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This special issue summarizes the major 
achievements of the US Global Ocean 
Ecosystem Dynamics (GLOBEC) pro-
gram and celebrates its accomplish-
ments. The articles grew out of a final 
symposium held in October 2009 under 
the auspices of the National Academy 
of Sciences Ocean Studies Board 
(http://usglobec.org/Symposium). This 
special issue updates the US GLOBEC 
“mid-life” Oceanography issue 
(Vol. 15, No. 2, 2002, http://tos.org/
oceanography/archive/15-2.html), 
which put forward many of the goals 
and activities of the program, but was 
published while field work was still being 
conducted and results had yet to be 
synthesized across regional programs. 
The present special issue highlights the 
advances in understanding achieved 
through the synthesis of regional studies 
and pan-regional comparisons.

US GLOBEC: MOTIVATION 
AND GOALS
Questions about marine population vari-
ability have been a focus for biological 
oceanography and fisheries science since 
the early development of the disciplines: 
What regulates the distribution and 
abundance of zooplankton and fish pop-
ulations? Why do marine populations 
exhibit wide interannual variability? 
What are the relative roles of physical 
forcing vs. biological processes in deter-
mining marine recruitment? How can 
we use knowledge of past and current 
conditions to predict future recruit-
ment and population size? US GLOBEC 
was designed around these and similar 
questions to provide understanding of 
how physical variability and change in 
the ocean will influence future marine 
populations and to translate that under-
standing into predictive capability for 
climate impacts on marine ecosystems. 

This focus is reflected in the overall goal 
articulated for the US GLOBEC program 
in its Initial Science Plan (1991):

To understand how physical processes, 
both directly and indirectly, influence 
the success of individual animals in 
the sea, their feeding, growth, repro-
duction, and survivorship. From this 
information can be derived the conse-
quences of changing physical processes 
on animal populations and ecosystems. 
Models of global climate can then be 
used to relate global change to changes 
in regional ocean physics and, sub-
sequently, changes in regional physics 
to shifts at the scales of events that 
influence the individual organism.

The goal of the US GLOBEC program 
was subsequently refined as the program 
evolved to explicitly include prediction 
of future states of the marine ecosystem 
as an objective in its long-range science 
plan (US GLOBEC, 1995):

US GLOBEC’s goal is to understand 
how physical processes influence 
marine ecosystem dynamics in order 
to predict the response of the ecosystem 
and the stability of its food web to 
climate change.

Accompanying this long-term goal was 
an enhanced emphasis on modeling 
studies and observing networks that 
together link physics and ecosystems:

The vision of US GLOBEC is that the 
models and scientific insights that 
arise from these field studies will 
ground an ecosystem monitoring pro-
gram to predict variability in living 
marine resources.

This re-statement of the program goal 
also introduces the concept of food web 
stability, discussed in more detail in 
Ruzicka et al. (2013, in this issue), and 

the identification of variables that will 
become important to monitoring for 
ecosystem-based management, discussed 
in Fogarty et al. (2013, in this issue).

Finally, the synthesis and integration 
phase of US GLOBEC (US GLOBEC, 
2009) extended the program to explic-
itly address the important issue of 
fishery production:

The objective of US GLOBEC research 
is to understand and predict the effects 
of climate change and variability on the 
structure and dynamics of marine eco-
systems and fishery production,

thereby reflecting the increased empha-
sis across US science programs on 
connecting research with outcomes 
to benefit society at large. Prediction 
depends on a clear understanding of 
processes (e.g., Batchelder et al., 2013; 
Di Lorenzo et al., 2013a,b; Ruzicka et al., 
2013, all in this issue), integrated mod-
eling (Curchitser et al., 2013, in this 
issue), and identification of uncertain-
ties in both measurements and model 
results (Milliff et al., 2013, in this issue; 
Lynch et al., 2009).

DEVELOPMENT OF THE 
“GLOBEC APPROACH”
The community planning that resulted in 
the US GLOBEC program (Fogarty and 
Powell, 2002) began in the early 1980s 
when the Biological Oceanography 
Program of the National Science 
Foundation sponsored a series of three 
workshops that came to be known as 
Fish Ecology I, II, and III. These work-
shops occurred at about the same time 
that a relevant National Academy of 
Sciences report entitled Recruitment 
Processes and Ecosystem Structure in 
the Sea (NRC, 1987) was published. 
In April 1988, a group of zooplankton 
ecologists met to identify new directions 

http://usglobec.org/Symposium
http://tos.org/oceanography/archive/15-2.html
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emerging in marine zooplankton 
research, including several themes that 
became incorporated into US GLOBEC 
planning, such as the importance of 
larval stages and the physical-biological 
processes surrounding them. At the 
same time, physical oceanographers 
were also recognizing the importance of 
interdisciplinary approaches to press-
ing problems in coastal oceanography 
(Brink, 1988). 

As the planning process continued, 
it became clear that advances in under-
standing would progress most rapidly 
with a research program focused on 
climate impacts on a select group of 
target organisms in contrasting envi-
ronmental regions. The overarching 
GLOBEC strategy of interrelated long-
term observational programs, retrospec-
tive analysis, technological innovation, 
process-oriented studies, and model 
development provided a common 
framework for implementation within 
each region. The partnership between 
the National Science Foundation and 
the National Oceanic and Atmospheric 
Administration in establishing and sup-
porting the program signaled both a 
strong commitment to basic science and 
recognition that fundamental progress 
at the interface between oceanography, 
climate research, and fisheries science 
would ultimately be necessary to inform 
effective and adaptive ocean manage-
ment strategies in a changing world. 

To reflect these early considerations, 
the “GLOBEC Approach” was envisioned 
to emphasize: 
1. The connection between physics 

and biology, argued to be especially 
important for planktonic animals 

2. A focus on selected target species in 
each region of interest

3. Moving beyond correlation to the 
development of a mechanistic under-
standing based on fundamental pro-
cesses of growth, reproduction, and 
recruitment in the target species

4. The integration of models with 
process studies of organisms 
and populations

5. Down-scaling of global circula-
tion models to regional physics and 
organism responses

These elements were integral to each of 
the US GLOBEC regional programs and 
to the programmatic synthesis and inte-
gration studies that are the subject of the 
papers in this special issue. 

MAKING THE CLIMATE 
CONNEC TION
From its outset, GLOBEC was designed 
to understand the likely consequences 
of changes in global climate and 
physics on animal production in the sea 
(US GLOBEC, 1991). Climate change 
and variability have many effects on 
marine ecosystems (Stenseth et al., 2004; 
Drinkwater et al., 2010). Climate can 
directly alter environmental temperature 

and thus, given the overriding impor-
tance of temperature in regulating 
physiological processes, can have large 
impacts on both lower and upper 
trophic level species. Habitability of the 
marine environment can also be altered 
directly by other climate-related factors, 
including vertical stratification (stabil-
ity) of the water column and altered 
transport pathways. Indirect effects of 
climate on population dynamics can 
occur through trophic interactions 
between a species and its prey, predators, 
and/or competitors. Perhaps the best 
documented indirect effect of climate 
on marine populations is phenology 
shifts that create mismatches in tim-
ing between prey and consumers and 
impacts foraging success, growth, and 
survival (Cushing, 1990; Ji et al., 2010).

The US GLOBEC program adopted 
a broad approach to examining climate 
variability, defined here as variation 
in the environment at multiyear and 
longer time scales. Time series programs 
that extend over multiple decades are 
clearly required to directly address these 
climate issues, an approach that was not 
feasible to complete within the duration 
of the GLOBEC program. Because the 
GLOBEC regional investigations were 
expected to span only about five to eight 
years at most in each study region, the 
program targeted sites that had pre-
existing historical sampling that would 
allow comparisons of the GLOBEC 
sampling period with earlier periods for 
at least some variables. 

Large-scale climate variability can 
be characterized by changes in indices 
related to (regional) atmospheric 
pressure patterns such as the El Niño-
Southern Oscillation (ENSO; equatorial 
Pacific), North Atlantic Oscillation 
(NAO), North Pacific Index (NPI), 
and Southern Annual Mode (SAM). 
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Other indices are based on patterns of 
sea surface temperatures, such as the 
Pacific Decadal Oscillation (PDO) or 
the Atlantic Multidecadal Oscillation 
(AMO). As the time scales of the envi-
ronmental variability lengthen from a 
few years (ENSO) to decadal and longer 
(PDO, NAO, AMO), the responses of 
marine populations/ecosystems may 
be analogous to the changes that could 
occur in response to secular climate 
change. Some US GLOBEC studies 
were done in regions and during time 
periods characterized by dramatic inter-
annual and longer period changes in 
wind forcing and temperature (“regime 
shifts”), allowing the potential effects of 
long-term climate change to be inferred 
from observations and documentation 
of population and community responses 
to shorter term variability. Coupled 
physical-biological modeling was used 
to examine links between atmospheric 
forcing and population dynamic 
responses, and to integrate multiple, 
diverse data sets in the analysis of physi-
cal and ecological patterns and processes 
(sensu Runge et al., 2010; Curchitser 

et al., 2013, in this issue). 

IMPLEMENTATION OF THE 
US GLOBEC APPROACH
The planning and evolution of 
US GLOBEC reflected and benefited 
from several ongoing trends in ocean 
science. New remote-sensing technolo-
gies were developing (e.g., Bisagni, 2001; 
Carr et al., 2002; Brickley and Thomas, 
2004) that enabled synoptic observa-
tions of ocean phenomena. New systems 
that allowed physics and biology to be 
sampled simultaneously were being 
developed (Benfield et al., 1996, 1998; 
Greene et al., 1998; Lawson et al., 2004). 
Ocean modeling was making great leaps 
forward (Curchitser et al., 2013, in this 

issue) that paralleled developments in 
computer technology and informed 
field sampling strategies (McGillicuddy 
et al., 2001). At the same time, long time 
series that would enable retrospective 
analysis had been obtained in many loca-
tions in the coastal ocean (e.g., Bisagni 
et al., 1996; Meise and O’Reilly, 1996; 
Conversi et al., 2001; Pierce et al., 2006; 
Huyer et al., 2007). These longer-term 
observations were complemented by 
retrospective reconstructions of past 
ecosystem states and their changes over 
long time scales, including proxy-based 
paleo-reconstructions (Finney et al., 
2000, 2002; Field et al., 2006). 

US GLOBEC fused these devel-
opments into a common program 
(Figure 1). Technological innovation 
facilitated process studies on target 
species, which led to new mechanistic 
understanding. New technologies also 
drove the collection of long-term obser-
vations that put the process studies into a 
longer-term context. Retrospective anal-
ysis of historical observations extended 
the comparative time scales. Results of 
process studies, long-term observations, 

and retrospective results were used to 
develop conceptual and dynamic models 
that provided frameworks for synthesis 
of new understanding and identification 
of key parameters linking physical forc-
ing to ecosystem processes.

The regions chosen for US GLOBEC 
studies had common characteristics, 
such as the likelihood of climate impacts 
within the region, the availability of prior 
studies to provide time-series data, and 
the potential to encompass a variety of 
physical forcings (Table 1, Figure 2). In 
the Northwest Atlantic, Georges Bank 
is situated at a biogeographic boundary, 
influenced by both the Gulf Stream and 
the Labrador Current. It offers a bank 
system with retentive circulation and 
a wealth of prior work (see references 
in Wiebe et al., 2002). It also supports 
important fisheries with regional and 
national importance. 

The Northeast Pacific provided two 
contrasting systems, the upwelling 
eastern boundary current system in 
the Northern California Current and 
the seasonal downwelling system in the 
coastal Gulf of Alaska. These systems 

Figure 1. The GLOBEC research strategy.
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showed intriguing patterns of zooplank-
ton (Brodeur et al., 1996) and fish (Hare 
et al., 1999) populations that covaried 
out of phase with each other, and they 
provided a way to compare and contrast 
the controlling mechanisms at work 
(Worden et al., 2010; Batchelder et al., 
2013, in this issue). 

The Southern Ocean was an active 
site for GLOBEC because of its strong 
linkage to climate and the importance of 
the region’s natural resources to interna-
tional regulatory organizations, such as 
the Convention for the Conservation of 
Antarctic Marine Living Resources and 

the International Whaling Commission. 
Ice dynamics play an important role in 
physical forcing of the Antarctic system, 
but there are also parallels to cross-shelf 
transport and retentive features seen in 
other US GLOBEC regions.

Target species were chosen in each 
US GLOBEC region for their ecological 
and (in some cases) commercial impor-
tance (Table 2), and that selection drove 
the process studies focusing on particu-
lar species’ vital rates and predator/prey 
interactions. In the Northwest Atlantic, 
larval cod and haddock served as the 
target fish species, while their primary 

prey, calanoid copepods, were the target 
zooplankton species. In the Northeast 
Pacific, salmon species were chosen due 
to their regional importance and appar-
ent response to regime shifts, while 
copepods and krill were the zooplankton 
target species. In the Southern Ocean, 
krill was the central species, along with 
its main predators, such as penguins, 
seals, and cetaceans. The Southern 
Ocean was the only US GLOBEC pro-
gram that included marine mammals as 
target species. While the target species 
were emphasized in each regional pro-
gram, other zooplankton taxa, including 

Table 1. Characteristics of US GLOBEC study regions.

Region

NW Atlantic/ 
Georges Bank

Southern Ocean:  
West Antarctic Peninsula

NE Pacific: California  
Current System (CCS)

NE Pacific: Coastal Gulf  
of Alaska (CGOA)

System 
Type

» Bank » Ice-dominated » Eastern boundary current » Buoyancy-driven flow

Area » 42,000 km2 » 89,000 km2 » 34,000 km2 » 291,840 km2

Physical 
Processes

» Stratification
» Transport/Retention 
» Cross-Frontal Exchange

» Stratification
» Cross-Shelf Transport
» Transport/Retention
» Mesoscale Circulation
» Sea Ice Dynamics

» Stratification 
» Cross-Shelf Transport
» Mesoscale Circulation
» Upwelling

» Stratification 
» Cross-Shelf Transport
» Mesoscale Circulation
» Downwelling

Atmospheric 
Climatic 
Indicators

» North Atlantic Oscillation
» El Niño-Southern Oscillation  
» Southern Annual Mode

» El Niño-Southern Oscillation  
» Pacific Decadal Oscillation

» El Niño-Southern Oscillation
» Pacific Decadal Oscillation

Key 
Hypotheses 
and Issues

» Retention and in situ growth 
are more important than 
lateral exchange processes 

» Stratification results in prey 
aggregation and increased 
predator survival

» Variation in mixing and 
stratification affects 
phytoplankton production 
and food web dynamics

» Large episodic water mass 
exchanges contribute to 
population variability

» Stratification and turbulent 
mixing affects predator-prey 
encounter rates 

» Predation is dominant 
source of mortality

» Shelf circulation in the 
vicinity of Marguerite Bay 
retains the krill population 
in a favorable environment

» Persistent winter ice cover 
provides dependable food 
and protection for larval 
krill to grow and survive 
over winter

» On-shelf intrusions of 
Upper Circumpolar Deep 
Water supply heat, salt, 
and nutrients that affect 
ice properties and enhance 
biological production

» Antarctic krill employ a 
range of overwintering 
strategies

» Local wind forcing and 
basin-scale currents affect 
spatial and temporal 
variability in mesoscale 
circulation 

» Mesoscale features impact 
zooplankton biomass, 
production, distribution, 
retention, and loss 

» Variations in the intensity 
of cross-shelf transport 
and the levels of primary 
and secondary production 
control juvenile coho and 
chinook salmon growth 

» High and variable predation 
mortality of juvenile coho 
and chinook salmon in 
the coastal CCS affects 
population variation

» Local wind forcing and 
basin-scale currents affect 
spatial and temporal 
variability in mesoscale 
circulation 

» Mesoscale features impact 
zooplankton biomass, 
production, distribution, 
retention, and loss 

» Rapid growth and high 
survival of pink salmon 
depend on cross-shelf 
import of large zooplankton 
from offshore to nearshore 
waters

» High and variable predation 
mortality of juvenile pink 
salmon affects population 
variation
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microzooplankton in some regions, 
were investigated as well.

Having regions with some common, 
as well as differing, features allowed 
US GLOBEC to compare the systems in 
relation to specific physical processes 
(including stratification, mechanisms 
of retention and loss, upwelling and 
downwelling, and cross-front exchange). 
Regions with closely related target spe-
cies allowed species comparisons across 
systems (US GLOBEC, 2009).

CONSIDER ATIONS OF  
MANAGING AND 
CONDUC TING A L ARGE 
MARINE RESEARCH PROGR AM
The research questions undertaken by 
US GLOBEC could not be addressed 
without a large-scale effort over a con-
siderable time period (Turner and 
Haidvogel, 2009). Large oceanographic 
research programs require a major 
commitment of funding, ship avail-
ability, science investigator time, and 
multiple generations of technicians and 
graduate students. One of the primary 
aspects of US GLOBEC that contrib-
uted to its success was development 
of partnerships that helped to support 
the program. Partnerships between the 
National Science Foundation and the 
National Oceanic and Atmospheric 
Administration provided science sup-
port and ship time. Partnerships among 
scientific disciplines pushed the boundar-
ies of traditional fields and widened both 
the interpretation and the applicability of 
the scientific results. Partnerships across 
academic and federal science institutions 
nurtured important collaborations that 
continue beyond the end of the GLOBEC 
program. International partnerships, 
importantly with the GLOBEC inter-
national program, but also through the 
International Council for the Exploration 

of the Seas (ICES) and the North Pacific 
Marine Science Organization (PICES), 
provided international context for 
the US regional programs, and were 
integral for cross-regional compari-
sons. Many of the ideas and approaches 
that characterized GLOBEC science 
have been carried forward and helped 
shape the science agenda for current 
international global environmental 
change programs, such as the Integrated 
Marine Biogeochemistry and Ecosystem 
Research (IMBER) Project. 

Infrastructure also needed to be 
developed to deal with scientific, logis-
tical, and technical challenges. The 
program benefitted from outstanding 
scientific leadership through the scien-
tific steering committee (SSC), which 
met twice per year during the course of 

the entire program. The SSC provided 
general scientific oversight, tracked 
programmatic progress, developed 
implementation plans for regional pro-
grams and pan-regional synthesis, and 
liaised with funding agency representa-
tives. Active engagement by the SSC 
stitched the regional programs together 
into a national program. It also allowed 
the program to adapt to financial set-
backs, challenges in ship schedules, 
regional programs staggered in time, 
and a multitude of other trials. A central 
planning office for the US GLOBEC 
program provided strategic planning 
and program coordination, maintained 
records of publications, and supported 
a number of special reports and sympo-
sia (see http://www.usglobec.org). The 
existence of a dedicated planning office 

Figure 2. US GLOBEC study regions.

http://www.usglobec.org
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is central to the success of a large inter-
disciplinary program like US GLOBEC. 

Communications to the scientific, 
governmental, and lay communities 
were sustained through articles in peer-
reviewed scientific journals (over 700 to 
date), newsletters, dedicated issues of 
national journals, and numerous special 
sessions at national and international 
meetings. Data management needs had 
to be addressed to allow integration of 
disparate disciplines through common 
access to data sets. The GLOBEC data 
management office, established in the 
mold of the Joint Global Ocean Flux 
Study data management effort, has 
evolved into the Biological and Chemical 
Oceanographic Data Management Office 
(BCO-DMO; Baker and Chandler, 2009; 
Chandler et al., 2012), which now serves 
the entire oceanographic community.

PROGR AM LEGACIES
The extensive data sets obtained from 
the US GLOBEC regional program field 
and synthesis studies provide an impor-
tant scientific legacy of the program. 
Field sampling during US GLOBEC 
included long-term observations as 
part of the research program, with 
the intent that aspects of these would 
be maintained beyond the end of the 
US GLOBEC program. As an example, 
the Seward Line in the Gulf of Alaska, 
initiated by US GLOBEC, has proven 

to be an important component of 
monitoring Gulf of Alaska oceanography 
(http://www.sfos.uaf.edu/sewardline). 
Monitoring of biology and physics 
along a cross-shelf transect off central 
Oregon has been continued, but on a 
less frequent basis, since US GLOBEC 
concluded. The Southern Ocean pro-
gram was groundbreaking as it collected 
the first austral winter coupled physical-
biological measurements (Hofmann 
et al., 2004). These significant data will 
“live on” in future scientific analyses 
and through BCO-DMO, and they 
will provide foundations for regional 
Integrated Ecosystem Assessments 
(Fogarty et al., 2013, in this issue). 

US GLOBEC studies led to the rec-
ognition of the importance of physical 
transport in all regions (Di Lorenzo et al., 
2013a, b, in this issue). Anomalies and 
episodic events are now acknowledged 
as driving forces in marine ecosystem 
dynamics. These include interactions of 
the Labrador Current and Scotian shelf 
waters reacting to the North Atlantic 
Oscillation and the Arctic Oscillation 
(Pershing et al., 2005; Greene et al., 
2008, 2012), “minty” water events on the 
Oregon shelf (Huyer, 2003), upwelling-
induced hypoxia (Grantham et al., 
2004; Chan et al., 2008), transport of 
different zooplankton populations in 
different upwelling conditions (Keister 
and Peterson, 2003; Hooff and Peterson, 

2006), and the importance of remote and 
local connectivity in Southern Ocean 
krill populations (Piñones et al., 2011, 
2013). Marine populations were shown 
to be sensitive to environmental vari-
ability at many different scales (Botsford 
et al., 1994; Fogarty and Murawski, 1998; 
Worden et al., 2010). Long-term vari-
ability was recognized as an important 
influence on food web structure and 
dynamics (Hofmann and Powell, 1998; 
Di Lorenzo et al., 2013b, in this issue; 
Fogarty et al., 2013, in this issue).

US GLOBEC made essential contri-
butions to the evolution of numerical 
modeling as a tool for interdisciplinary 
understanding and prediction of coupled 
physical/biological response in the 
marine environment (Curchitser et al., 
2013, in this issue). Modeling was a 
central tool used by US GLOBEC to inte-
grate process studies, long-term observa-
tions, and retrospective studies, as well 
as to bridge spatial and temporal scales 
through nesting of model domains. By 
utilizing many different kinds of models 
(fully coupled dynamical models, end-
to-end food web models, Bayesian hier-
archical models, and others), GLOBEC 
researchers were able to test hypotheses 
and synthesize understanding in an 
ecosystem context. As examples, great 
strides were made in the development 
of alternative strategies for coupled 
physical-biological models (Powell et al., 

Table 2. Target species for US GLOBEC process studies.

Region

NW Atlantic/ 
Georges Bank

Southern Ocean:  
West Antarctic Peninsula

NE Pacific: California  
Current System

NE Pacific: Coastal  
Gulf of Alaska

Target
Organisms

Gadus morhua
Melanogrammus aeglefinus

Calanus finmarchicus
Pseudocalanus spp.

Euphausia superba
Penguin spp.

Seal spp.
Whale spp.

Oncorhynchus kisutch
Oncorhynchus tshawytscha 

Calanus spp.
Euphausia pacifica

Thysanoessa spinifera

Oncorhynchus gorbuscha
Neocalanus spp.

Euphausia pacifica
Thysanoessa spinifera
Thysanoessa inermis
Thysanoessa raschii

http://www.sfos.uaf.edu/sewardline
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2006; Ji et al., 2008a,b; Hermann et al., 
2009) and in quantifying uncertainties 
in them (Lynch et al., 2009; Milliff et al., 
2013, in this issue). There were also 
pioneering approaches to the applica-
tion of data assimilation in US GLOBEC 
(McGillicuddy et al., 1998, 2001; Lynch 
et al., 2001; Fiechter et al., 2011). 

Finally, US GLOBEC made enor-
mous advances in linking global climate 
and regional ocean models, one of the 
original goals of the program. GLOBEC 
researchers were the first to run regional 
models to explore climate variability 
of the ocean on a regional scale and to 
investigate the implications to popula-
tions (Curchitser et al., 2013, in this 
issue; Di Lorenzo et al., 2013a,b, in 
this issue). US GLOBEC investigators 
significantly advanced the practice of 
dynamical synthesis and hindcasting 
in all of the study regions. A new mul-
tiscale paradigm was demonstrated for 
coupling global climate models with 
regional models at higher resolution 
(Curchitser et al., 2013, in this issue). 
Now there is a community actively work-
ing on regional climate variability and its 
impacts on marine animals.

US GLOBEC was able to provide 
a broader perspective than fisheries 
science, climate science, or ocean-
ography alone, thereby contributing 
the basis to move forward into more 
ecosystem-based approaches to manage-
ment (Turner and Haidvogel, 2009; 
Fogarty et al., 2013, in this issue). 
The many advances highlighted in 
this issue could not have been made 
without national support for large 
integrative ocean science programs. 
Even in times of shrinking research 
budgets, there is a vital need for these 
cross-disciplinary, long-term research 
programs. Future large ocean research 
programs will need to incorporate 

human dimension research from the 
outset, and build a new community for 
“transdisciplinary” science (Haidvogel 

et al., 2013, in this issue). The National 
Science Foundation has begun to 
address this through the recent SEES 
program (Science, Engineering, and 
Education for Sustainability), and we 
applaud these types of initiatives. We are 
proud of what US GLOBEC was able to 
accomplish, and fully expect that future 
research programs will benefit from, and 
build upon, the US GLOBEC legacy to 
understand climate impacts on ocean 
ecosystems, and to protect and sustain 
marine populations. 

This is US GLOBEC contribution 737.
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