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	 Ocean Mixing by 
Kelvin-Helmholtz Instability

B y  W i l l i a m  D .  S m y t h  a nd   J a m e s  N .  M o u m

S p e c i a l  I ss  u e  O n  I n t e r n a l  Wav e s

ABSTRACT  . Kelvin-Helmholtz (KH) instability, characterized by the distinctive 
finite-amplitude billows it generates, is an important mechanism in the development 
of turbulence in the stratified interior of the ocean. In particular, it is often assumed 
that the onset of turbulence in internal waves begins in this way. Clear recognition of 
the importance of KH instability to ocean mixing arises from recent observations of 
the phenomenon in a broad range of oceanic environments. KH instability is a critical 
link in the chain of events that leads from internal waves to mixing. After 150 years of 
research, identifying the prevalence of KH instability in the ocean and defining useful 
parameterizations that quantify its contribution to ocean mixing in numerical models 
remain first-order problems.

INTRODUCT ION
A regime of strongly nonlinear fluid 
motions exists at scales smaller than can 
be resolved by global ocean models. They 
include a broad range of phenomena 
that exhaust at least some of their energy 
to turbulence. While these organized 
motions are generally well understood, 
there is as yet no deterministic theory 
for the resulting turbulence. In practice, 
we understand turbulence through the 
statistics of its density, velocity, and vor-
ticity fluctuations. Turbulence stirs the 
ocean, stretching material surfaces and 
locally increasing gradients to the point 

that they rapidly and irreversibly diffuse 
at molecular scales. This process is ulti-
mately responsible for mixing the ocean. 

The transition from organized flow to 
turbulence occurs through a sequence 
of instability processes, beginning with 
a primary instability. Different primary 
instabilities dominate under different cir-
cumstances. For example, cooling of the 
sea surface generates cool (and therefore 
dense) fluid parcels that sink once buoy-
ant forces exceed viscous forces. This is 
one form of convective instability. The 
resulting turbulence acts to homogenize 
the ocean’s surface layer, particularly 

at night. Another form of convective 
instability (sometimes called “advec-
tive” instability) occurs in gravity waves 
when the particle motion exceeds the 
wave speed, such as in a breaking surface 
wave. Some parts of the ocean are mixed 
by double-diffusive instabilities due to 
the combined effects of temperature and 
salinity on the density of seawater. 

In the stratified interior, mixing is 
most often mediated by internal waves, 
whose energy comes from a combination 
of wind and tidal forcing. Internal wave 
shear (vertical gradient of horizontal 
velocity) counters the stabilizing effect 
of density stratification and can gener-
ate primary instability of the Kelvin-
Helmholtz (KH) type. The tendency for 
instability to grow despite the damping 
action of stable stratification is quantified 
using the gradient Richardson number 
(Ri, the ratio of the squared buoyancy 
frequency to the squared vertical shear 
of the horizontal flow). When shear is 
strong enough (or stratification weak 
enough) to bring Ri below a critical 

Oceanography |  Vol.  25, No. 2140



Oceanography  |  June 2012 141

B y  W i l l i a m  D .  S m y t h  a nd   J a m e s  N .  M o u m value, instability is possible. The result 
is a growing wave train reminiscent 
of surface waves approaching a beach 
(e.g., atmospheric examples shown in 
Figures 1a,b, 2, 3, and 4). The maximum 
shear primarily determines the instabil-
ity’s growth rate, while wavelength is 
typically an order of magnitude greater 
than the thickness of the sheared layer. 

Visual evidence for KH instability 
frequently can be seen at the top of the 
atmospheric boundary layer in late after-
noon and evening, where it appears as 
patches of banded clouds (occasionally 
seen in Web videos of flows near Marys 
Peak taken from the top of our building 
at Oregon State University and shared at 
http://marycam.coas.oregonstate.edu). 
Seen from the side, such clouds often 
take shapes similar to those of surface 
waves breaking on a beach. Figure 1 
shows vivid examples from the atmo-
sphere and from a low-level shear flow in 
the Canadian Arctic. Increasingly high-
fidelity ocean measurements have led to 

clear observations of the presence and 
structure of KH billows in the ocean.

In this article, we review the history 
and current status of research into KH 
instability with a focus on its role in the 
energy cascade from oceanic internal 
waves to small-scale turbulence.

SOME HISTORY
Named in honor of the pioneering inves-
tigators William Thomson (Lord Kelvin, 
1824–1907) of Glasgow and Hermann 
von Helmholtz (1821–1894) of Berlin, 
“Kelvin-Helmholtz instability” referred 
originally to the instability of two adja-
cent fluid layers in relative motion. 
Thomson (1871) used this instability as 
a model for the generation of ocean sur-
face waves by wind, while von Helmholtz 
(1890) sought to explain the banded 
clouds discussed above. In real fluids, a 
transition layer of nonzero thickness—a 
shear layer—always separates the layers. 

Disturbances between moving 
fluid layers were first documented via 
experiments in a tilting tube by Reynolds 
(1883)1. In these experiments, a long 
horizontal tube containing two fluid 
layers of different densities was tipped 

slightly, so that the buoyancy differ-
ence set the layers in motion relative 
to one another, resulting in the forma-
tion of waves at the interface. Thorpe 
(1971; Figure 2) documented the large-
amplitude, two-dimensional structure in 
which vorticity creates billows and inter-
mingles the fluids from adjacent layers.

Theoretical studies of the homog-
enous shear layer by Lord Rayleigh 
(1880) were extended to include the 
effects of stable density stratification 
by Taylor (1927, 1931), who also dem-
onstrated stratification effects in the 
laboratory, and Goldstein (1931). The 
equation that describes the instability in 
the absence of viscosity and diffusion is 
called the Taylor-Goldstein equation in 
their honor (Thorpe, 1969). Miles (1961) 
and Howard (1961) showed the critical 
value of Ri to be ¼. 

The occurrence of KH billows in the 
ocean was first revealed when scuba 
divers conducted dye-release experi-
ments in the stratified thermocline of 
the Mediterranean Sea (Woods, 1968, 
shown here in Figure 3). Photographs 
of the resulting dye patterns revealed 
billow trains associated with internal 

a b c

Figure 1. Kelvin-Helmholtz billows revealed by clouds. (a) Side view (from http://www-frd.fsl.noaa.gov/mab/scatcat; photo by Brooks Martner). (b) Kelvin-
Helmholtz billows made visible by a fog layer on the shore of Nares Strait in the Canadian Arctic (courtesy of Scott McAuliffe, Oregon State University). (c) Ground 
view of billow clouds (http://www.weathervortex.com/sky-ribbons.htm), showing large-scale knot instabilities (Thorpe, 2002) and thin striations consistent with 
convection rolls (Klaassen and Peltier, 1991). 

1 They were part of a series of fluid experiments performed by Reynolds on the transition to turbulence from 
which the Reynolds number was first defined.
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gravity waves (IGWs) of much greater 
wavelength, as well as small-scale streaks 
suggestive of secondary instability 
(Figure 3b). The spatial and temporal 
scales of the billows compared favorably 
with predictions based on the theory of 
KH instability. The photos also showed 
the role of KH billows in IGW break-
ing as, following the instability, the dye 
quickly mixed away.

Hazel (1972) constructed numerical 
solutions of the Taylor-Goldstein equa-
tion for a number of idealized velocity 
and density profiles that have proven 
useful in modeling naturally occurring 
stratified shear flows. One of them was 
a shear layer in which velocity and den-
sity varied continuously between two 

homogeneous layers. All models of shear 
layers (both laboratory and theoretical) 
generate instability and vortex rollup 
if Ri is small enough. Today, this class 
of processes is referred to in general as 
“Kelvin-Helmholtz instability.” 

The importance of KH instability has 
been documented observationally in a 
variety of oceanic regimes, for example, 
within strongly sheared estuarine flows 
(Geyer and Smith, 1987; Geyer et al., 
2010) and at the edges of gravity currents 
(Wesson and Gregg, 1994). Van Haren 
and Gostiaux (2010; Figure 4) have 
observed a train of about 10 billows 
in a highly sheared zone associated 
with tidal flow at 560 m depth over 
Great Meteor Seamount.

KH INSTABILITY  AND 
INTERNAL WAVE BREAKING
In uniform stratification (a useful 
approximation for the main thermo-
cline), shear instability is dominant in 
waves of near-inertial frequency, where 
motions are nearly parallel and primarily 
horizontal. This is true even when wave 
amplitude is large enough that isopycnals 
are overturned (Dunkerton 1997; Lelong 
and Dunkerton, 1998a,b). (However, 
instability differs from the standard KH 
model in that the mean flow structure 
is a sinusoid rather than a shear layer.) 
Higher-frequency waves are more 
likely to break via convective instability. 
Internal waves in the thermocline may 
also break via parametric subharmonic 
instability (e.g., Hibiya et al., 1998), or by 
a resonance with small-scale instability 
such as salt fingering (Stern, 1969). 

Nonlinear interfacial waves, as may 
occur at the base of a surface mixed 
layer, break primarily via KH instabil-
ity (e.g., Moum et al., 2003; Lamb and 
Farmer, 2011). Internal waves encoun-
tering topography have been found to 
break via KH instability in the bound-
ary layer and via convective instability 
in the interior (Venayagamoorthy and 

ba

Figure 3. Underwater snapshots made by divers from laboriously executed dye release experiments in the Mediterranean thermocline (Woods, 1968). (a) Side 
view of the rollup of a Kelvin-Helmholtz billow. (b) Shear instabilities viewed in the context of larger-scale waves.

Figure 2. Tilting tank laboratory experiment in which a dense (here, dark) layer of fluid underlies a 
lighter fluid initially at rest. When the tank is tilted, buoyant forces accelerate the denser fluid down 
and the lighter fluid up the slope, thereby creating a velocity gradient across the interface and subse-
quent billow formation (Thorpe, 1971).
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Fringer, 2012, in this issue). 
Many classes of ocean models impli-

citly assume mixing via shear instability 
by applying mixing in regimes of low 
Ri, for example, the one-dimensional 
mixed layer models of Mellor and 
Yamada (1982) and Price et al. (1986). 
The Gregg-Henyey-Polzin scaling of dis-
sipation due to fine-scale internal wave 
interactions (Henyey et al., 1986; Gregg, 
1989; Polzin et al., 1995) rests on a 
similar assumption. A direct connection 
between turbulence and low Ri in the 
North Atlantic thermocline has provided 
quantitative evidence for the prevalence 
of shear instability (Polzin, 1996).

MECHANICS OF THE 
ENERGY CASCADE
The tendency of vorticity in a parallel 
shear layer to accumulate into evenly 
spaced maxima is the primary driver of 
KH instability. Given an initial wavelike 
perturbation, mass conservation requires 
accelerated horizontal flow above the 
crests and below the troughs (Figure 5a). 
The resulting current anomalies advect 
vorticity toward the center of the figure. 
The vorticity concentration induces 
vertical velocity perturbations that 
amplify the original wave (Figure 5b), 
resulting in positive feedback and expo-
nential growth of the perturbation.2 The 
most-amplified wavelength depends 
on the details of the initial profiles, but 
typically ranges from 6 to 11 times the 
initial transition-layer thickness. Stable 
stratification tends to slow the growth of 
the billows, but also to accelerate break-
ing once the billows reach sufficient 
amplitude to overturn. Internal waves 
in the ocean contain regions of strong 

shear and stratification that are well 
described by this scenario, particularly 
in cases where two or more wave trains 
interfere constructively. 

The downscale energy cascade from 
IGW to turbulence often begins with KH 
instability, but it does not end there. We 
can identify at least one further step, that 
being one of several secondary instabili-
ties that grow on mature KH billows. The 
classic review article of Thorpe (1987) 
describes several such instabilities; today, 
several more are known. To compute 
these secondary instabilities, a two-
dimensional KH billow is first simulated 
numerically. Further analysis then deter-
mines which three-dimensional perturba-
tion, if applied to the finite-amplitude 
billow, would grow most rapidly 
(e.g., Klaassen and Peltier 1985, 1991). 

This perturbation is identified as a sec-
ondary instability. In the example given 
in Figure 6, the secondary instability is 
represented by its vorticity field, which 
describes a series of counter-rotating 
convection cells in regions of the core 
where the density field is overturned. 
Similar motions have been seen in labo-
ratory experiments (e.g., Thorpe 1985), 
in the ocean (Figure 3b), and in clouds 
(Figure 1c). Other examples include the 
secondary KH instability (Corcos and 
Sherman, 1976; Staquet, 1995; Smyth, 
2003; Figure 7d), the “knot” instability 
that causes localized pairing (Thorpe 
1985, 2002; Figure 1c), and the “stagna-
tion point” instability of Mashayek and 
Peltier (2011). The latter may explain 
the form of KH billows observed in the 
Connecticut River estuary (Geyer et al., 

2 A more modern view of shear-driven instabilities 
is phrased in terms of resonances between vorticity 
and gravity waves (e.g., Baines and Mitsudera, 1994).

Figure 4. Temperature variations in a downslope tidal flow (van Haren and Gostiaux, 
2010). This time series was constructed using data from multiple temperature sensors 
spaced vertically on a chain above the seafloor at 550 m depth. Typical wavelengths are 
inferred to be 75 m. Graphic courtesy H. van Haren

Figure 5. Schematic representation of the positive feedback that drives shear instability.  
(a) Vorticity accumulation due to horizontal advection. (b) Amplification of the initial wave by 
induced vertical motions.
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2010) and on the Oregon continental 
shelf (Moum et al., 2003, shown in 
Figure 8). The question of which second-
ary instabilities are most important for 
the development of turbulence in oce-
anic billows remains unresolved. While 
complex, these secondary instabilities 
are not turbulent, so further transitions 
(i.e., tertiary instabilities and beyond) 
must be present. 
 
EVOLUTION OF THE 
INSTABILITY  IN NUMERICAL 
SIMULAT IONS
With recent increases in computational 
power, it has become feasible to study 
the energy cascade via direct simulation 
of the full three-dimensional dynam-
ics. Through direct numerical simula-
tions, we are uniquely able to examine 
in detail the full evolutionary cycle of 
flow instabilities. Simulations are limited 
by available computer memory and, 
therefore, cannot fully replicate the range 
of interactions that occur in geophysi-
cal flows. However, with full resolution 
of the smallest scales, they reveal both 
the nonlinear evolution of the primary 
instability and the sequence of second-
ary instabilities that leads to turbulence. 
Moreover, simulations furnish a quan-
titative representation of the resulting 
turbulence and the mixing it causes. 

The first numerical simulations of 
KH instability were restricted to two 
dimensions due to memory limitations 
(e.g., Patnaik et al., 1976; Klaassen and 
Peltier, 1985). These simulations con-
firmed the primary instability but could 
not resolve the subsequent transition 
to three-dimensional motion. Three-
dimensional simulations became pos-
sible in the 1990s (Caulfield and Peltier, 
1994; Scinocca, 1995) and have been 
used in numerous studies since then as 

Figure 6. Secondary instability of a Kelvin-Helmholtz billow calculated using 
perturbation analysis. Colors show the perturbation vorticity field. Yellow 
indicates perturbations of the spanwise (y) vorticity that defines the primary 
instability. Red and blue show opposite signs of the streamwise (x) vorticity.

Figure 7. Direct numerical simulations of the density field at successive time in the life cycle of a 
Kelvin-Helmholtz billow train. Colors show density in the transition layer; upper and lower homo-
geneous layers are rendered transparent. (a) The initial state is a two-layer flow, with a lower (dense) 
layer flowing to the left and an upper layer to the right. A small perturbation is applied. (b) Two 
wavelengths of the primary Kelvin-Helmholtz instability. (c) Kelvin-Helmholtz billows are beginning 
to pair. Secondary instability is visible in a cutaway at upper right, taking the form of shear-aligned 
convection rolls. (d) Secondary shear instability forms on the braids. (e) The fully turbulent state. 
(f) Turbulence decays to form sharp layers and random small-scale waves.
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dynamics. The first comes from the inte-
rior of large-amplitude (and nonlinear) 
internal waves on the continental shelf. 
In waters that are relatively devoid of 
small fish and zooplankton, the prin-
cipal source of acoustic backscatter at 
120 kHz is the density and sound speed 
microstructure created by turbulence, a 
point made clear by broadband acoustic 
measurements through these waves that 
reveal the full spectrum of the back-
scattering that permits discrimination 
between zooplankton and turbulence 
(Lavery et al., 2010). In Figure 8, acous-
tic backscattering illuminates a train 
of billows with dimensions similar to 
those seen over Great Meteor Seamount 
(Figure 4 and accompanying text), but 
here embedded within a wave propagat-
ing toward the Oregon coast (Moum 
et al., 2003). The sequence of rollups is 
identical in nature to Kelvin–Helmholtz 
instabilities observed in the laboratory 
and in small-scale simulations (Figures 2 
and 7). The vertical scale of the largest 

rollup is more than 10 m, and the hori-
zontal scale (in the direction of wave 
propagation) is roughly 50 m. Toward 
the trailing edge of the wave, the rollups 
become less coherent but contribute a 
greater backscatter signal, indicating 
breakdown to turbulence. The turbulent 
region between the two largest billows 
suggests the braid-centered second-
ary instability of Mashayek and Peltier 
(2011). At greater depth, denoted by 
arrows, are two more layers of bright 
backscatter. They are presumably the 
same phenomenon, but smaller scale; if 
so, the echosounder resolution does not 
permit a clear depiction of these deeper 
rollups. The bright acoustic scattering 
tail of large-amplitude internal waves is a 
common feature on continental shelves. 

The second example is from the upper 
equatorial ocean. The signature equato-
rial current structure in the upper 150 m 
of the central Pacific includes a strong 
westward surface current overlying an 
equally intense eastward undercurrent. 

D
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Figure 8. Example acoustical snapshot of a nonlinear internal gravity wave approaching 
the Oregon coast. The wave propagates from left to right at speed Cw in this image. The 
velocity in the upper layer is in the direction of Cw, and the resultant current shear defines 
the direction of the rollups in the billows. The bright acoustic scattering layers result from 
reflections by density microstructure caused by turbulence. The signal reveals a train of 
Kelvin-Helmholtz billows. The structure located between the two largest billows may be an 
example of the stagnation point instability (Mashayek and Peltier, 2011).

computational capacity has increased. 
Early numerical studies assumed that 
momentum and mass diffuse at the 
same rate, as is approximately true in 
air. Increasing computer size has also 
allowed simulations of instability in 
seawater, which is more difficult due to 
the slow diffusion rates of heat and salt 
(Smyth, 1999; Kimura and Smyth, 2007; 
Smyth and Kimura, 2011). 

In the example shown in Figure 7, 
the diffusivities are characteristic of 
thermally stratified seawater (see Smyth 
and Thorpe, 2012, for further details). 
Figure 7a shows the initial state—two lay-
ers separated by a thin transition layer. A 
small perturbation grows to form a train 
of KH billows, two of which are shown 
in Figure 7b. The billows subsequently 
merge and develop two secondary insta-
bilities in sequence: convective secondary 
instability in overturned regions of the 
billow cores (Figure 7c, cf. Figure 6) and 
secondary shear instability in the braids 
(Figure 7d). These instabilities, and a 
complex combination of tertiary insta-
bilities, lead the flow to a fully turbulent 
state (Figure 7e). Ultimately, turbulence 
decays, leaving a field of random IGWs 
propagating on a layer that has been 
dramatically thickened by irreversible 
mixing (Figure 7f, compare with 7a). The 
statistical properties of simulated mix-
ing events like those shown here closely 
resemble those extracted from observa-
tions of turbulent patches in the ocean 
thermocline (Smyth et al., 2001).

OCEANIC OBSERVATIONS OF 
KH INSTABILITY  AND THE 
TRA NSITION TO TURBULENCE
We next describe two examples of tur-
bulence arising from KH billows in 
disparate geographical locations and 
governed by very different internal wave 
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now used routinely in data analysis. 
Linear stability analysis provides com-
pelling evidence that the oscillations 
found in strongly sheared equatorial 
currents are, in fact, a KH instability. 
Predicted wavelengths of computed 
instabilities (Sun et al., 1998; Figure 10a) 
agree with directly measured wave-
lengths (Moum et al., 1992), and pre-
dicted frequencies (Smyth et al., 2011; 
Figure 10b) also agree well with directly 
measured frequencies (Moum et al., 
2011). These analyses show that the con-
ditions for the growth of KH instability 
occur sporadically, which in turn sug-
gests that random internal wave interac-
tions add to the ambient shear to drive 
Ri to subcritical values, thereby generat-
ing instability at random points in space 
and time. The similarity between the 
dominant frequency of the oscillations 
and N is consistent with this scenario, 
even though the frequency of individual 
KH events is independent of stratifica-
tion (see Box 1).

The relationship between KH instabil-
ity and small-scale turbulence is com-
plex: the instability causes turbulence, 
and turbulence already present in the 
environment affects its growth. Liu et al. 
(2011) have recently extended the classi-
cal method of stability analysis to include 
the effects of ambient turbulence. In 
strongly forced flows, such as exist in the 
upper equatorial ocean, this relationship 
can lead to a cycle in which shear is con-
tinually reinforced, but new instabilities 
cannot grow until turbulence generated 
by previous instabilities decays. 

As a result, current shear is large and, 
despite strong stratification, Ri is typi-
cally near-critical in the mean.3 It has 
long been suspected that turbulence 
generated beneath the equatorial mixed 
layer (which does not generally extend 
as far as it does beneath mid-latitude 
mixed layers) is due to shear instabil-
ity. Recent measurements from a verti-
cal array of fast temperature sensors 
moored for extended periods in the 
upper equatorial ocean have confirmed 
the basic structure of KH instability in 
the small-scale fluctuations that appear 
on a daily cycle at frequencies near the 
local buoyancy frequency, N (Figure 9; 
Moum et al., 2011). The frequency and 
intermittency of the fluctuations can be 
seen in the Figure 9a spectrogram. The 

phase of the oscillations varies vertically 
in a manner consistent with KH instabil-
ity. Oscillations typically comprise O(10) 
wavelengths. Potential energy stored in 
these motions (Figure 9b) also varies on 
a daily basis and is correlated with the 
turbulent kinetic energy dissipation rate 
(Figure 9c), indicating that turbulent 
mixing at small scales coincides with 
KH billows (Figure 9d).

The interpretation of these fluctua-
tions as KH billows has been tested via 
application to oceanic data of Rayleigh’s 
(1880) method of linear stability analy-
sis. That method has been used in the 
interpretation of billows observed in 
the atmosphere (Busack and Brummer, 
1988) and in the ocean (Mack and 
Hebert, 1997; Sun et al., 1998), and is 

3 In the case of large-amplitude internal waves, the 
shear at a point in space is short-lived, and so also 
is near-critical Ri. The important issue of how long 
near-critical Ri must persist for instability to occur 
has been examined in laboratory and numerical 
experiments (Fructus et al., 2009; Inoue and Smyth, 
2009; Barad and Fringer, 2010).

Figure 9. Tempera-
ture fluctuations 
observed in the 
sheared zone above 
the Pacific equato-
rial undercurrent. 
(a) Temperature 
spectrogram (vari-
ance preserving), 
(b) wave potential 
energy, NT

2 ζ 2, and 
(c) turbulence 
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dissipation rate, εχ , for the period December 20, 
2006–February 10, 2007, derived from a single 
fast thermistor deployed at 29 m on NOAA’s TAO 
(Tropical Ocean-Atmosphere) mooring at 0°, 
140°W. The relationship between the potential 
energy of the instabilities and the turbulence is 
established in the scatter plot (d). Blue points 
plotted represent the two-dimensional histogram; 
darker points occur more frequently.
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Box 1 |  Why Kelvin-Helmholtz Billows Are Near-N 
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Figure B3. Probability distribution function for the frequency:  
theoretical (blue) and based on linear stability analysis of mea-
sured flows (gray).

Figure B1. Probability distri-
bution of phase velocity.

Figure B2. Probability dis-
tribution of wavelength.

Oscillations in the upper equatorial Pacific, thought to arise from 
KH instability, show a striking tendency to have frequency close to N, 
the buoyancy frequency. This is not a property of individual KH billows, 
but may follow from the statistics of a random ensemble of instabilities 
due to sporadic shear amplification by interacting gravity waves.

Consider a random ensemble of instabilities growing on small shear 
layers within a larger sheared zone. Phase velocities lie approximately 
within the range of the mean current (Howard, 1961; Figure B1), 
Umin < c < Umax. The observer’s velocity is assumed to lie in the range of 
the mean flow, so that Umin < 0 and Umax > 0. Wavelengths lie between 
zero and about seven times the thickness of the largest shear layer 
(e.g., Hazel, 1972; Figure B2).

Treating phase velocity and wavelength as independent random 
variables yields a probability distribution function for the frequency 
(Figure B3), shown in blue for representative values Umin = –1 ms–1, 
Umax = 1 ms–1, and λ0 = 700 m. For comparison, gray bars show the 
frequency distribution of instabilities computed via linear stability 
analysis of the observed velocity and density profiles. The theo-
retical peak frequency, fpeak = max (|Umin|, Umax)/λ0, is consistent 
with that of computed instabilities for this regime, and also with 
observations (Figure 10).

Given that the maximum possible wavelength λ0 is about 2π times 
the thickness D of the sheared zone, the peak angular frequency 
ωpeak = 2π fpeak is within a factor two of the mean shear. (Since Umin < 0, 
the mean shear would be (Umax + |Umin |)/D, and the sum of two posi-
tive numbers is, at most, twice the greater.) The mean flow is character-
ized by Richardson number of order unity, hence N and the shear are 
nearly equal, implying that ωpeak ~ N.
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QUANTIF YING MIXING 
BY KH INSTABILITY
To determine the net contribution of 
KH instability to global mixing, two 
critical challenges must be addressed. 
The first is to quantify the prevalence of 
KH instability in thermocline internal 
wave fields. Other forms of instabil-
ity contribute to thermocline mixing. 
How much? One way this quantity 
is being measured is with long time 
series that include sufficient detail to 
diagnose KH instability in the sig-
nal such as those made in the upper 
equatorial ocean by Moum et al. 
(2011; Figure 9). Can thermocline 
observations with the same fidelity 
be obtained that permit an evaluation 
of the prevalence of KH instability in 
thermocline internal wave fields? Glider 
measurements are promising in this 
respect (e.g., Thorpe 2012; Smyth 
and Thorpe 2012.)

The second challenge is to param-
eterize KH-induced mixing (i.e., to 
approximate the rate of mixing in terms 
of other quantities that are more easily 
measured or modeled). For example, 
Kunze et al. (1990) used a simple analyti-
cal model of a shear layer to estimate 
the mean flow kinetic energy released 
in an instability event and combined the 
result with an estimate of the turbulence 
production time to arrive at the kinetic 
energy dissipation rate. Future param-
eterizations will incorporate more com-
plete models of instability physics, and 
they will be calibrated using advanced 
laboratory techniques, comprehensive 
microstructure observations, and direct 
numerical simulations of increasing 
scale and realism.
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