. The fastest warm-
ing trend (~ 0.5°C per decade) was observed in September. Consecutive years of weak upwelling starting in 2004–2005 likely have contributed to a 
collapse in the Venezuelan Spanish sardine fishery, which as of 2012 had not recovered to previous yields. The approximate location of the CARIACO 
Ocean Time Series is shown with a white arrow in the upper left hand panel.
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particles. The goal of this paper is to 
explore what we have learned about the 
interplay among physics, particles, and 
changes in water column nutrient con-
centrations as they influence the deeper 
anoxic waters of the Cariaco Basin.

PHYSICAL SET TING
The deep waters of the Cariaco Basin 
are usually considered to be relatively 
quiescent, with a residence time of 100 
(Deuser, 1973) to several hundred years 
(Fanning and Pilson, 1972). Because 
the Cariaco Basin is separated from the 
rest of the Caribbean by a 100 m deep 
sill broken by two channels extending 
to around 150 m, only the upper por-
tions of the Cariaco Basin water column 
are strongly influenced by regional 
circulation. Surface waters in the area 
are warm and salty, and the density 
structure is controlled by temperature. 
This contrasts with the situation in the 
world’s largest anoxic marine basin, the 
Black Sea, where the primary density 
control is salinity (Richards, 1975). 
Nutrients are supplied to the Cariaco 
Basin largely as a result of the advection 
of 100–200 m Caribbean water onto the 
shelf. With upwelling, these waters are 
injected into the euphotic zone during 
favorable winds. 

Richards (1975), Scranton et al. 
(1987), and Zhang and Millero (1993) 
all noted long-term, gradual trends 
in potential temperature, salinity, and 
nutrients in the deep parts of the Cariaco 
Basin. Based on the limited data avail-
able, they concluded that change was 
both unidirectional and steady over 
many decades, and envisioned the basin 
as a passive trap for organic material 
sinking from above. Zhang and Millero 
(1993) extrapolated the trends to predict 
that the basin had been fully oxic in 
~ 1916, due possibly to an earthquake. 

However, Holmen and Rooth (1990) 
reported tritium in basin bottom waters, 
consistent with at least some injection of 
surface waters to the bottom on a time 
scale of decades. The CARIACO Ocean 
Time Series has now clearly shown that 
the basin’s hydrography is more variable 
than the early simple model would have 
predicted and that some parameters can 
respond very rapidly to forcing from 
outside. Indeed, geochemical signatures, 
observed in the water column and in 
the sediments of the Cariaco Basin, 
reflect large-scale and long-term changes 
occurring over the Atlantic Ocean 
(Peterson et al., 1991). 

TEMPOR AL VARIABILIT Y IN 
SUBSURFACE WATERS
Prior to the CARIACO Ocean Time 
Series, most studies of the anoxic por-
tions of the Cariaco Basin had used 
Nansen or Niskin bottles to collect water 
samples, so sampling depths were mostly 
chosen without detailed knowledge 
of the physical regime, and sampling 

resolution tended to be relatively coarse 
except during a few cruises where mul-
tiple casts were conducted at a single 
station. Most prior studies found the 
oxic/anoxic interface (usually defined by 
the appearance of sulfide) to be between 
250 m and 300 m water depth. However, 
Richard and Vaccaro (1956) and 
Richards and Benson (1961) reported the 
depth of the oxic/anoxic interface to be 
375 and 340 m, respectively, and Zhang 
and Millero (1993) interpolated their 
data to locate the interface at 330 m.

As mentioned earlier, previous discus-
sions assumed a unidirectional and con-
stant rate of change of potential tempera-
ture and salinity, which can be explained 
conceptually by downward mixing of 
warm surface water (Scranton et al., 
1987). Although CARIACO Ocean Time 
Series bottom water data confirm that 
long-term trends reported for bottom 
water (> 1,200 m) for both temperature 
(increase of 0.00906°C yr–1 for waters 
below 1,200 m since 1995) and salinity 
(increase of 0.00157 yr–1) continue, a 

Figure 2. Trends in density 
between 1995 and 2013 are 
given for five depths in the 
Cariaco Basin. Between 1995 
and 2004, densities at all 
depths increased with time 
or remained approximately 
constant. Density increases 
can only be caused by 
advection of denser water 
from the Caribbean into 
the basin. The solid green 
line is the linear regression 
for the trend between 2004 
and 2011 for 250 m water 
depth, which represents a 
period when densities at all 
depths decreased with time. 
Downward mixing of warm 
surface water largely drives 
the density decreases.
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more detailed examination shows that 
the situation is not straightforward. 
Figure 2 plots the densities taken 
from conductivity-temperature-depth 
(CTD) profiles collected monthly since 
November 1995 at three depths bracket-
ing the oxic/anoxic interface as well as 
two depths from the deep waters. At all 
depths, potential density either increased 
or remained roughly constant from 1995 
to sometime in mid-2002 or 2003. After 

2004, density linearly decreased with 
time at all depths (p < 0.001), a pattern 
also reported by Samodurov et al. (2013) 
using a shorter data set. 

The only mechanism for density to 
increase at depth in a closed basin is by 
intrusion of denser water from outside. 
The density gradient in Cariaco Basin 
waters is very weak (density increases by 
only 0.1 between 250 and 1,200 m), and 
previous studies have shown that such 

intrusions likely originate below 150 m 
in the Caribbean Sea (Astor et al., 2003). 
This water is relatively high in oxygen 
compared to depths within the basin 
with similar density, and will contain 
different concentrations of nutrients 
and CO2. During the early years of the 
CARIACO Ocean Time Series program, 
we observed periodic intrusions of 
oxygen-containing water at depths of 
at least 400 m (Astor et al., 2003). The 
depth where oxygen became undetect-
able by the Winkler method (2 µM) 
ranged from 250 to 310 m (Figure 3). 
During this period, the suboxic zone 
(defined as the layer where oxygen 
and sulfide concentrations were both 
less than 1–2 µM) extended as deep as 
370 m and ranged in thickness from 
< 10 to almost 100 m (Samurodov et al., 
2013; Figure 3). At times of intrusions, 
although oxygen may have been unde-
tectable or extremely low in the suboxic 
zone at the CARIACO Ocean Time 
Series station (about 50 km from the 
eastern channel), we assume that the 
water initially contained oxygen, and 
that this oxygen was removed during 
transit, both by reaction with reduced 
chemical species, forming iron and 
manganese oxides, elemental sulfur, and 
other oxidized species, and by micro-
bial respiration. Large excursions of the 
5 µM oxygen contour estimated from 
the Winkler measurements (Figure 4; 
deepest contour line) to greater depths 
were seen frequently until mid-2003. 
There have been a few similar excur-
sions in more recent years, but they 
are less pronounced. 

Beginning in 2004 and extending 
through at least 2011, the suboxic zone 
became relatively thin, with measurable 
oxygen and sulfide values detected in 
close vertical proximity (samples spaced 
10–25 m apart). This timing coincides 
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and the depth where 
sulfide was greater than 
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with temporal changes in the variation 
of water density versus time (Figure 2) 
from increasing density (implying the 
dominant importance of intrusions) 
to decreasing density (implying domi-
nance of vertical mixing). The cause of 
intrusions is still not fully understood, 
although Astor et al. (2003) noted that 
eddies within the westward-moving 
Caribbean Sea Current near the con-
tinental shelf are associated with some 
(but not all) deep oxygen maxima. 

Intrusions have important impacts on 
nutrient concentrations (Figure 5a–d) 
and on the ecology of the microbial 
populations in the upper 500 m of the 
basin (Taylor et al., 2012). Because the 
interface gradients are very steep and our 
monthly sampling depths are relatively 
coarse, we cannot define the depth of 
the interface precisely. However, due to 
the oxidation of ammonium by aerobic 
microbial nitrifiers, we never observe 
ammonium concentrations above trace 
levels near the oxic/anoxic interface 
if oxygen is present. Therefore, the 
depth at which ammonium appears is 
approximately the depth of the top of 
the sulfidic zone. From Figure 5c, it is 
evident that this depth has shoaled over 
the 16 years of the CARIACO Ocean 
Time Series. A deep secondary nitrite 
maximum is periodically seen just above 
the depth where ammonium appears 
(Figure 5b). This maximum is expected 
to be quite thin, and, thus, we may have 
missed it in a number of cases due to 
coarse sample spacing. The deep nitrite 
maxima are more intense since 2004, 
coinciding with fewer intrusions into 
the basin and the greater relative impor-
tance of vertical mixing compared to 
advection (Figure 5b). 

On a number of occasions, the 
ammonium and phosphate (Figure 5c 
and d) contours exhibited relatively large 

excursions near the oxic/anoxic interface 
(around 250 m), and we have observed 
dissolved phosphate minima in profiles 
that are poorly resolved in contour plots. 
These excursions likely reflect more 
subtle effects of intrusions. Ammonium 
is most likely removed by nitrification 

or anammox reactions. Phosphate is 
likely removed by reactions near the 
interface caused by oxidation of reduced 
iron (Percy et al., 2008). Iron oxides will 
be precipitated if oxygen is added to 
sulfidic water in sufficient quantities to 
remove the sulfide. Both sulfide and iron 
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oxidation will remove oxygen, and the 
iron oxides may persist and could scav-
enge phosphate (Spencer and Brewer, 
1971; Dellwig et al., 2010). 

NUTRIENT R ATIOS
Observations from the Cariaco Basin 
were among those used by Richards 
and colleagues to develop the idea of 
the Redfield ratio model of organic-
matter remineralization (Redfield et al., 
1963). It is of interest to examine that 
central concept in terms of measure-
ments from the Cariaco Basin now that 
we have considerably more detailed 
data. Total dissolved inorganic nitrogen 
(DIN = NH4

+ + NO3
– + NO2

–) is plot-
ted versus phosphate for all monthly 
cruises and all depths at the CARIACO 
Ocean Time Series station in Figure 6. 
At low DIN and low phosphate, the two 

parameters are strongly correlated. These 
samples are from the upper water col-
umn where oxygen is present and nitri-
fication rates are high. The blue line in 
Figure 6 represents the linear regression 
of all depths where phosphate concentra-
tions were less than 0.5 µM (arbitrarily 
chosen to represent early, oxic diagen-
esis). The N:P ratio in these waters is 
18.0 ± 0.2 (p < 0.001), very close to that 
reported for mixed phytoplankton com-
munities by Redfield et al. (1963). 

As DIN approaches 10–12 µM, mea-
sured oxygen concentrations decrease 
dramatically (typically ≤ 50 µM). 
Denitrification dominates in this 
depth range as nitrate is converted to 
N2 (Thunell et al., 2004; Montes et al., 
2013). Phosphate values in this region 
are more variable than in overlying and 
underlying waters, possibly because of 

phosphate removal by minerals pre-
cipitating just above the sulfidic zone 
(McParland et al., 2012). 

At depths where phosphate concen-
trations exceed about 2.5 µM, the plot 
of DIN (now almost all in the form 
of NH4

+) versus phosphate returns 
to linearity with a slope of 16.2 ± 0.2 
(p < 0.001). This slope is close to the 
slope for the shallow water data and 
agrees well with the original Redfield-
Ketchum-Richards model (Redfield 
et al., 1963). In this case, examining the 
water column nutrient pools results in an 
integrated picture of nutrient accumula-
tion in the basin over time scales com-
parable to water column residence times 
(decades to centuries).

We can obtain an independent esti-
mate of the elemental ratio for rem-
ineralization over shorter time scales 
by examining nutrient concentration 
changes with time and by comparing 
these to material flux into the deep basin. 
Figure 7 shows the long-term trends for 
ammonium and phosphate in waters 
below 1,200 m, the depth for which 
there is the best long-term data set for 
the Cariaco Basin, going back to the 
early work of Richards and colleagues 
(Richards and Vaccaro, 1956; Richards, 
1975). We have also included data for 
ΣCO2 from the CARIACO program, as 
there are few older points for this param-
eter. Confidence intervals for the regres-
sions are plotted as dotted lines. Based 
on these plots, ΣCO2 has been increasing 
at about 3.2 µmol L–1 yr–1, ammonium 
at a rate of 0.34 µmol L–1 yr–1, and 
phosphate at 0.0315 µmol L–1 yr–1 (all 
slopes significant at the p < 0.001 level; 
Scranton et al., 2001). CARIACO data 
dominate the regression line slopes, but 
the overall trends seem consistent over 
the more than 50 years that the basin 
has been sampled. These data yield a 
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water below the euphotic zone, nitrate and phosphate are remineralized 
in constant ratio. Once oxygen concentrations fall below about 50 µM, 
denitrification and anammox take place, removing nitrogen from the 
DIN pool. As the water becomes sulfidic (at phosphate ~ 2.5 µM), nitro-
gen and phosphorus again accumulate in constant ratios (and at a ratio 
very similar to that seen just below the euphotic zone).
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ΔΣCO2:ΔΝΗ4
+:ΔPO4

–3 production ratio 
of approximately 101:11:1, compared 
with a water column concentration ratio 
of 16:1 for N:P. 

For comparison, we can calculate 
the accumulation of nutrients in the 
mid-water column (800–1,200 m) that 
can be supported by the amount of 
sinking material that is remineralized 
(disappears) between these two depths. 
Because the long-term trends of nutri-
ent accumulation mentioned above 
were determined over 15 years of the 
time series, Table 1 presents the average 
annual particulate organic C, total par-
ticulate nitrogen (TPN), and total partic-
ulate phosphorus (TPP) fluxes at 800 m 
and 1,200 m for the full CARIACO 
Ocean Time Series calculated from the 
average daily fluxes for this period. The 
difference between the flux to 800 m 
and the flux to 1,200 m represents the 
amount of material that is remineralized 
between 800 and 1,200 m. If we assume 
that material is decomposed evenly over 
the 400 m between 800 and 1,200 m, we 
can estimate the amount of C, N, and P 
added to the water on average. We con-
clude that the sinking flux is supplying 
the equivalent of 0.88 µmol L–1 yr–1 of 
ΣCO2, 0.055 µmol L–1 yr–1 ammonium, 
and 0.009 µmol L–1 yr–1 phosphate 
(98:6.1:1). The average fluxes calculated 
from sediment traps are consistently 
lower than we would predict from the 
water column increases. However, there 
are large uncertainties in this calcula-
tion due to (1) averaging fluxes that 
are highly variable both in time and in 
space (Muller-Karger et al., 2004), and 
(2) the fact that the periods of highest 
flux may have been missed due to sedi-
ment trap clogs. Also, trapping efficiency 
has yet to be determined for any of the 
traps (Buesseler, 1991). Finally, in this 
estimate, we also have ignored the flux 

of C, N, and P from bottom sediments 
as well as the effect of lateral advec-
tion of organic material in sediment 
plumes from the coast (Lorenzoni et al., 
2012). Nonetheless, it is encouraging 
that the concentration increases for 
C and P calculated from the trap data 
are within a factor of three or four of 
the measured increases. The increase 
of nitrogen predicted from trap data is 
somewhat lower, with the predicted con-
centration increases about a factor of 6 

lower than observed. 
Finally, we can compare the ratio of 

TPN to TPP in the sinking flux with 
the ratio of the measured concentration 
increases. TPN:TPP ratios in the sink-
ing flux range from around 5 at 150 m 
to between 9.2 and 12.5 in the deeper 
traps (Figure 8; data for 1,200 m trap not 
shown). The dotted lines represent the 
95% confidence limits for each regres-
sion. The solid red line in each panel in 
Figure 8 is for an N:P molar ratio of 16:1. 
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Figure 7. Long-term 
trends in ΣCO2, ammo-
nium, and phosphate 
for waters deeper than 
1,200 m. Trends for the 
CARIACO time series 
are consistent with 
older data. The dotted 
lines represent 95% 
confidence intervals for 
the regressions. Only 
CARIACO data are plot-
ted for ΣCO2.
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Points that deviate to the right (higher 
P flux than expected for a given N flux) 
generally represent samples with high 
levels of inorganic P, potentially derived 
from terrestrial sources (Benitez-Nelson 
et al., 2007) or from water column 
scavenging during precipitation of iron 

or manganese above the interface. The 
increase in the elemental ratio with 
depth suggests preferential release of P, 
which is consistent with the longer-term 
trends observed within the water column 
(recent work of author Benitez-Nelson 
and colleagues).

It is intriguing that nutrient concen-
trations in the deep basin have increased 
steadily with time in proportion to the 
elemental ratios in the settling organic 
matter, although N:P ratios in the water 
column (approximately 16:1) are quite 
different from ratios in the accumulat-
ing nutrients (11:1) and the overall set-
tling flux (approximately 5:1 to 12.5:1). 
It seems likely that this difference is due 
to changes in the relative proportions of 
source material for remineralization. The 
current sediment trap material appears 
to consist of two groups of particles: one 
group with an N:P close to 16:1 and a 
second group with much higher P for 
a given N (Figure 8). This is particu-
larly obvious for the 150 m trap where 
the regression visually appears to be 
strongly influenced by only a few points 
(although the same features can be 
seen in the other traps as well). The two 
groups of particles likely make up the 
primary sources of sinking flux: biogenic 
material produced in Cariaco Basin sur-
face water and particles enriched in inor-
ganic P by an abiotic process. There can 
be significant terrigenous input from the 
nearby coast of both dissolved iron and 
particles (Percy et al., 2008; Lorenzoni 
et al., 2009), so our results suggest size-
able ecosystem changes or changes in the 
relative importance of terrestrial input. 
Phosphorus adsorption by minerals 
precipitated near the oxic/anoxic inter-
face (Spencer and Brewer, 1971; Percy 
et al., 2008) may also result in particles 
enriched in P under some conditions. 
Present data are inadequate to decide 
between these possibilities, but long-
term monitoring offers the possibility of 
separating these important processes.

One important question we are yet 
unable to answer is whether changes 
in the surface water ecosystem (from 
lower relative abundance of diatoms, 
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traps from four depths (150, 225, 400, and 800 m). The black lines are fits through the data; all 
slopes are highly significant (p < 0.001). The dotted lines show 95% confidence intervals for the 
regressions. The red lines in each panel represent a Redfield ratio slope of 16:1. The calculated 
slopes for the various trap data are all somewhat below the Redfield ratio, but visual inspection 
shows two populations of points: one lying on the Redfield ratio line and the other with more 
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Table 1. Calculation of nutrient supply to the 400–800 m depth layer in the Cariaco Basin.

Average  
Organic Carbon Flux 

(µmol m–2 d–1)

Average  
Nitrogen Flux 

(µmol m–2 d–1)

Average  
Phosphorus Flux 
(µmol m–2 d–1)

800 m 3.42 ± 4.91 0.41 ± 0.59 0.03 ± 0.03

1,200 m 2.45 ± 2.2 0.35 ± 0.43 0.02 ± 0.02

Change in flux 0.97 ± 5.38 0.06 ± 0.53 0.01 ± 0.036

Predicted concentration  
increase in element  
in 400 m thick layer

0.88 ± 4.91 0.055 ± 0.48 0.0091 ± 0.03

Average annual  
concentration change 

1998–2013
3.2 0.34 0.032
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dinoflagellates, and coccolithophorids 
and increasing importance of smaller 
taxa; Taylor et al., 2012) may have 
resulted in the observed differences 
between the recent sinking flux and the 
ratios of nutrients in the water column 
that have built up over many decades 
(Martiny et al., 2013). Previous studies 
show that changes in upwelling intensity, 
and surface conditions in general result-
ing from varying trade wind intensity, 
are recorded in the basin’s sediments 
in the form of geochemical proxies 
(e.g., δ18O, δ13C, trace elements, and 
organic biomarkers; e.g., Goni et al., 
2009; McConnell et al., 2009; Romero 
et al., 2009; Martinez et al., 2010; 
Black et al., 2011).

CONCLUSIONS 
Long-term trends in the nutrient 
chemistry of the Cariaco Basin are 
consistent with the biogeochemical pic-
ture originally developed by Richards 
(1975). Temperature and salinity of 
deep waters have continued to increase 

with time, although the decrease in 
density experienced a lull in the early 
years of the CARIACO Ocean Time 
Series (1995–2004). Deep-basin nutri-
ent concentrations increased at relatively 
constant rates, with fluxes of C, N, and 
P in sediment traps consistent with rates 

of increase observed in dissolved pools. 
However, ratios of the elements present 
in Cariaco Basin deep waters are not 
quite the same as the ratios of elemen-
tal increase, suggesting a change in the 
elemental input over the residence time 
of the water. We also have improved 
evidence of how deep intrusions and 
fluctuations in deep and shallow oceano-
graphic processes can affect water chem-
istry and the ecology of anoxic environ-
ments, even if the waters are not fully 
oxygenated by these processes.
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