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S p e c i a l  Iss   u e  O n  Co  a s ta l  Lo  n g  T e r m  E c o l o g i c a l  R e s e a r c h

Genetic Evidence for Regional Isolation 
of Pocillopora Corals from Moorea

B y  Z a c  H .  F o r s m a n ,  E r i k a  C .  J o h n s t o n ,  A n d r e w  J .  B r oo  k s , 

T h o m a s  C .  A d a m ,  a n d  Rob   e r t  J .  Too   n e n

Pocillopora is one of the most abundant 
and widely distributed coral genera, with 
a geographic range spanning the entire 
tropical Pacific and Indian Oceans as 
well as the Red Sea and Arabian Gulf. 
Across this enormous geographic range, 
Pocillopora is a major reef builder (sec-
ond in importance and abundance only 
to Acropora) that can dominate a wide 
variety of habitats, including marginal 
environments occupied by only a few 
other coral genera. Despite the ecological 
importance of this genus, species bound-
aries remain poorly understood. Species 
identification is extremely challenging 
in many corals, and Pocillopora is often 
cited as a prime example. Around 40 spe-
cies in the genus have been named, while 
approximately 14 are considered valid 
and one (P. elegans) is currently under 
consideration for protection under the 
US Endangered Species Act. However, 
the evaluation and conservation of coral 
species remains problematic due to 
taxonomic uncertainty (Brainard et al., 
2011). The genus consists mostly of fast-
growing “weedy species” that are highly 
susceptible to mortality from bleaching 
and predation, and, due to past patterns 
of regional extinction, are considered to 

be highly vulnerable (Van Woesik et al., 
2012). P. damicornis is widely used as 
a model organism for research (a “lab 
rat”) because it is abundant, fast growing, 
and some varieties in some geographic 
regions brood planular (ciliated, free-
swimming) larvae (Schmidt-Roach et al., 
2012b). Several recent genetic studies 
have confirmed cryptic lineages (Flot 
et al., 2010; Pinzón and LaJeunesse, 
2010; Souter, 2010; Schmidt-Roach et al., 
2012a,b; Marti-Puig et al., in press), and 
a recent range-wide phylogeographic 
survey indicated that several genetic 
groups have highly limited geographic 
distributions (Pinzón et al., 2013). 

Here, we place Pocillopora from 
the Moorea Coral Reef Long Term 
Ecological Research (MCR LTER) site 

into a broad phylogeographic context by 
comparing new mitochondrial data with 
all known studies published as of June 
2013 (Figure 1). There are clear biogeo-
graphical patterns that emerge within 
the genus Pocillopora. Samples from the 
MCR LTER site are genetically diverse, 
and several genetically distinct groups 
are unique to Moorea (Figure 1) when 
compared to the greater Pacific locations 
sampled thus far. Several haplotypes 
have a highly restricted geographic dis-
tribution (e.g., 1b, 6a, 6b, 3h, 9, 10, 11 in 
Figure 1). Other haplotypes occur over a 
broad geographic range (e.g., 1a, 3a, 4, 5 
in Figure 1), although these ranges are 
still significantly smaller than reported 
ranges based on morphological species 
descriptions. For example, the nominal 
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taxa “P. damicornis” and “P. verrucosa” 
are reported to occur across the entire 
Pacific and Indian Oceans (Veron and 
Stafford-Smith, 2000), but none of the 
genetic variants are found across this 
entire range (Figure 1). 

During the past few years, genetic 

studies have rapidly proliferated and 
challenged the understanding of spe-
cies boundaries within this genus. 
Accumulating evidence now indicates 
that the range of phenotypic variation 
within each mitochondrial group of 
Pocillopora is underappreciated. For 

example, clades 4 and 5 consist predomi-
nantly of colonies identified in the field 
as “P. damicornis”; however, this mor-
phological variety has been identified 
(or misidentified) across most clades. 
Several clades exhibit a surprisingly 
wide range of morphological variation 
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Figure 1. Haplotype network of a 209bp fragment of the mitochondrial ORF gene across the geographic range of Pocillopora. Nomenclature for clades follows 
Pinzón et al. (2013), with clades 9, 10, and 11 unique to Moorea (added by this study). The photos are all representative voucher images from clade 6a, illustrating 
the range of morphological variation possible within each distinct genetic group. Most coral genera have uninformative mitochondrial markers, with extremely 
low levels of polymorphism, but the highly polymorphic mitochondrial ORF gene is a unique feature of Pocilloporidae (Flot and Tillier, 2007). Thus, we focus 
on this single marker because (1) it has been widely used and highly informative in Pocillopora, and (2) previous studies have found the marker to resolve more 
genetic groups (higher phylogenetic resolution) but still be concordant with other markers (Flot et al., 2010; Pinzón and LaJeunesse, 2010; Souter, 2010; Schmidt-
Roach et al., 2012a,b; Marti-Puig et al., in press; Pinzón et al., 2013). Photo credits: James E Maragos and Frank Stanton. GenBank accession numbers KF381328-30
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(Figure 1). Phenotypic plasticity can 
have many underlying causes (reviewed 
by Todd, 2008), yet within a given geo-
graphic area, consistent and recognizable 
species of Pocillopora are often observed 
side by side in the same habitat; there-
fore, phenotypic and geographic varia-
tion in the context of coral genotype are 
fertile grounds for future work. 

Genetic studies in general have 
resulted in rapid upheaval in coral tax-
onomy and systematics, and they are 
challenging longstanding paradigms 
based on skeletal morphology (reviewed 
by Stat et al., 2012). As a widely used 
experimental organism, Pocillopora is 
among the best studied of coral groups, 
yet much work remains to more accu-
rately map patterns of biodiversity in this 
and other coral genera. Cryptic diver-
sity and regional diversification were 
also recently discovered in Stylophora 
pistillata, another well-studied coral in 
the family Pocilloporidae (Keshavmurthy 
et al., 2013). Moorean Pocillopora corals 
are genetically diverse, but with a high 
proportion of sequence types that were 
sampled nowhere else. These results are 
consistent with reduced gene flow and 
high local retention (outlined by Leichter 
et al., 2013, in this issue). Even in this 
well-studied system, new discoveries are 
challenging the prevailing views of coral 
species boundaries, biodiversity, evolu-
tion, and ecology. Coral species bound-
aries and biogeography are increasingly 
important for understanding the past, 
present, and uncertain future of coral 
reefs in the face of biodiversity loss. 
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